

Introducing Python Via Turtle Graphics

John M. Morrison

November 30, 2020

Contents

1 Getting Started

You can proceed in a couple of different ways. An easy way to get going in
Python is to to to the site http://trinket.io and make yourself an account.
This provides a Python programming environment that requires no installa-
tion; all you need is a browser. All of the examples here can be run in this
environment,.

If you are running a PC or a Mac, you can install and run Python on
your machine by going to the site http://www.python.org and following the
instructions there. You should install Python3 and Tk. The Tk machinery
provides the graphics environment your turtles will inhabit and draw and paint
in.

2 Introduction

Our purpose here is to provide a brief introduction to Python using turtle graph-
ics. No prior knowledge of Python is assumed. We will emphasize the notions
of objects and properties. The intent here is to introduce computing to the
student as a visual enterprise. A lot of our discussion will revolve around colors
and graphics. These will be used to motivate the idea of bases and numbers.

We begin by introducing the creation of turtles and their worlds.

3 Creating a Window

Let us get started by creating a window. The essential ingredients are a turtle
and a screen. A turtle moves about in a window and draws on the screen. Here

http://trinket.io
http://www.python.org

is our very first program that just pops up a window.

import turtle
window = turtle.Screen()

window.title("A Turtle Draws on Me")
window.exitonclick()

Now run your program and you will get a window like this to pop up on
your screen. This is a Screen object.

Let us now march through this code and see what it does. The statement

import turtle

tells Python you want to use the turtle library. This library allows you to
create screens and turtles. It also allows you to change the properties of the
objects it creates for you. The next line

window = turtle.Screen()

created the screen. Think of it as saying “turtle library, make me a Screen
and name it window. The next line

window.title("A Turtle Draws on Me")

placed a title in the window’s title bar. The .window method tells the window
to put whatever title you give it into window’s title bar. Finally

window.exitonclick()

causes the new window to go a away when you click the mouse in its content
pane, i.e. the main contents of the window that excludes the title bar and any
other toolbars. You should run this program yourrself. Try changing the title.

Programming Exercise Make a copy of popWindow.py. We are going to
experiment a little with the window we created. Add this line to the code.

window.bgcolor("orange")

Experiment with colors. Can you make a list of ten different colors that work?

4 Creating a Turtle

Turtles know how to draw. A turtle has a pen and it draws a line one pixel wide
as he moves along. As a first simple example, we will draw a square. Run this
program to see it happen.

import turtle

window = turtle.Screen()

window.title("Yertle draws a square")

yertle = turtle.Turtle() #Make a turtle.
yertle.forward(50) #Move the turtle 50 pizels.
yertle.left (90) #Make the turtle turn left 90 degrees
yertle.forward(50)

yertle.left (90)

yertle.forward(50)

yertle.left(90)

yertle.forward(50)

yertle.left (90)

yertle.hideturtle() #Hide the turtle.

window.mainloop() #Keep window running until you click it away

Now let us understand what happens. First of all you will see text after a
pound sign (#). Any text on a line after a pound sign is ignored by Python. It

is simply a comment, or a note we are making to other human readers of our
programs. Comments also serve to remind us of what we did so we do not see
it later and have to re-puzzle out its meaning.

The line
yertle = turtle.Turtle() #Make a turtle.

makes a new turtle whose name is yertle. We will use yertle’s name to
communicate with him.

A turtle can move backwards or forwards. You must tell it how many pixels
to move. As the turtle moves, its pen draws on the screen. The line

yertle.forward(50)

is saying, “yertle, move yourself forward 50 pixels.” The turtle yertle has the
behavior forward. You just have to tell the turtle how far to move in pixels.
Turtles can turn between moves. We specify this by giving the turtle an angle
in degrees. This line

yertle.left(90) #Make the turtle turn left 90 degrees

tells yertle to turn 90 degrees to his left. Turning is done from the turtle’s
eyes point of view. Naturally, there is a similar behavior right that can cause
a turtle to turn right a specified number of degrees.

Programming Exercises

1. Put a comment in front of the line
yertle.hideturtle()
so you can see what the turtle looks like (it’s not much).

2. Write a program called hexagon.py that has a turtle draw a hexagon with
sides of length 100 pixels.

3. Write a program called squarel.py that draws a square by having the
turtle turn right instead of left. Can you also have a square drawn by
having the turtle move backwards.

4. Make a program with turtle yertle in it. Move the yertle 50 pixels,
then do this

yertle.penup()
Move him 50 pixels again, then do this
yertle.pendown()

and move him 50 pixels again. What happened? What is the result of
penup () and pendown ()

5 Screen Coordinates

The screen has cordiantes. We can move the the turtle around and have him re-
port his location. Let us make a program that does that called coordinated.py.

import turtle

window = turtle.Screen()

reporter = turtle.Turtle()
reporter.write(reporter.position())
reporter.penup ()
reporter.forward(100)
reporter.write(reporter.position())
reporter.left (90)
reporter.forward(100)
reporter.write(reporter.position())
window.mainloop()

Run this program. You can see that the origin (0,0) is in the middle of the
screen. The x and y codrdinates work like they do in a math class. The unit of
measure is a pixel. Now make this program, northeast.py.

import turtle

window = turtle.Screen()

bishop = turtle.Turtle()
bishop.penup()

bishop.left (45)
bishop.forward(100)
bishop.write(bishop.position())
window.mainloop()

Notice that the bishop’s (yeah.... he moves diagonally) cotrdiantes are now
(70.71,70.71). This is unsurprising if you think about 45-45-90 triangles and
the fact that 100

= =170.71,
V2

to two decimal places.

Programming Exercises Make a turtle called warpDrive. Then do this.

warpDrive.setposition(100,100)
warpDrive.write(warpDrive.position())
warpDrive.forward (100)

warpDrive.write(warpDrive.position())
warpDrive.home ()
warpDrive.write(warpDrive.position())

What does setpositon do? Why did we name the turtle warpDrive?

6 Turtles are Smart

Turtles are examples of Python objects. An object is a piece of data stored in
memory. Objects have three important properties.

1. state An object has things it knows. For example, turtle knows if its pen
is up or down. It knows its position and athe direction it faces to. It
knows the color that is now loaded in its pen.

2. identity An object is. Objects are self-aware and know they are different
from other objects. We will see next that we can have several turtles in a
screen, each doing its own thing. The turtles will know they are different
from each other and will act when their name is used.

3. behavior A turtle can put its pen up. It can put is pen down. We also saw
a turtle can change the color its pen is drawing. It can move; we must tell
it how many pixels to move and whether to move forward or backward.
We can also tell it to appear anywhere on the screen. It can turn through
any angle we specify.

The screen is an object, too. A screen knows its background color, and it
can change its background color to other colors.

Now let us try an example where we make two turtles and have them both
draw on the screen. We create two turtles. One uses red ink and alternately
raises and lowers its pen. The other turns and draws, keeping it pen down and
drawing in blue. Run this and it is not very interesting.

import turtle

window = turtle.Screen()
dotty = turtle.Turtle()
bender = turtle.Turtle()

dotty.color("red")
bender.color("blue")
#basic motion
dotty.forward(20)
dotty.penup()
dotty.forward(20)

dotty.pendown ()
bender . forward (20)
bender.left (20)
window.mainloop()

Running the program reveals this.

v >

Now let us copy and past and see it execute several times.

import turtle

window = turtle.Screen()
dotty = turtle.Turtle()
bender = turtle.Turtle()
dotty.color("red")
bender.color("blue'")
##basic motion
dotty.forward(20)
dotty.penup()
dotty.forward(20)
dotty.pendown ()
bender.forward(20)
bender.left (20)

##repeat
dotty.forward(20)

dotty.penup()
dotty.forward(20)
dotty.pendown ()
bender . forward (20)
bender.left(20)
#repeat
dotty.forward(20)
dotty.penup()
dotty.forward(20)
dotty.pendown ()
bender . forward (20)
bender.left(20)
#repeat
dotty.forward(20)
dotty.penup()
dotty.forward(20)
dotty.pendown ()
bender . forward (20)
bender.left(20)
#repeat
dotty.forward(20)
dotty.penup()
dotty.forward(20)
dotty.pendown ()
bender . forward (20)
bender.left(20)
#repeat
dotty.forward(20)
dotty.penup()
dotty.forward(20)
dotty.pendown ()
bender . forward (20)
bender.left(20)
#repeat
dotty.forward(20)
dotty.penup()
dotty.forward(20)
dotty.pendown ()
bender . forward (20)
bender.left(20)
#repeat
dotty.forward(20)
dotty.penup()
dotty.forward(20)
dotty.pendown ()
bender . forward (20)

bender.left (20)

window.mainloop ()

Run this (ungainly) code and see this.

eoe Python Turtle Graphics

Ugh! Look at all of that repeated code! Wouldn’t it be nice if we could tell
code to repeat itself? We can; we will use a for loop. Here is how it works. We
will run the basic motion 18 times; notice how we get a blue polygon as a result
and notice how dotty runs off the screen.

import turtle

window = turtle.Screen()

dotty = turtle.Turtle()

bender = turtle.Turtle()

dotty.color("red")

bender.color("blue")

##basic motion

for k in range(18):
dotty.forward (20)
dotty.penup()
dotty.forward(20)
dotty.pendown ()

10

bender . forward(20)
bender.left (20)
window.mainloop()

Run your program and you will see this.

eo0e Python Turtle Graphics

N

Let us focus on the a very simple for loop. It looks like this.

for k in range(someNumber) :
statementl
statement?2

lastStatement

This loop will run the statements below it someNumber times. Notice how
all of the statements we want repeated are indented. This indented sequence
is called a block of code. The for loop runs its block of code the number of
times you specify. Use your tab key to indent, or use four (or two) spaces. You
must do the same thing consistently or Python will hiss error messages. Here,

11

it pays to be strictly consistent. A for loop’s block of code must have at least
one (indented) line. The block ends where the indentation ends.

Programming Exercises

7

. Create a program called shapes.py Make a turtle and have him draw a

square in red that is 100 pixels on a side.

. Add a turtle, move him away from the first one to (100,100), and have

him draw an equilateral triangle in blue there.

. Make a third turtle, and have him draw a circle of radius 100. A turtle

knows how to draw a circle, use its .circle method.

. Make a fourth turtle, and have him draw an octagon with sides of length

50 pixels in red starting at (—200, 200).

5. After the drawing is done, hide all four turtles.
. On one of your turtles, call .pensize(10) on it. What does that do?

Being Persistent

We are going to look at this problem. Have a turtle march forward 20 pixels at
a time until it gets within 30pixels of the right edge of the screen. Then have it
turn left. Then have it march along 20 pixels at a time until it gets within 30
pixels top of the screen. Then end. Let us think about the things we need to
know.

e How do we know when we get near the edge of the screen?
e Who knows where the screen ends?

e How do we tell the turtle to “keep marching?”

Let us begin with this program. Place it in a file called automaton.py. You

can see that the screen knows its size; the size of the screen is part of its state.

import turtle

window = turtle.Screen()

checker = turtle.Turtle()
checker.write(window.window_width())
checker.forward(100)
checker.write(window.window_height())
window.mainloop()

12

You wlll see that the width of the window is written near the origin and the
height is written 100 pixels away to the right.

width= window.window_width()

Let us march a turtle to the right until it gets close to the end.

import turtle

window = turtle.Screen()

width, height = window.screensize()

while turtle.xcor() <= width - 30:
turtle.forward(20)

window.mainloop()

Run this and watch the turtle march right off the end. This is because we
are already in the middle of the screen, so we should divide the width by 2.

import turtle

window = turtle.Screen()

rightRoom = window.window_width()

lefty = turtle.Turtle()

while lefty.xcor() <= rightRoom/2 - 30:
lefty.forward(20)

window.mainloop ()

Now let us have him turn left and head up

import turtle

window = turtle.Screen()

lefty = turtle.Turtle()

width= window.window_width()

height = window.window_height ()

while lefty.xcor() <= width/2 - 30:
lefty.forward(20)

lefty.left(90)

while lefty.ycor() <= height/2 - 30:
lefty.forward(20)

window.mainloop()

Here is a little Python grammar. Python has two types of statements, boss
statements and worker statements. Consider the statement

yertle.forward(10)

13

	Getting Started
	Introduction
	Creating a Window

