
Chapter 1, An Introduction to Linux

John M. Morrison

September 11, 2014

Contents

1 Introduction 2

2 In the Beginning . . . 3

3 The Anatomy of a UNIX Command 4

4 Managing Directories 5

4.1 Processes and Directories . 8

5 A Field Trip 8

6 Making and Listing Regular Files 10

7 Renaming and Deleting Files 13

7.1 Everything is a Computer Program 14

8 Editing Files with vi 18

8.1 A Note for Ubuntu Users . 18

8.2 Launching vi . 18

8.3 vi Modes . 19

8.4 Cut and Paste . 22

8.5 Cutting and Pasting with External Files 22

8.6 Searching . 23

1

9 Visual Mode 24

10 Copy Paste from a GUI 25

10.1 Permissions . 27

11 The Octal Representation for Permissions 28

12 The Man 29

13 Redirection of Standard Output and Standard Input 32

14 Using Pipes 35

14.1 The sort filter . 35

14.2 The Filters head, tail, and uniq 36

14.3 The grep Command . 36

14.4 And Now to Pipes . 37

1 Introduction

Appendix A give details on geting set up to run in a Linux environment. You
will need to consult it to get started.

You are probably used to running a computer with a graphical user interface
(GUI). These interfaces feature windows, icons, buttons, toolbars, and other
graphical features you navigate and use with the aid of your keyboard and
mouse. You likely run Windoze, MacOSX, or you may be running a Linux
GUI on your machine. The GUI allows you to communicate with the operating
system, which is the master program of your computer that manages such things
as running applications and maintaining your file system.

In this book, we will study the Linux operating system in its command-line
guise. You will control the computer by entering commands into a text window
called a terminal window. Typically they look something like this.

2

The name “terminal” name harkens back to the days when you had an actual
appliance on your desk consisting of a (heavy) CRT screen and keyboard that
was connected to a computer elsewhere. Your terminal window is just a software
version of this old appliance. You will enter commands into this window to get
the remote machine you are communicating with to perform various tasks.

The text string morrison@odonata appearing in the window is called the
prompt. Its presence indicates that the computer is waiting for you type in a
command.

2 In the Beginning . . .

As we progress, everything will seem unfamiliar, but actually relate very directly
to some very familiar things you have seen working with a computer having a
GUI. We assume you have basic proficiency using some kind of computer such
as a Mac or a Windoze box, and we will relate the things you do in Linux to
those you do in your usual operating system.

Log in to your UNIX account. If you are working in a Linux GUI, or a Mac,
just open a terminal session. The first thing you will see after any password
challenge will resemble this

[yourUserName}@hostName yourUserName}]$

or this

3

[yourUserName}@hostName ~]$

On a Mac, it will resemble this

John-Morrisons-MacBook-Pro:~ morrison$

The presence of the prompt means that Linux is waiting for you to enter a com-
mand. The token yourUserName will show your login name. Your prompt may
have an appearance different from the ones shown here; this depends on how
your system administrator sets up your host or on the type of Linux distribution
you are using. The appearance of your prompt does not affect the underlying
performance of UNIX. In fact, the properties of your session are highly config-
urable, and you can customize your prompt to have any appearance you wish.

To keep things simple and uniform throughout the book, we will use $ to
represent the UNIX prompt. You will interact with the operating system by
entering commands, instead of using a mouse to push buttons or click in win-
dows.

When you see this terminal, a program called a shell is running. The shell
takes the commands you type and passes them on to the operating system
(kernel) for action. You will type a command, then hit the ENTER key; this
causes the command to be shipped to the OS by the shell. The shell then
conveys the operating system’s reply to your terminal screen. Think of the shell
as a telephone through which you communicate with the operating system. This
analogy is only fitting since UNIX was originally developed at AT&T Bell Labs.

We will begin by learning how to interact with the file system. This is what
give you access to your programs and data, so it is very fundamental.

3 The Anatomy of a UNIX Command

Every UNIX command has three parts: a name, options, and zero or more
arguments. They all have the following appearance

commandName -option(s) argument(s)

Notice how the options are preceded by a -. Certain “long–form” options are
preceded by a --.

A command always has a name. Grammatically you should think of a com-
mand as an imperative sentence. For example, the command passwd means,
“Change my password!” You can type this command at the prompt, hit enter,
and follow the instructions to change your password any time you wish.

Arguments are supplementary information that is sometimes required and
sometimes optional, depending on the command. Grammatically, arguments

4

are nouns: they are things that the command acts upon.

Options are always, well, ... optional. Options modify the basic action of the
command and they behave grammatically as adverbs. We will assume you have
used a computer with a GUI before. All familiar features of a graphics-based
machine are present in Linux, you will just invoke them with a text command
instead of a mouse click. We will go through some examples so you get familiar
with all the parts of a Linux command.

Two very basic Linux commands are whoami and hostname. Here is a typical
response. These commands give, respectively, your user name and the name of
the host you log in to.

Now we run them. We show the results here; your computer will show your
login name and your host name. Here is what they look like on a server.

$ whoami

morrison

$ hostname

carbon.ncssm.edu

$

Here is their appearance on a PC (A Mac in this instance).

$ whoami

morrison

$ hostname

John-Morrisons-MacBook-Pro.local

$

We will next turn to the organization of the file system.

4 Managing Directories

We will do a top–down exploration of the file system. In this spirit, we will first
learn how to manage directories; this is the UNIX name for folders. You will
want to know how to create and manage folders, and how to navigate through
them.

Directories in UNIX work just like folders on a graphical operating system.
You have been in a directory all along without knowing it. Whenever you start a
UNIX session, you begin in your home directory. Every user on a UNIX system
owns a home directory. This is where you will keep all of your stuff.

To see your home directory, type pwd at the UNIX prompt. This command
means, “Print working directory!”You will see something like this.

5

$ pwd

/home/faculty/morrison

This directory is your home directory. Whenever you start a new session, you
will begin here. This is the directory where all the stuff that belongs to you is
kept.

In this example, morrison is a directory inside of faculty, which is inside
a directory home, which is inside the root directory /. Your home directory will
likely be slightly different. It is very common for UNIX systems to keep all
user directories inside of a directory named home. Often, several different types
of users are organized into sub-directories of home. You will later see that all
directories live inside of the root directory, /. Enter the pwd command on your
machine and compare the result to what was shown here. Become familiar with
your home directory’s appearance so you can follow what goes on in the rest of
this chapter.

If you are using Linux on your PC, your home directory will likely look like
this.

/home/morrison

This directory structure is exactly the same as your hierarchy of folders and
files on a Mac or a Windoze box. You already know that folders can contain files
and other folders. This is also true in a UNIX environment. We will show UNIX
commands that do all the things you already know how to do in a graphical
environment.

To make a new directory in Mac or Windoze, you right click in the open folder
and choose a menu for making a new folder. In UNIX, the mkdir command
makes a one or more new directories. It requires at least one argument, the
name(s) of the director(ies) you are creating. Let us make a directory by typing

$ mkdir Projects

makes a directory called Projects; this directory is now empty. We can always
get rid of an empty directory or directories by typing a commad like there

$ rmdir garbageDirectory(ies)

where garbageDirector(ies) stands for the directory or directories you wish
removed.

The rmdir command will not remove a directory unless it is empty. There
is a way to snip off directories with their contents, but we will avoid it for now
because it is very dangerous. For now, you can delete the contents of a directory,
then remove the directory. Be warned as you proceed: When you remove files
or directories in LINUX, they are gone for good! There is no “undelete.”

6

To get into our new directory Projects, enter this command:

$ cd Projects

and type ls. You will see no files. This is because the directory Projects

is empty, and ls by default only shows you the files in the directory you are
currently occuping. The command cd means, “Change directory!” Having done
this now type

$ pwd

You will see a directory path now ending in Projects.

There is a command called touch which will create an empty file(s) with a
name(s) you specify. Create files named moo and baa with touch as follows

$ touch moo baa

Then enter ls at the command line. This command means “list stuff.” You
will see just the files you created.

As we said before, The command ls displays only files in the directory you
are currently occupying. This directory is called your current working directory,
or cwd for short. Every terminal session has a working directory. When you
first log in, your working directory is always your home directory. You will see
that every user on a UNIX system has a home directory that containing all that
user’s data.

/home/yourUserName/Projects

This directory is the Projects directory you just created.

If you type cd without arguments, you will go straight back to your home
directory. This should make you will feel like Dorothy going back to Kansas.
Now if we use pwd again we see our home directory printed out.

You can also see your home directory anywhere you are by typing

$ echo $HOME

The fearsome–looking object $HOME is just a symbol that points to your home
directory. There are various items like this present in your system. They are
called environment varibles. Another environment variabie is $PWD; this is just
your current working directory.

7

4.1 Processes and Directories

We know that when we log in, we are starting a program called a shell. The
shell is a process, or running program. Every process has a cwd (current working
directory). When you type pwd into your shell, you are asking the OS to tell
you your shells current working directory. If you log in to a UNIX server in
several terminal windows, each runs in a separate shell, so each has its own
working directory.

Observe that, much of the time, your shell is idle. When you finish typing
a command and hit the enter key, that command launches a program, that
program runs, and any ouput is directed to your terminal window.

The command cd is a computer program. What it does is it changes the cwd
of the shell that calls it. Now you know what it means to be “in” a directory:
it means the cwd of your shell is that directory.

Programming Exercises

1. Enter

$ cd $HOME/Projects

and see what happens.

2. Make these directories inside of Projects labors, feats and chores

3. Type cd labors at the command line then pwd.

4. Type cd .. at the command line then pwd. What happened?

5. Type cd .. at the command line again, then pwd. What happened?

6. What do you think .. is?

7. Type cd . at the comand line then pwd. What happened?

8. Type ls . at the comand line then pwd. What happened?

9. What do you think . is?

5 A Field Trip

To get to our first destination, type cd /. The directory / is the “root” directory.
If you think of the directory structure as an upside-down (Australian) tree (root
at top), the directory / is at the top. Type pwd and see where you are. Type
ls; you should see that the directory home listed with several other directories.
Here is what the directory structure looks like on a PC running Red Hat Fedora
Core 9. Yours may have a slightly different appearnce.

8

$ cd /

$ ls

bin dev initrd.img lib64 mnt root selinux tmp vmlinuz

boot etc initrd.img.old lost+found opt run srv usr vmlinuz.old

cdrom home lib media proc sbin sys var

$

Now type if we type cd home then ls, you will see one or more directories. On
the machine being used here, you would see

$ cd home

$ ls

guest lost+found morrison

This machine has two users, morrison and tt guest. Since it is a personal
computer, it does not have many users. You may be working on a server in
which there could be dozens, or even hundreds of other users who are organized
into various directories.

See if you can follow this all the way down to another users home directory.
You may be able to list the files there, or even read them, depending on that
users permissions. From this modest demonstration, you see that you can step
down through the directory structure using cd. Now we will learn how to step
up.

Try typing cd ..; the special symbol .. represents the directory above your
cwd. Now you can climb up and down the directory structure! The .. symbol
works like the up-arrow in a file chooser dialog box in Mac or Windoze. You
saw this when you did the last group of exercises.

Practice this; go back to your home directory. Make a new directory called
mudpies. Put some files in it. Make new directories in mudpies, got down inside
these and make more directories and files. Practice using cd to navigate the tree
you create. When you are done, get rid of the whole mess; remember you have
to go to the bottom, empty out the files using rm and then use rmdir to get rid
of the empty directories.

If you type ls in a directory, notice how any directories inside it are in
differently colored type than regular files. This color is often blue. You can use
the -F option in ls to print directory names with a slash (/) after them. Try
this; it was an important option back in the days of monochrome monitors. If
you use the -l option in ls, you will see that in the permissions column, the
column begins with a d for any directory. Here is a possible sample

-rw-rw-r-- 1 morrison morrison 0 Jun 9 14:54 bar

-rw-rw-r-- 1 morrison morrison 0 Jun 9 14:54 foo

drwxrwxr-x 2 morrison morrison 4096 Jun 9 14:54 junk

9

You can see there that bar and foo are empty files. Notice the d at the
beginning of the line in junk; this tells you junk is a directory.

6 Making and Listing Regular Files

In Chapter 0, we learned that the operating system is responsible for maintaining
the file system. The file system maintained by a UNIX system consists of
a hierarchy of files. Two types of files will be of interest to us: directories
(folders) and regular files, i.e. files that are not directories. Regular files may
hold data or programs. They may consist of text or be binary files that are not
human-readable.

You are used to working with regular files and directories in Windoze or
MacOSX. Things in UNIX work the same way, but we will use commands to
manage files instead of mouse clicking or dragging.

As we have already seen us now use the UNIX command touch to create
new files. This command creates an empty file for each argument given it. At
your UNIX prompt, enter

$ touch stuff

This creates the empty file named stuff in your account.

Now let us analyze the anatomy of this command. The name of the command
is touch; its purpose is to create an empty file. Since you do not see a - sign,
there are no options being used. The argument is stuff. This is the name of
the file you created. Create a few more empty files. Enter these commands

$ touch foo

$ touch bar

You may create several files at once by making a space-separated list as we show
here.

$ touch aardvark buffalo cougar dingo elephant

Now you have eight new files in your account. Next we will see how to list the
files. Enter this command at the UNIX prompt

$ ls

The command ls lists your files. Notice we had neither options nor arguments.
If you created the files using touch as instructed, they should appear on your
screen like this

10

$ aardvark bar buffalo cougar dingo elephant foo stuff

The command ls has several options. One option is the l option; it list the
files in long format. To invoke it, type

$ ls -l

You will see a listing like this

-rw-rw-r-- 1 morrison morrison 0 Jun 9 10:50 aardvark

-rw-rw-r-- 1 morrison morrison 0 Jun 9 10:50 bar

-rw-rw-r-- 1 morrison morrison 0 Jun 9 10:50 buffalo

-rw-rw-r-- 1 morrison morrison 0 Jun 9 10:50 cougar

-rw-rw-r-- 1 morrison morrison 0 Jun 9 10:50 dingo

-rw-rw-r-- 1 morrison morrison 0 Jun 9 10:50 elephant

-rw-rw-r-- 1 morrison morrison 0 Jun 9 10:49 foo

-rw-rw-r-- 1 morrison morrison 0 Jun 9 10:49 stuff

The first column reflects the permissions for the files. The sequence

-rw-rw-r--

indicates that you and your group have read/write permission and that others
(“the world”) has read permission. We will discuss permissions in more detail
when we discuss the management of directories.

You can see the name here is listed in two columns; on this machine morrison
is in his own group. On another system, you may live in group with several other
people; if so you will see the name of that group in one of these columns. The
zero indicates the size of the file; each file we created is empty. Then there is a
date, a time and the file name. This is the long format for file listing; it is seen
by using the -l option in the ls command.

Another option is the -a option. This lists all files, including “hidden” files.
Hidden files have a dot (.) preceding their name. To see them, enter

$ ls -a

at the command line. One thing you are guaranteed to see, no matter where
you are are are the directories .. (parent) and . (current). If you are in you
home directory, You will see the files you saw using ls and several hidden files
with mysterious names like .bash profile. Do not delete these; they provide
the configuration for your account and do things like record preferences for
applications you have used or installed. You can also list all files including
hidden files by entering

11

$ ls --all

You can use more than one option at once. For example, entering

$ ls -al

or

$ ls -a -l

$ ls --all -l

shows all of your files and hidden files in long format. Try this now on your
machine.

Note to Mac Users Mac users should precede verbose commands with a
single -. So on a Mac, you type

$ ls -all -l

and not

$ ls --all -l

Otherwise, your Mac will respond with a cryptic error message.

Next we will show how to display a file to the screen. UNIX commands that
process files are called filters. Let us peek inside your .bash profile file. Enter
the command

$ cat .bash_profile

The command name is cat, short for catalog (the file to the screen). The cat

command is a filter that does not filtering at all; it simply dumps the an entire
file to the screen all at once. We are using no options, but the file name is an
argument to cat. If a file is long and you want to see it one screenful at a time,
use the filter more. The command more takes a file name as an argument and
shows it on the screen a screenful at a time. You can hit the space bar to see
the next screenful or use the down-arrow or enter key to scroll down one line at
a time. To exit more at any time, type a q and more quits. You can use several
arguments in cat or more and the indicated files will be displayed in seriatum.

12

7 Renaming and Deleting Files

Three commands every beginner should know are: cp, rm and mv. These are,
respectively, copy, remove and move(rename). Here are their usages

cp oldFile newFile
rm garbageFile(s)
mv oldFile newFile

Warning! Pay heed before you proceed! To clobber a file means to unlink
it from your file system. When you clobber a file it is lost and there is virtually
no chance you will recover its contents. There is no undelete facility as you
might find on other computing systems you have used.

If you remove a file it is clobbered, and there is no way to get it back. If
you copy or rename onto an existing file, that file is clobbered, and it is gone
forever. Always check to see if the file name you are copying or moving to is
unoccupied! When in doubt, do an ls to look before you leap. All three of
these commands have an option -i, which warns you before clobbering a file.
Using this is a smart precaution.

The first command copies oldFile to newFile. If newFile does not exist, it
creates newFile; otherwise it will overwrite any existing newFile.

Try this at your UNIX prompt: cp .bash profile quack

Notice that the command cp has two arguments: the source file and the
recipient file. If you executed the last command successfully, you made a copy
of your .bash profile file to a file called quack.

Next, let’s get rid of all the animals in the zoo we had created before. The
command rm will accept one or more arguments and remove the named files.
We can accomplish this in one blow with

$ rm aardvark buffalo cougar dingo elephant

Now enter

$ ls -l

You will see that quack’s size is nonzero because it has a copy of the contents
of your .bash profile file in it. The file shown here has size 191. The size is
the number of bytes contained in the file; yours may be larger or smaller. You
will also see that the menagerie has been sent packing.

-rw-rw-r-- 1 morrison morrison 0 Jun 9 10:50 bar

13

-rw-rw-r-- 1 morrison morrison 0 Jun 9 10:49 foo

-rw-r--r-- 1 morrison morrison 191 Jun 9 11:25 quack

-rw-rw-r-- 1 morrison morrison 0 Jun 9 10:49 stuff

Let us now remove the file stuff. We are going to use the -i option. Enter
this at the UNIX prompt.

$ rm -i stuff

The system will then ask you if you are sure you want to remove the file. Tell
it yes by typing the letter y. Be reminded that the -i option is also available
with cp and mv. You should you use it to avoid costly mistakes.

Finally, we shall use mv This “moves” a file to have a new name. Let’s change
the name of quack to honk and back again. To change quack to honk, proceed
as follows.

$ mv quack honk

Once you do this, list the files in long format. Then change it back.

Now you know how to copy, move, and create files. You can show them to
the screen and you can list all the files you have. So far, we can create files two
ways, we can create an empty file with touch or copy an existing file to a new
file with cp.

7.1 Everything is a Computer Program

Now let us take a little look under the hood. When you log in, a program
called a shell is launched. You can think of the shell as a telephone; entering
a command at the prompt is how you speak into the phone. The shell accepts
commands you enter at the prompt and sends them to the kernel, or operating
system, which runs the program. This can cause output to be put to the screen,
as in ls, or happen without commment, as in rm.

Programs that are running in UNIX are called processes. Every process has
an owner and an integer associated with it called a process ID (PID). The user
who spawns a process will generally be its owner. You are the owner of all
processes you spawn. Many, such as ls, last such a short time you never notice
them; they terminate in a fraction of a second after you enter them. When
you log into your host, you actually are launching a program; this is your shell.
When the shell terminates, your terminal session will be gone. At the command
line, enter ps and you will see something like this.

$ ps

PID TTY

14

10355 pts/1

10356 pts/1

$

TIME CMD

00:00:00 bash

00:00:00 ps

The ps command shows all processes currently running spawned by your
shell. On this machine, the shells (bash) process ID is 10355. By entering ps

aux at the command line, you can see all processes running on your UNIX server,
along with their process IDs and an abundance of other information. Try this at
several different times. If you are using a server, you will see processes spawned
by other users. You will also see other processes being run by the system to
support your machine’s operation.

An example of a program that does not finish its work immediately is the
program bc. We show a sample bc session here; this application is a simple
arbitrary-precision calculator.

$ bc

bc 1.06.94

Copyright 1991-1994, 1997, 1998, 2000, 2004, 2006

Free Software Foundation, Inc.

This is free software with ABSOLUTELY NO WARRANTY.

For details type warranty.

3+4

7

4*5

20

2^20

1048576

2^100

1267650600228229401496703205376

quit

When you type bc at the command prompt, the shell runs the bc program.
This program continues to run until you stop it by typing quit. To see bcs
process ID, start bc and then type Control-Z. This interrupts the bc process,
puts it in the background, and returns you to your shell. Then enter ps at the
command prompt to see the process ID for your bc session.

$ bc

bc 1.06.94

Copyright 1991-1994, 1997, 1998, 2000, 2004, 2006 Free Software Foundation, Inc.

This is free software with ABSOLUTELY NO WARRANTY.

15

For details type warranty.

[1]+

$ ps

PID

14110

14253

14254

$

Stopped

TTY

pts/4

pts/4

pts/4

bc

TIME

00:00:00

00:00:00

00:00:00

CMD

bash

bc

ps

Try typing exit to log out; you will see something like this.

$ exit

exit

There are stopped jobs.

$

Now type jobs at the command prompt. You will see this.

$ jobs

[1]+ Stopped

$

bc

You can end the job bc labeled [1] by doing the following

$ kill %1

$ jobs

[1]+ Terminated

$ jobs

$

bc

16

If several jobs are stopped, each will be listed with a number. You can end any
you wish to by entering a kill command for each job. When you type jobs

at the command line the first time, it will tell you what jobs it has suspended.
After that, you will see a (possibly empty, like here) list of jobs still in the
background. Do not dismiss a shell with running jobs; end them to preserve
system resources.

You can bring your stopped job into the foreground by entering fg at the
command prompt.

Exercises

1. Start up a session of bc and put it into the background using control-Z.
Do this for several sessions. Type in some calculations into some of the
sessions and see if they reappear when you bring the bc session containing
that calculation into the foreground.

2. The bc calculator has variables which allow you to store numbers under
a name. These play the role of the symbols described in Chapter 0, but
they are limited to storing numbers. Here we show some variables being
created and some expressions being evaluated.

morrison@ghent:~$ bc

bc 1.06.94

Copyright 1991-1994, 1997, 1998, 2000, 2004, 2006 Free Software Foundation, Inc.

This is free software with ABSOLUTELY NO WARRANTY.

For details type warranty.

cow = 5

pig = 2

horse = 7

horse + cow

12

horse/pig

3

pig/horse

0

cow^horse

78125

Replicate this session. Put it into the background and bring it into the
foreground. Were your variables saved? Notice that this calculator does
integer arithmetic. The = sign you see is actually assignment, which was
discussed in Chapter 0.

3. Look at one of the algorithms for converting a binary number into a dec-
imal number described in Chapter 0. Can you step through the process
using bc and make it work?

17

8 Editing Files with vi

We can create files with touch and use �cp to copy them. How do we edit text
files and place information in them? This is the role of the UNIX text editor, vi.
The O’Reilly book [?] on it comes highly recommended if you want to become a
power user (you do). A second text editor, emacs is also available. It is powerful
and extensible. Like vi it is a serious tool requiring serious learning, and like
vi there is an O’Reilly book on it, too. You may use emacs instead of vi if you
wish. Both of these are just tools for creating and editing text files, and both
do a great job. You may create or modify any text file with either program.
Ubuntu users can also use gedit or gvim, which have some nice advantages.

8.1 A Note for Ubuntu Users

Ubuntu by default installs the package vi-tiny. We want vi with all bells and
whistles. To get this, make sure you are connected to the Internet, then type
the following command in an terminal window.

$ sudo apt-get install vim

You will be asked to enter your password, then it will install the full vi package.
The sudo command tells Ubuntu you are behaving as a system administrator,
so you must enter your password to proceed. It will ask you to confirm you wish
to install, and then it will download the package from the repositories, install,
and configure it for you. Ubuntu has lots of programs and packages that are
freely available, and you use sudo apt-get install to obtain them.

8.2 Launching vi

To create a new file or open an existing file, type

$ vi someFileName

at the UNIX command line. If the file someFileName exists, it will be opened;
otherwise, it will be created. Now let us open the file bar we created with touch.
You will see this:

~

~

~

~

~

~

18

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

"bar" 0L 0C

DO NOT TYPE YET! Read ahead so you avoid having a passel of confusing
annoying things plaguing you. The tildes on the side indicate empty lines; they
are just placeholders that are not a part of the actual file. It is fairly standard for
the tildes to be blue. The OL OC ”bar” indicates that file bar has no lines and
no characters. If the file bar were not empty, its contents would be displayed,
then blue tildes would fill any empty screen lines.

8.3 vi Modes

Before you hit any keys there is something important to know. The vi editor
is a moded editor. It has three modes: command mode, visual mode and
insert mode. Command mode provides mobility, search/replace, and copy/paste
capabilities. Insert mode allows you to insert characters using the keyboard.
Visual mode provides the ability to select text using the keyboard, and then
change or copy it. When you first open a file with vi, you will be in command
mode.

We will begin by dealing getting into insert mode. You always begin a vi

session in command mode. There are lots of ways to get into insert mode. Here
are a six basic ones that are most often used.

19

keystroke Action
i insert characters before the cursor
I insert characters at the beginning of the line
a append characters after the cursor
A append characters at the end of the line
o open a new line below the cursor
O open a new line above the cursor

There is one way to get out of insert mode. You do this by hitting the
escape (ESC) key. Let’s now try this out. Go into your file bar and hit the i

key to enter text. Type some text. Then hit ESC. To save your current effort
type this anywhere:

:w

This will write the file; a message will appear at the bottom of the window
indicating this has happened. Do not panic; that message is not a part of the
file that is saved. To quit, type

:q

this will quit you out of the file. You can type

:wq

to write and quit. The command :qw does not work for obvious reasons. You
have just done a simple vi session. You can reopen the file bar by typing

$ vi bar

at the UNIX command line; the contents you last saved will be re-displayed.
You should take a few minutes to try all of the ways of getting into insert mode.
Change the file and save it. Quit and display it to the screen with cat and
more. At first, vi will seem clunky and awkward. However, as you ascend the
learning curve, you will see that vi is blazingly fast and very efficient.

A Reassuring Note If you are in command mode and hit ESC, your com-
puter will just beep at you. This is its way of letting you know you were already
in command mode. Nothing additional happens. If you are unsure what mode
you are in, hit ESC and you will be back in command mode.

The figure below will help you to remember the structure of vi. When you
first start editing a file, you enter in in command mode. Typing i, a, o, I, A or
O all put you into insert mode. You can also see in the diagram how to get out
of insert mode by typing ESC.

20

|---

| command mode |

| ---------------i, a, o, I, A, O to get in----------- |

| | insert mode: | |

| | insert characters | |

| | paste in text with GUI | |

| -----------------------------------ESC to get out--- |

| search, replace |

| copy with yy, paste with p |

| delete lines with dd |

| all "colon commands" (commands that start with :) |

|----------------------------------- --------------------------

Let’s go back in our file now and learn some more useful commands. We
will look at command mode commands now.

Sometimes, line numbers will be helpful; these are especially useful when
you program. To see them, you get into command mode and type the colon
command :set number. Do this and watch them appear. Now type :set nonu

or :set nonumber and watch them disappear. Line numbers are not a part of
the file; however, they are a helpful convenience.

Here are some useful command mode mobility features. Experiment with
them in a file.

Command Action
:lineNumber go to indicated line number
ˆ go to the beginning of the current line
$ go to the end of the current line
G go to the end of the file
gg go to the beginning of the file

The colon commands in this table will allow you to alter your editing en-
vironment. The last two are useful editing tricks that are sometimes quite
convenient. Open a file and try them all.

Command Action
:set number display line numbers
:set nonu get rid of line numbers
:set autoindent This causes vi to autoindent.
:set noautoindent This causes vi to turn off autoindent.
r (then a character) replace character under cursor
~ change case upper → ;lower or lower → upper

21

8.4 Cut and Paste

The vi editor has a a space of memory called the unstable buffer, which we
nickname Mabel. Mabel provides a temporary cache for holding things while
we are editing and she is very helpful for doing quick copy-paste jobs.

This buffer is unstable because it loses its contents every time new text is
placed in it. Do not use it to store things for a long time; instead write those
things to files and retrive them later. You will learn several ways to do this.

We show here a table with some cut, copy, and paste commands you will
find helpful.

dd Yank line to Mabel
dd Delete line starting at the cursor; this cuts to Mabel
dw Delete word; this cuts to Mabel
cw Delete word, then enter insert mode(change word) The changed word is cut to Mabel.
p Paste Mabel’s contents at the cursor.
D Cut line at cursor; this cuts the stricken text to Mabel
C Cut line at cursor and enter insert mode; this cuts the stricken text to Mabel

All of these commands can be preceded by a number, and they will happen
that number of times. For example typing 10yy in command mode will yank ten
lines, starting at the cursor, to Mabel. Since so many of these commands place
new text in Mabel, you should know that if you copy or cut to Mabel and intend
to use the text, paste it right away. You should open a file and experiment with
these.

8.5 Cutting and Pasting with External Files

You can select a range of line numbers before each of these commands, or select
in visual mode and use these commands.

:w fileName Write to the file fileName

:w! fileName Write selection to existing file fileName, and clobber it.
:w >> fileName Append selection to file fileName.
:r fileName Read in file fileName starting at the cursor

For example

:20,25 w foo.txt

will write lines 20-25 to the file foo.txt. If you want to write the entire file,
omit the line numbers and that will happen. If you want to write from line 20
to the end of the file, the usage is as follows.

22

:20,$ w foo.txt

Note the use of $ to mean “end of file.” When you learn about visual mode
(just ahead), you can use these command to act on things you select in visual
mode as well.

Housekeeping Tip If you use this facility, adopt a naming convention for
these files you create on a short-term basis. When you are done editing, get rid
of them or they become a choking kudzu and a source of confusion in your file
system. Use names such as buf, buf1, etc as a signal to yourself that these files
quickly outlive their usefulness and can be chucked.

8.6 Searching

Finally we shall look at search capabilities. These all belong to command mode.
Enter

/someString

in command mode and vi will seek out the first instance of that string in the
file or tell you it is not found. Type an n to find the next instance. You can
enter

?someString

to search for someString backwards from the cursor. Type n to find the previous
instance. Your machine may be configured to highlight every instance of the
string you searched for. If you find this feature annoying, you can deactivate it
with

:set nohlsearch

To do a global search and replace enter

:1,$ s/oldString/newString/g

to find every instance of oldString and convert it to newString. If you leave the
g off the end, you will only change the first instance of oldString to newString

on each line. (Think of g for global). You can do this on a range of line numbers
by typing

<beginLine>,<endLine>; s/oldString/newString/g

23

One last thing bears mentioning. Do not use the scrollbar and the mouse to
move around the screen. Use the arrow keys or go to a line number. If you use
the scrollbar, you will see other parts of your terminal session, but if you attempt
to edit, you will “snap” back into your file. You can use $ for <endLine> to
have the substitution carried out from the beginning line to the end of the file.

9 Visual Mode

The third mode of the vi editor, visual mode is actually three modes in one:
line mode, character mode, and block mode. To enter line mode from command
mode, hit V; to enter character mode hit v, and to enter block mode, hit Control-
v. You can exit any of these by hitting the ESC key; this places you back in
command mode. Visual mode has one purpose: it allows you to select text
using keyboard commands; you may then perform various operations on these
selections. First, let us see the selection mechanism at work.

Go into a file and position your cursor in the middle of a line. Hit v to enter
visual character mode. Now use the arrow keys; notice how the selected text
changes in response to arrow key movement. Try entering gg and G and see
what happens. Hit ESC to finish. Now enter visual mode and use the / search
facility to search up something on the page. What happens? Search backward
and try that too.

Now enter visual line mode by hitting V; now try the keystrokes we just
indicated and see how the selection behaves. This mode only selects whole
lines.

Finally if you enter Control-V and you enter visual block mode, you can
select a rectangular block of text from the screen by using the keyboard.

Now lets see what you can do with these selections. First let us look at
character and line mode, as block mode behaves a little differently. You can
delete the selected text by hitting d. You can yank it into Mabel by hitting y.
Upon typing either command, you will be put back into command mode. Once
any text is yanked into Mabel, you can paste it with p as you would any other
text yanked there. If you hit c, the selection will be deleted and you will be in
insert mode so you can change the text.

In block mode, things are a little different. If you hit d, the selected block
will be deleted, and the lines containing it shortened. The stricken text is cut to
Mabel. If you hit y, the block will be yanked just as in any other visual mode,
and its line structure will be preserved. If you hit c, and enter text, the same
change will be made on all line selected provided you do not hit the ENTER
key. If you do, the change will only be carried out on the first line. You can
insert text rather than change by hitting I, entering your text, and then hitting
ESC. If the text you enter has no newline in it, the same text will be added to

24

each line; if it has a newline, only the first line is changed.

If you hit r then any character in any visual mode, all selected characters
are changed to that character.

Here is a very common use for character or line visual mode. Suppose you
are editing a document and the lines end in very jagged fashion. This sort of
thing will commonly happen when maintaining a web or if you are editing a
LATEXdocument such as this one, where the page that is subjected to repeated
edits. Use visual mode to select the affected paragraphs and hit gq (think
Gentleman’s Quarterly) and your paragraphs will be tidied up.

You can also do search-and-replace using visual mode to select the text to
be acted upon. Simply select the text in visual mode. Then hit

: s/outText/inText/g

to perform the substitution in the selected text. For example if you select text
in visual mode and change every w to a v, you will see this.

:’<,’>s/w/v/g

The <,’> is a quirky way of indicating you are doing a visual-mode search-
replace operation.

10 Copy Paste from a GUI

You can copy and paste with the mouse in a window or between windows. The
way you do it varies by OS so we will quickly discuss each. If you are pasting
into a file you are editing with vi, it is a smart idea to use the colon command
:set paste. This will prevent the “mad spraying” of text. For certain types
of files, this turns off automatic indentation or formatting. You can use :set

nopaste to turn off the paste mode.

Windoze If you are copying from a Windoze application into a terminal win-
dow, select the text you want to copy and use control-C in the usual way. This
places the text in your Windoze system clipboard. Now go into your terminal
window and get into insert mode where you want to paste. Right-click to paste
the contents of your system clipboard into the terminal window. Many of you
will say, “Why did the beginning of the text I copied get cut off or why didn’t it
appear at all?” This will occur if you are not in insert mode when you paste. It
is important to be in insert mode before pasting to avoid unpleasant surprises.
If this happens, hit ESC then u in command mode. The u command undoes
the last vi command. Then you can take a fresh run at it.

25

If you are copying from a terminal window, select the text you wish to copy;
PuTTY will place the text in your system clipboard. Then go into the window
in which you wish to paste it. If the window is another terminal, get into insert
mode and right-click on the mouse. If it’s a Windoze app, use control-V as you
usually do.

Mac Use apple-c to copy and apple-v to paste to or from a terminal window,
just as you would with any other mac app. Mac gets this right.

Linux If you use a Linux box, use control-shift-C for copying in terminal
windows and control-shift-V for pasting to terminal windows.

A Reprise: A Warning About autoindent and paste Before pasting
with the mouse make sure you have autoindent turned off. Otherwise, your text
will “go mad and spray everywhere,” especially if you are copying a large block
of text with indents in it. You can turn autoindent on with :set autoindent

and off with :set noautoindent. This feature can be convenient when editing
certain types of files. You can use the command :set paste to turn off all
smart indentation; when finished use :set nopaste to set things back to their
original state.

A Warning abut Line Numbers If you copy-paste to a GUI, line numbers
will get copied. To prevent this from happening, use the colon command :set

nonu before copying.

Experiment with these new techniques in some files. Deliberately make
mistakes and see what happens. Then when you are editing files, you will know
what to expect and how to recover.

There are a lot of excellent tutorials on vi on the web; avail yourself of these
to learn more. Remember the most important thing: you never stop learning
vi! Here are some useful vi resources on the web.

• The site [1] for is complete, organized and well-written. You can download
the whole shebang in a PDF. Read this in little bits and try a few new
tricks at a time.

• The site [?], vi for Smarties will introduce you to vi with a bit of churlish
sneery attitude. It’s pretty cool. And it’s sneery like the author of this
august volume.

• The link ftp://ftp.vim.org/pub/vim/doc/book/vimbook-OPL.pdf will
download The Vim book for you. It is a very comprehensive guide, and it
has excellent coverage on the visual mode.

26

10.1 Permissions

Now we will see how you can use permissions to control the visibility of your
files on the system. You are the owner of your home directory and all directories
and files it contains. This is your “subtree” of the systems directories belonging
to you. You may grant, revoke or configure permissions for all the files and
directories you own as you wish. UNIX was designed with the fundamental idea
that your data are your property, and you can control what others see of them.

There are three layers of permission: you, your group, and others. You is
letter u, your group is letter g and others is letter o. There are three types of
permission for each of these: read, write and execute. Read means that level can
read the file, write means that level can execute the file, and execute means that
level can execute the file. In the example above, the file bar has the permission
string

-rw-rw-r--

which means the following.

• You can read or write to the file. You cannot execute.

• Your group can read or write but not execute.

• The world can read this file but neither write nor execute.

For the user to execute this file, use the chmod command as follows

$ chmod u+x bar

The u(ser’s, that’s you) permission changed to allow the user to execute the file.

If you do not want the world to see this file you could enter

$ chmod o-r bar

and revoke permission for the world to see the file bar. Since you are the owner
of the file, you have this right. In general you can do

$ chmod (u or g or o)(+ or -)(r or w or x) fileName

to manage permissions. You can omit the u, g or o and the permission will be
added or deleted for all three categories. In the next subsection, we discuss the
octal representation of the permissions string. This will allow you to change all
three levels of permissions at once quickly and easily.

27

11 The Octal Representation for Permissions

There is also a numerical representation for permissions. This representation
is a three-digit octal (base 8) number. Each permission has a number value as
follows.

• The permission r has value 4.

• The permission w has value 2.

• The permission x has value 1.

• Lack of any permission has has value 0.

We show how to translate a string in this example.

-rw-r--r--

6 4 4

The only way to get a sum of 6 from 1,2 and 4 is 4 + 2. therefore 6 is read-
write permission. The string translates into three digits 0-7; this file has 644
permissions. It is a simple exercise to look at all the digits 0-7 and see what
permissions they convey.

We show some more examples of chmod at work. Look at how the permis-
sions change in response to the chmod commands. Suppose we are a directory
containing one file named empty, which has permission string -rw-r--r--, or
644. We begin by revoking the read permission from others.

$ chmod o-r empty

We now list the files in the directory

$ ls -l

total 0

-rwxr----- 1 morrison morrison 0 2008-08-26 10:52 empty

$ ls

empty

We can now restore the original permissions all at once by using the octal
number representation for our permissions.

chmod 644 empty

$ ls -l

total 0

-rw-r--r-- 1 morrison morrison 0 2008-08-26 10:52 empty

28

Notice what happens when we try to use a 9 for a permission string.

$ chmod 955 empty

chmod: invalid mode: 955

Try chmod --help for more information.

Try typing the chmod --help command at your prompt and it will show you
some useful information about the chmod command. Almost all UNIX com-
mands have this help feature.

Directories must have executable permissions, or they cannot be entered, and
their contents are invisible. Here we use the -a option on ls. Notice that the
current working directory and the directory above it have execute permissions
at all levels. Try revoking execute permissions from one of your directories and
attempt to enter it with cd; you will get a Permission Denied nastygram from
the operating system.

$ ls -al

total 20

drwxr-xr-x 2 morrison faculty 4096 2008-10-17 11:51 .

drwx--x--x 9 morrison faculty 4096 2008-10-16 08:39 ..

-rw-r--r-- 1 morrison faculty 0 2008-10-17 11:51 empty

$

Here we shall do this so you can bear witness

$ mkdir fake

$ chmod u-x fake

$ cd fake

bash: cd: fake: Permission denied

$

Assigning 600 permissions to a file is a way to prevent anyone but yourself
from seeing or modifying that file. It is a quick and useful way of hiding things
from public view. Later, when you create a web page, you can use this command
to hide files in your website that you do not want to be visible.

12 The Man

The command man is your friend. Type man then your favorite UNIX command
to have its inner secrets exposed! For example, at the UNIX prompt, enter

$ man cat

29

This brings up the man(ual) page for the command cat. A complete list of
options is furnished. Notice that some of these have the --, or long form.

CAT(1) User Commands CAT(1)

NAME

cat - concatenate files and print on the standard output

SYNOPSIS

cat [OPTION] [FILE]...

DESCRIPTION

Concatenate FILE(s), or standard input, to standard output.

-A, --show-all

equivalent to -vET

-b, --number-nonblank

number nonblank output lines

-e equivalent to -vE

-E, --show-ends

display $ at end of each line

-n, --number

number all output lines

-s, --squeeze-blank

never more than one single blank line

-t equivalent to -vT

-T, --show-tabs

display TAB characters as ^I

-u (ignored)

-v, --show-nonprinting

use ^ and M- notation, except for LFD and TAB

--help display this help and exit

--version

output version information and exit

30

With no FILE, or when FILE is -, read standard input.

EXAMPLES

cat f g

Output f’s contents, then standard input,

then g’s contents.

cat Copy standard input to standard output.

AUTHOR

Written by Torbjorn Granlund and Richard M. Stallman.

REPORTING BUGS

Report bugs to <bug-coreutils@gnu.org>.

COPYRIGHT

Copyright 2006 Free Software Foundation, Inc.

This is free software. You may redistribute

copies of it under the terms of the GNU General

Public License <http://www.gnu.org/licenses/gpl.html>.

There is NO WARRANTY, to the extent permitted by law.

SEE ALSO

The full documentation for cat is maintained

as a Texinfo manual. If the info and cat

programs are properly installed at your site,

the command info cat should give you access

to the complete manual.

cat 5.97 August 2006 CAT(1)

You can see here that even humble cat has some options to enhance its
usefulness. Here is cat at work on a file named trap.py.

$ cat trap.py

def trap(a, b, n, f):

a = float(a)

b = float(b)

h = (b - a)/n

list = map(lambda x: a + h*x, range(0,n+1))

tot = .5*(f(a) + f(b))

tot += sum(map(f, list[1:n]))

tot *= h

return tot

def f(x):

return x*x

print trap(0,1,10,f)

31

print trap(1,2,100,f)

Using the -n option causes the output to have line numbers.

cat -n trap.py

1 def trap(a, b, n, f):

2 a = float(a)

3 b = float(b)

4 h = (b - a)/n

5 list = map(lambda x: a + h*x, range(0,n+1))

6 tot = .5*(f(a) + f(b))

7 tot += sum(map(f, list[1:n]))

8 tot *= h

9 return tot

10 def f(x):

11 return x*x

12 print trap(0,1,10,f)

13 print trap(1,2,100,f)

$

View the manual pages on commands such as rm, ls chmod and cp to learn
more about each command. Experiment with the options you see there on some
junky files you create and do not care about losing.

Exercises

1. Use the man command to learn abut the UNIX commands more and less.
You will see here, that in fact, less is more!

2. Use the man command to learn about the UNIX commands head and tail.
Can you create a recipe to get the first and last lines of a file?

3. What does the ls -R command do?

13 Redirection of Standard Output and Stan-
dard Input

UNIX treats everything in your system as a file; this includes all devices such
as printers, mice and the keyboard. Things put to the screen are generally put
to one of two files, stdout, or standard output and stderr, or standard error.
It is easy to redirect standard output to a another file.

The keyboard, by default, is represented by the file stdin, or standard input.
It is also possible to redirect standard input and take standard input from
another file.

32

Sometimes a UNIX command or a program puts a large quantity of text to
the screen; redirection allows you to capture the results into a file. You can
open this file with vi, search it, or edit it. The examples here are based on the
files animalNoises.txt

miao

bleat

moo

and physics.txt

snape

benettron

stephan

Create each of these files in a directory so you can follow the examples here.
First we show how cat puts files to stdout.

$ cat animalNoises.txt physics.txt

miao

bleat

moo

snape

benettron

stephan

Now let us capture this critical information into the file stuff.txt by redi-
recting stdout. We then use cat to display the resulting file to stdout.

$ cat animalNoises.txt physics.txt > stuff.txt

$ cat stuff.txt

miao

bleat

moo

snape

benettron

stephan

The cat command has a second guise. It accepts a file name as an argument,
but it will also accept standard input; this is no surprise since stdin is treated
as a file. At the UNIX command line enter

$ cat

33

The cat program is now running and it awaits word from stdin. Enter some
text and then hit the enter key; cat echoes back the text you type in. To finish,
hit control-d (end-of-file).

$ cat

me too

me too

ditto

ditto

$

The control-d puts no response to the screen. You can also put a file to the
screen with

$ cat < someFile

Here, the file someFile becomes stdin for the cat command. This phenomenon
is shown in the man page for cat. Under the description of the command it
says, “ Concatenate FILE(s), or standard input, to standard output.”

Let us now come back to stdout. Next create a new file named sheck.txt

with these contents.

roach

stag beetle

tachnid wasp

Were we to invoke the command

$ cat animalNoises.txt physics.txt > sheck.txt

we would clobber the file sheck.txt and lose its valuable contents. This may
be our intent; if so very well. If we want to add new information to the end of
the file we use the >> append operator to append it to the end of the receiving
file. If we do this

$ cat animalNoises.txt physics.txt >> sheck.txt

we get the following result if we use the original file sheck.txt.

$ cat sheck.txt

roach

stag beetle

tachnid wasp

34

miao

bleat

moo

snape

benettron

stephan

The >> redirection operator will automatically create a file for you if the file to
which you are redirecting does not already exist.

14 Using Pipes

It is very common to want to use stdout from one command to be stdin for
another command. This will grant us the ability to chain the actions of the
existing filters we have cat, more and less with some new filters to do a wide
variety of tasks To achieve this tie, we use a device called a pipe. Pipes allow
you to chain the action of various UNIX commands. We shall add to our palette
of UNIX commands to give ourselves a larger and more interesting collection of
examples. These commands are extremely useful for manipulating files of data.

14.1 The sort filter

Bring up the man page for the command sort. This command accepts a file (or
stdin) and it sorts the lines in the file.

This begs the question: how does it sort? It sorts alphabetically in a case-
insenitive manner, and it “alphabetizes” non-alphabetical characters by ASCII
value. The sort command several four helpful options.

-b --ignore-leading-blanks ignores leading blanks
-d --dictionary-order pays heed to alphanu-

meric characters and
blanks and ignores
other characters

-f --ignore-cases ignores case
-r --reverse reverses comparisons

Here we put the command to work with stdin; use a control-d on its own
line to get the prettiest format. Here we put the items moose, jaguar, cat and
katydid each on its own line into stdin. Without comment, a sorted list is
produced.

$ sort -f

35

moose

jaguar

cat

katydid (now hit control-d)

cat

jaguar

katydid

moose

$

You should try various lists with different options on the sort command to see
how it works for yourself. You can also run sort on a file and send a sorted
copy of the file to stdout. Of course, you can redirect this result into a file
using > or >>.

14.2 The Filters head, tail, and uniq

The commands head and tail put the top or bottom of a file to stdout; the
default amount is 10 lines. To show the first 5 lines of the file foo.txt, enter the
following at the UNIX command line.

$ head -5 foo.txt

You can do exactly the same thing with tail with an entirely predictable
result. The command uniq weeds out consecutive duplicate lines in a file, leaving
only the first copy in place. These three commands have many useful options;
explore them in the man pages.

14.3 The grep Command

This command is incredibly powerful; here we will just scratch the surface of
its protean powers. You can search and filter files using grep; it can be used to
search for needles in haystacks. In its most basic form grep will inspect a file
line-by-line and put all lines to stdout containing a specified string. Here is a
sample session.

$ grep gry /usr/share/dict/words

angry

hungry

$

The file /usr/share/dict/words is a dictionary file containing a list of words,
one word to a line in (mostly) lower-case characters. Here we are searching

36

the dictionary for all lines containing the character sequence gry; the result is
the two words angry and hungry. There is an option -i to ignore the case of
alphabetical characters.

14.4 And Now to Pipes

Pipes allow you to feed stdout from one command into stdin to another with-
out creating any temporary files yourself. Pipes can be used along with redirec-
tion of stdin and stdout to accomplish a huge array of text-processing chores.

Now let us do a practical example. Suppose we want to print the first 5 lines
alphabetically in a file named sampleFile.txt. We know that sort will sort the
file asciicographically; we will use the -i option to ignore case. The command
head -5 will print the first five lines of a file passed it or the first five lines of
stdin. So, what we want to do is sort the file ignoring case, and pass the result
to head -5 to print out the top five lines. You join two processes with a pipe; it
is represented by the symbol | , which is found by hitting the shift key and the
key just above the enter key on a standard keyboard. Our command would be

$ sort -i sampleFile.txt | head -5

The pipe performs two tasks. It redirects the output of sort -i into a temporary
buffer and then it feeds the contents of the buffer as standard input to head -5.
The result: the first five lines in the alphabet in the file sampleFile.txt are
put to stdout.

Suppose you wanted to save the results in a file named results.txt. To do
this, redirect stdout as follows

$ (sort -i sampleFile.txt | head -5) > results.txt

Note the use of defensive parentheses to make our intent explicit. We want the
five lines prepared, then stored in the file results.txt.

Programming Exercises Here are some other commands: wc, echo. You
will use the man pages to determine their action and to use them to solve the
problems below.

1. Tell how to put the text “Cowabunga, Turtle soup!” to stdout.

2. Tell how to get the text “This is written in magic ink” into a text file
without using a text editor of any kind.

3. The ls command has an option -R, for “list files recursively.” This lists
all of the sub-directories and all of their contents within the directory
being listed. Use this command along with grep to find a file containing
a specified string in a file path.

37

4. Put a list of names in a file in lastName, firstName format. Put them in
any old order and put in duplicates. Use pipes to eliminate duplicates in
this file and sort the names in alphabetical order.

5. Find the word in the system dictionary occupying line 10000.

6. How do you count all of the words in the system dictionary containing the
letter x?

7. Find all words in the system dictionary occuping lines 50000-50500.

8. Tell how, in one line, to take the result of the previous exercise, place it
in reverse alphabetical order and store in in a file named myWords.txt.

9. Tell how to display these w

References

[1] University of Hawai’i at Manoa College of Engineering. Mastering the vi

Editor. http://www.eng.hawaii.edu/Tutor/vi.html.

References

[1] University of Hawai’i at Manoa College of Engineering. Mastering the vi

Editor. http://www.eng.hawaii.edu/Tutor/vi.html.

38

	Introduction
	In the Beginning …
	The Anatomy of a UNIX Command
	Managing Directories
	Processes and Directories

	 A Field Trip
	Making and Listing Regular Files
	 Renaming and Deleting Files
	Everything is a Computer Program

	Editing Files with vi
	A Note for Ubuntu Users
	Launching vi
	vi Modes
	Cut and Paste
	Cutting and Pasting with External Files
	Searching

	Visual Mode
	Copy Paste from a GUI
	Permissions

	The Octal Representation for Permissions
	The Man
	Redirection of Standard Output and Standard Input
	Using Pipes
	The sort filter
	The Filters head, tail, and uniq
	The grep Command
	And Now to Pipes

