Chapter 1, Introducing Java

John M. Morrison

November 11, 2019

Contents
I0__Welcome to JShellll 1
1_How does Java Work on a Mechanical Level?| 4
2 Python Classes and Objects| 6
13 Java Classes and Objects| 9
4 Java’s Integer Types| 14
4.1 Using Java Integer Types in Java Code|. 16
[The Rest of Java’s Primitive Types| 22
.1 The boolean Typel 22
b.2 Floating—Point Types| 23
P.3 The char typel 24
6 More Java Class Examples| 25

0 Welcome to JShell!

If you run Python with no file, you get an interactive Python shell. Java has a
similar feature named jshell. To fire up jshell, type jshell at the command
prompt and you will see this.

$ jshell

> jshell

| Welcome to JShell -- Version 9.0.1

| For an introduction type: /help intro

jshell>

JShell has command that allows you to see the symbol table for your session,
obtain help, and quit. We will use it quite a bit for inspecting and exploring
classes.

Here is a summary of the commands. All of them begin with a /.

e /exit This quits jshell.

e /help This gives help on commands. The ussage is

e /imports This lists all classes you have imported.

e /1list This lists all snippets you have entered.

e /open This reads a class into jshell so you can inspect it.
e /types This lists all active classes in the session.

e /vars This lists all variables and their values /help /command and you
get a little man page for that command.

Here we show how to quit jshell using the /exit command.

$ jshell

> jshell

| Welcome to JShell -- Version 9.0.1

| For an introduction type: /help intro

jshell> /exit
| Goodbye
$

You can also quit it by typing control-d.

You enter pieces of code called snippets into the shell and jshell runs them.
Let’s do that and test-drive some of the commands. Begin by entering some
variable declarations.

jshell> int x = 4;
X ==> 4

jshell> String y = "spaghetti';
y ==> "spaghetti"

jshell> int z = 15;
z ==> 15

Now, watch jshell evaluate an expression.

jshell> xx*z
$4 ==> 60

The symbol $4 is a valid variable in your jshell session.

jshell> $4
$4 ==> 60

Now we try the /vars command.

jshell> /vars

| int x = 4

| String y = "spaghetti"
| int z = 15

| int $4

Ooh, yummy, here is our visible symbol table. Now let’s make a /list and
check it twice.

jshell> /list
1 : int x = 4;
: String y = "spaghetti";
: int z = 15;
I X*Z

. $4

(2l SR CVIN V)

Here we see all of the snippets we have created this session. Next let us try
/vars. Now let us quit this session. We will show how to inspect a class.
Create this class.

public class Example

{
public void go()
{
int x = 5;
System.out.println("x = " + x);
}
}

Next crank up jshell and open the file and inspect a method as follows.
jshell> /open Example.java

jshell> Example e = new Example();
e ==> Example(@26653222

jshell> e.go()
x =5

Now see the /types command in action.

jshell> /types
| class Example

1 How does Java Work on a Mechanical Level?

We will begin by looking at the mechanics of producing a program. We will
then sketch a crude version of what actually happens during the process and
refine it as we go along. Here is a simplified life-cycle for a Java program. So
you can follow along, make this empty class. Foo. java.

public class Foo
{
}

1. Edit You begin the cycle by creating code in a text editor and saving it.
Each file of Java will have a public class in it. The class is the fundamental
unit of Java code; all of your Java programs will be organized into classes.
Java classes are similar to those in Python; later we will compare them.
The name of the class must match the name of the file; otherwise you will
get a nastygram from the compiler. As you saw in the example at the
end of the last section, the file containing public class Foo must be be
named Foo. java; failure to adhere to this convention will be punished by
the compiler.

Deliberately trigger this error creating an empty class Right in the file
Wrong. java. Compile and you will receive this beating.

$ javac Wrong.java

Wrong. java:1: error: class Right is public,
should be declared in a file named Right. java

public class Right

1 error

$

An optional but nearly universal convention is to capitalize class names.
You should adhere to this rule in the name of wise consistency. This
is done by all serious Java programmers; uncapitalized class names just
confuse, annoy, and vex others.

. Compile Java is an example of a high—level language. A complex program
called a compiler converts your program into an executable form.
Compilation at the UNIX command line in Java is simple. To compile
Foo. java, proceed as follows

$ javac Foo.java

When done, list your files and you should see Foo.class. If your program
contains syntactical errors that make it unintelligible to the compiler, the
compilation will abort. When this happens, nothing executes and no
executable file is generated. In contrast, in the Python language, the
program stops running when an syntactical error is encountered; in Java
the program does not run at all unless it compiles successfully. There is
no compile time in Python.

If your program does not compile, you will get one or more error messages.
These will be put to stderr, which by default, is your terminal window.
You will need to re—edit your code to stamp out these errors before it will
compile.

Java compiles programs in the machine language of the Java Virtual Ma-
chine; this machine is a virtual computer that is built in software. Its
machine language is called Java byte code. In the Foo. java example, suc-
cessful compilation yields a file Foo.class; this file consists of Java byte
code. Your JVM takes this byte code and converts it into machine lan-
guage for your particular platform, and your program will run. Java is
not the only language that compiles to the JVM. Others include Scala,
Clojure, a Lisp dialect, Processing, an animation language created in the
MIT media lab, and Groovy, a scripting language. There is even a JVM
implementation of Python called Jython.

. Run For a program to run, it needs a special method called a main method.
This method goes inside your class and it looks like this.

public class Foo

{
public static void main(Stringl[] args)
{
System.out.println("foo");
}
}

Save and compile this. If your compilation succeeds, you will be able to
run your program as follows.

$ javac Foo.java
$ java Foo
foo

You will run your program and see if it works as specified. If not... back to
the step Edit. You can have errors at run time, too. These errors result
in an “exploding heart;” these ghastly things are nasty error messages
containing many lines of ugly incantations. You can also have logic errors
in your program; in this case, the program will reveal some unexpected
behavior you did not want.

You will often hear the terms “compile time” and “run time” used. These are
self-explanatory. Certain events happen when your program compiles, these are
said to be compile time events. Others happen at run time. These terms will
often be used to describe errors.

It is a good idea to compile any class before attempting to inspect it in
jshell. If it fails to compile, your jshell session will be polluted with error
messages.

Next, we take a brief tour of Python classes.

2 Python Classes and Objects

Python classes have a very simple structure; we will take a quick look at these
before wading into Java classes. You can create a Python class with two lines
of code.

class Simple(object):
pass

A class is a blueprint for creating objects; this principle works the identically
Python and Java. Making an object from this class is ... simple. Just do this.

>>> class Simple(object):
pass

>>> s = Simple()
>>> t = Simple()
>>>

We have created two objects s and t that are instances of this class.

We have learned that objects have state, identity and behavior. Recall that
state is what an object knows, behavior is what an object does, and identity is
what an object is (a hunk of memory). Since the body of our class is empty,
Simple objects know nothing and do nothing of great use. The can, however do
some basic stuff. They can be represented as strings, and they can be checked
for equality. Here we see this.

>>> g
<__main__.Simple object at 0x12e3250>

>>> ¢

<__main__Simple object at 0x12e3290>
>>> s ==t

False

>>>

In Python, you can attach state to objects. Watch what is happening here.

>>> s.x = "I am x."
>>> s.y = "I am y."
>>> §.%X

'T am x.'

>>> t.x

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeError: 'Simple' object has no attribute 'x'
>>>

Now the object s knows its x and y, but t still knows nothing. We can make
all instances of our class know x and y as follows.

>>> class Simple:
x =" am x."
y = "T am y'n

>>> s = Simple()
>>> t = Simple()
>>> g,
'T am
>>> t.
'T am
>>> g,
'T am
>>> t.
'T am
>>>

AR S E S S T

So far, our classes have fixed state. Objects of type Simple all have the same
x and y. This is not terrible useful. Suppose we want to make a Point class to
represent points in the plane with integer co6rdinates. When we create a Point,
we might want to specify its coérdiantes. To do this, we will use a special method
called __init__, which runs immediately after the object is created.

-

Let us now consider this program.

class Point(object):
def __init__(self, x =0, y = 0):
self.x = x
self.y =y

p = Point()

print ("p = ({0}, {1})".format(p.x, p.y))
q = Point(3,4)

print ("q = ({0}, {1})".format(q.x, q.y))

Now run this program and see the following.

python3 Point.py
p = (0, 0)
q = (3, 4

We see a lot of new stuff here, so let us go through it with some care.
We know that the __init__ method runs immediately after a Point object is
created. Its argument list is (self, x, y). The purpose of the x and y seem
clear: they furnish codrdiantes to our Point object.

We also see this self. What is this? When you program in the Point
class, you are a Point. So self is you. In the statement self.x = x, you are
attaching the value x sent by the caller to yourself. The quantities self.x and
self.y constitute the state of an instance of this class. This is how a Point
knows its coordinates. The symbols self.x and self.y have scope inside of
the entire class body. Take note that all argument lists of methods in a Python
class must begin with self.

Now let us make a Point capable of doing something. Modify your Point.py
program as follows.

import math
class Point(object):
def __init__(self, x =0, y = 0):
self.x = x
self.y =y
def distanceTo(self, other):
return math.hypot(self.x - other.x, self.y - other.y)

p = Point()

print ("p = ({0}, {1})".format(p.x, p.y))

q = Point(3,4)

print ("q = ({0}, {1})".format(q.x, q.y))

print ("p.distanceto(q) = {0}".format(p.distanceTo(q)))

Now run this program.

python Point.py

= (0, 0

= (3, D
.distanceto(q) = 5.0

[T @ T[]

The class mechanism enables us to create our own new types of objects.
Python supports the class mechanism, and object-oriented programming in gen-
eral.

Java goes even further: all code in Java must appear in a class.

3 Java Classes and Objects

A Java program consists of one or more classes. All Java code that is created
is contained in classes. So far you have created a class called Foo containing
only a main method that prints to the screen.

In Python, you created programs that consisted of functions, one of which
was the “main routine,” which lived outside of all other functions. Your programs
had variables that point at objects and functions that remember procedures.
Java has these features but it works somewhat differently. Let us begin by
comparing the time—honored “Hello, World!” program in both languages. In
Python we code the following

#!/usr/bin/python
print("Hello, World!")

A Java vs. Python Comparison Python has classes but their use is purely
optional. In Java, all of your code must be enclosed in classes. Throughout you
will see that Java is more “modest” than Python. No executable code can be
naked; all code must occur within a function that is further clothed in a class,
with the exception of certain initialization of variables that still must occur
inside of a class.

Also, we should remember we have two types of statements in Python, worker
statements and boss statements. In Python, boss statements are grammatically
incomplete sentences. Worker statements are complete sentences. All boss
statements in Python end in a colon (:), and worker statements have no mark
at the end. All boss statements own a block of code consisting of one or more
lines of code; an empty block can be created by using Python’s pass keyword.

Java uses the system of boss and worker statements; the difference is cos-
metic. In Java, boss statements have no mark at the end. Worker statements
must be ended with a semicolon (;).

In Python, delimitation is achieved with a block structure that is shown by
tabbing. In Java, delimitation is achieved by curly braces {---}.

In Python, a boss statement must own a block containing at least one worker
statement. In Java, a boss statement must have a block attached to it that is
contained in curly braces. An empty block can be indicated by an empty pair of
matching curly braces. Technically, you can get away with omitting the empty
block, but it is much better to make your intent explicit.

Knowing these basic facts will make it fairly easy for you to understand
simple Java programs.

Now, make the following class in Java and save it in the file Hello. java

public class Hello

{
public void go()
{
System.out.println("Hello, World!");
}
}

You can compile this class, but it needs a main method to run. Therefore, we
add one.

public class Hello

{
public void go()
{
System.out.println("Hello, World!");
}
public static void main(String[] args)
{
Hello greet = new Hello();
greet.go();
}
}

What’s in the main? In the first line we see this.

Hello greet = new Hello();
This mysterious tells Java, “make a new object of type Hello.” The variable
greet points at a Hello object. Observe that new is a language keyword that

is designated for creating objects. The Hello in front of greet says that greet
is a variable of type Hello. Note, in contrast to Python, variables in Java

10

have types. In fact, the compiler requires the type of all variables be known at
compile time.

On the next line, we call h’s go() method, which puts the text Hello,
World! to stdout

$ java Hello
Hello, World!

You can think of the Java Virtual Machine as being an object factory. The
class you make is a blueprint for the creation of objects. You may use the
new keyword to manufacture as many objects as you wish. When you use this
keyword, you tell Java what kind of object you want created, and it is brought
into existence. Here we show a second Hello object getting created by using
new. Modify your main method as follows

public static void main(String[] args)

{
Hello greet = new Hello();
greet.go()
Hello snuffle = new Hello();
snuffle.go()

}

Compile and run and you will see this.

$ javac Hello.java
$ java Hello
Hello, World!
Hello, World!
Hell0@3cb075
Hello@e99ceb

Now there are two Hello objects in existence. Each has the capability to “go ().”
This is the only capability we have given our Hello objects so far. Every Java
object has the built—in capability of representing itself as a string. The string
representation of a Hello object looks like

Hello@aBunchOfHexDigits

You can see we have created two distinct Hello objects; the string repre-
sentation of greet is Hel1lo@3cb075 and the string representation of snuffle
is Hello@e99ceb. Each of the variables greet and snuffle is pointing at its
own Hello object. Note that you will likely get different strings of hex digits
from the ones seen here. Recall that a similar state of affairs inhered in Python;

11

every object is able to represent itself as a string, but the default representation
is not terribly usefu.

The method go() represents a behavior of a Hello object. These objects
have one behavior, they can go(). You can also see here that objects have
identity. They “are”. The two instances, snuffle and greet we created of the
Hello class are different from one another. So far, we know that objects have
identity and behavior.

This is all evocative of some things we have seen in Python. For example,
if we create a string in Python, we can invoke the string method upper() to
convert all alpha characters in the string to upper case. Here is an example of
this happening.

>>> x = "abc123;"
>>> x.upper()
"ABC123;"

>>>

The Python string object and the Java Hello object behaved identically. When
we sent the string x the message upper (), it returned a copy of itself with all
alpha characters converted to upper-case. In the Python interactive mode, this
copy is put to the Python interactive session, which acts as stdout.

The Java Hello object greet put the text "Hello, World!" to stdout.

Now let us go through the program line-by-line and explain all that we see.
The first line

public class Hello

is a boss statement. Read it as “To make a Hello,” Since “To make a Hello,” is
not a complete sentence, we know the class head is a boss statement. Therefore
it gets NO semicolon.

The word public is an access specifier. In this context, it means that the
class is visible outside of the file. Python has no such modesty; it lacks any
system of access specifiers. Later, you may have several classes in a file. Only
one may be public. You may place other classes in the same file as your public
class. This is done if the other classes exist solely to serve the public class. Java
requires the file bear the name of the public class in the file. The compiler will
be angry if you do not do this, and you will get an error message.

The words public and class are language keywords, so do not use them
as identifiers. The class keyword says, clearly enough, “We are making a class
here.” Now we go to the next line

12

This line has just an open curly brace on it. Java, in contrast to Python,
has no format requirement. This freedom is dangerous. We will adopt certain
formatting conventions. Use them, or develop your own and be very consistent.
Consistent formatting makes mistakes easy to see and correct. It is unwise
consistency that is the “hobgoblin of small minds;” wise consistency is a great
virtue in computing.

The single curly brace acts like tabbing in in Python: it is a delimiter. It
demarcates the beginning of the Hello class’s code. The next line

public void go()
is a function header. In Python you would write
def go(Q):

There are some differences. The Python method header is a boss statement so
it has a colon (:) at the end. Remember, boss statements in Java have no mark
at the end. There is an access specifier public listed first. This says, “other
classes can see this function.” The jshell session behaves like a different class,
so go() can be seen by jshell when we create a Hello object there. The other
new element is the keyword void. A function in Java must specify the type of
object it returns. If a function returns nothing, its return type must be marked
void. Next you see the line

{

This open curly brace says, “This is the beginning of the code for the function
go.” It serves as a delimiter marking the beginning of the function’s body. On
the next line we see the ungainly command

System.out.println("Hello, World!");

The System.out.println command puts the string "Hello, World!" to stan-
dard output and then it adds a newline. The semicolon is required for this
statement because it is a worker statement. Try removing the semicolon and
recompiling. You will get a compiler error

> javac Hello. java
Hello.java:5: error: ';' expected
System.out.println("Hello, World!")

1 error

A semicolon must be present at the end of all worker statements in Java. It
is a mistake to put a semicolon at the end of a boss statement. In Java, the

13

compiler can sometimes fail to notice this and your program will have a strange
logic error.

The next line

signifies the end of the go method. Finally,

ends the class.

In summary, all Java code is packaged into classes. What we have seen here
is that we can put functions (which we call methods) in classes. The methods
placed in classes give objects created from classes behaviors. We shall turn next
to looking at Java’s type system so we can write a greater variety of methods.

Programming Exercises Add new methods to our Hello class with these
features.

1. Have a method use System.out.print() twice. How is it different from
System.out.println()?

2. Have a method do this.

System.out.printf ("<tr><td>Js</td><td>}s</td></tr>",
16, 256);

Experiment with this printf construct. Note its similarities to Python’s
formatting % construct.

3. Enter this into jshell.

String s = String.format (("<tr><td>}s</td><td>Ys</td></tr>",
16, 256);

You can, in effect “print to a String.” and save yourself a lot of annoying

concatenation.

4. Create the Hello class using Python, giving it a go method.

4 Java’s Integer Types

Creating a new class allows you to create new types. Every time you create a
class, you are actually extending the Java language. Like all things that are built
out of other things, there must be some “atoms” at the bottom. Said atoms are
called primitive types in Java. Java has eight primitive types. All other types in
Java are object types; this includes such things as strings, lists, and graphical

14

widgets. Note that Python does not have this distinction; in Python these sorts
of simple types are just immutable objects.

We will begin by discussing Java’s four integer types. These are all primitive
types. Let us begin by studying these in jshell. Note that the sizes are
standard and do not vary with the system. This stands in contrast to C/C++,
if you have studied them before.

Type | Size Explanation

long | 8 bytes | This is the double-wide 8 byte integer type. It
stores a value between -9223372036854775808
and 9223372036854775807. These are 64-bit
two’s complement integers

int 4 bytes | This is the standard two’s complement 4 byte
integer type, and the most commonly used
integer type. It stores a value between -
2147483648 and 2147483647.

short | 2 bytes | This is the standard 2 byte integer type. It
stores a value between -32768 and 32767 in
two’s complement notation.

byte 1 byte | This is a one-byte integer that stores an inte-
ger between -128 and 127 in two’s complement
notation.

You should note that Python 3 has one integer type and that Python 2 has
two: int and long.

Now create an integer variable named x and initialize it to 5 as follows.

jshell> int x = 5
x ==>5

You are seeing the assignment operator = at work here. This works just as it
does in Python; you should read it as, “x gets 57 and not “x equals 5.” As is
true in Python, it is a worker statement. Consequently in a compiled program,
it must be ended with a semicolon. Observe that the jshell program is lenient
about semicolons

The expression on the right—hand side is evaluated and stored into the vari-
able on the left—hand side. Now enter x into jshell. It fetches the value of x,
which is 5.

jshell> x
x ==> §

Now enter the /vars command. You will see the visible symbol table.

jshell> /vars
| int x = 5

15

To create a variable in Java, you need to specify its type and an identifier
(variable name). This is because Java is a statically compiled language; the
types of all variables must be known at compile time. In general a variable is
created in a declaration of the form

type variableName;
You can initialize the variable when you create it like so.
type variableName = value;

When you create local variables inside of methods you should always initialize
them, or the compiler will growl at you.

Now let us deliberately do something illegal. We will set a variable of type
byte equal to 675. Watch Java rebel.

jshell> byte b = 675
| Error:

| incompatible types: possible lossy conversion from int to byte
| byte b = 675;
|

This would attract the compiler’s attention in a compiled program and cause
compilation to abort and for your program to error out. You should create a
little class with a method doing this and see for yourself.

4.1 Using Java Integer Types in Java Code

So far we have seen Java’s four integer types: int, byte, short, and long. To
see them in code, begin by creating this file.

public class Example

{
public void go()
{
}

}

Once you enter the code in the code window, compile and save it. It now
does nothing. Now we will create some variables in the method go and do some
experiments. Modify your code to look like this and compile.

public class Example

{

16

public void go()

{
int x = 5;
System.out.println("x = " + x);

Can you make the same output using System.out.printf? You should try
this before moving on.

Compile the program. Now open it in jshell using the /open command
Then enterthe code e = new Example() into jshell. Then use the /types
command as follows.

jshell> /open Example.java

jshell> /types
| class Example

jshell> Example e = new Example();
e ==> Example(@26653222

jshell>

Notice the mysterious item Example@(some gibberish). If you noticed the
gibberish looks like hex code, you are right. All Java objects can print them-
selves, what they print by default is not very useful. Later we will learn how to
change that. Now let us send the message “go()” to our Example object e.

jshell> e.go()
x =5

Recall from the Hello class that System.out.println puts things to standard
output with a newline at the end.

Inside the System.out.println() command, we see the strange sequence
"x = " + 5. Java has a built-in string type String, which is akin to Python’s
str. In Python, you would have written

print("x = " + str(x))

Java has a feature called “lazy evaluation” for strings. Once Java knows that an
expression is to be a string, any other objects concatenated to the expression
are automatically converted into strings and are added to the concatenation.
That is why you see

17

printed to stdout. Note that Python is very strict in this matter and requires
you to explicitly convert objects to string before they can be concatenated to a
string.

Now let us add some more code to our Example class so we can see how
these integer types work together.

public class Example

{
public void go()
{
int x = 5;
System.out.println("x = " + x);
byte b = x;
System.out.println("b = " + b);
}
}

Now we compile our masterpiece and we get these scoldings from Java.

$ javac Example.java
Example.java:7: error: incompatible types:
possible lossy conversion from int to byte
byte b = x;

1 error

$

Indeed, line 7 contains the offending code
byte b = x;

To fully understand what is happening, let’s do a quick comparison with Python
and explain a few differences with Java.

Types: Java vs. Python Python is a strongly, dynamically typed language.
This means that objects are aware of their type and that decisions about type
are made at run time. Variables in Python are merely names; they have no

type.

In contrast, Java is a strongly, statically typed language. In the symbol
table, Java keeps the each variable’s name, the object the variable points at and
the variable’s type. Types are assigned to variables at compile time. In Python

18

a variable may point at an object of any type. In Java, variables have type and
may only point at objects of their own type.

Now let’s return to the example. The value being pointed at by x is 5.
This is a legitimate value for a variable of type byte. However, x is an integer
variable and knows it is an integer. The variable b is a byte and it is aware of
its byteness. When you perform the assignment

b = x;

Java sees that x is an integer. An integer is a bigger variable type than a byte.
The variable b says, “How dare you try to stuff that 4-byte integer into my
one-byte capacity!” Java responds chivalrously to this plea and the compiler
calls the proceedings to a halt.

In this case, you can cast a variable just as you did in Python. Modify the
program as follows to cast the integer x to a byte.

public class Example

{
public void go()
{
int x = 5;
System.out.println("x = " + x);
byte b = (byte) x;
System.out.println("b = " + b);
}
}

Your program will now run happily.

jshell> /open Example.java
jshell> Example e = new Example();
e ==> Example(26653222

jshell> e.go();

x =5
b=5
jshell>

Now let’s play with fire. Change the value you assign x to 675.

public class Example

{
public void go()
{

19

int x = 675;

System.out.println("x = " + x);
byte b = (byte) x;
System.out.println("b = " + b);

}
This compiles very happily. It runs, too!

jshell> Example e = new Example();
e ==> Example(@26653222

jshell> e.go()

x = 675
b = -93
jshell>

Whoa! When casting, you can see that the doctrine of caveat emptor applies.
If we depended upon the value of b for anything critical, we can see we might
be headed for a nasty logic error in our code. When you cast, you are telling
Java, “I know what I am doing.” With that right, comes the responsibility for
dealing with the consequences.

Challenge How did the -93 come about? Think about doughnutting!

Notice that you are casting from a larger type to a smaller type. This is a
type of downcasting, and it can indeed cause errors that will leave you downcast.
Since we discussed downcasting, let’s look at the idea of upcasting that should
easily spring to mind. For this purpose, we have created a new program that
upcasts a byte to an integer

public class UpCast

{
public void go()
{
byte b = 122;
System.out.println("b = " + b);
int x = b;
System.out.println("x = " + x);
}
}

This compiles and runs without comment.

20

jshell> /open UpCast. java

jshell> UpCast u = new UpCast();
u ==> UpCast(026653222

jshell> u.go()
b = 122
x = 122

The four integer types are just four integers with different sizes. Be careful
if casting down, as you can encounter problems. Upcasting occurs without
comment. Think of this situation like a home relocation. Moving into a smaller
house can be difficult. Moving into a larger one (theoretically) presents no
problem with accommodating your stuff.

Important! If you use the arithmetic operators +, -, * or / on the short
integral types byte and short, they are automatically upcast to integers as are
their results.

Finally let us discuss the problem of type overflow and “doughnutting.” Since
the byte type is the smallest integer type, we will demonstrate these phenomena
on this type. Observe that the binary operators +, -, * /, and % work in java
just as they do in Python 2.x on integer types. Also we have the compound
assignment operators such as += which work exactly as they do in Python.

Open jshell and run these commands. By saying int b = 2147483647,
we guarantee that Java will regard b as a regular integer.

jshell> int b = 2147483647,
b ==> 2147483647

jshell> b += 1;
$5 ==> -2147483648

jshell> b
b ==> -2147483648

jshell>

The last command b += 1 triggered an unexpected result. This phenomenon
called type overflow. As you saw in the table at the beginning of the section, a
byte can only hold values between -2147483648 and 2147483647. Adding 1 to
2147483647 yields -2147483648; this phenomenon is called doughnutting. It is
an artifact of the workings of two’s complement notation. You can see that this
occurs in C/C++ as well.

21

This is caused by the fact that integers in Java are stored in two’s comple-
ment notation. See the section in the Cyberdent in Computing in Python to
learn why this happens.

5 The Rest of Java’s Primitive Types

The table below shows the rest of Java’s primitive types. We see there are eight
primitive types, four of which are integer types.

Type Size Explanation

boolean | 1 byte | This is just like Python’s bool type. It
holds a true or false. Notice that the
boolean constants true and false are not
capitalized as they are in Python.

float 4 bytes | This is an IEEE 754 floating point number
It stores a value between -3.4028235E38
and 3.4028235E38.

double | 8 bytes | This is an IEEE 754 double pre-
cision number. It stores a value
between -1.7976931348623157E308 and
1.7976931348623157E308. This is the same
as Python’s float type. It is the type we
will use for representing floating—point dec-
imal numbers.

char 2 byte | This is a two—byte Unicode character. In
contrast to Python, Java has a separate
character type.

5.1 The boolean Type

Let us now explore booleans. Java has three boolean operations which we will
show in a table

22

Operator | Role | Explanation

&& and | This is the boolean operator A. It is a binary
infix operator and the usage is P && Q, where
P and Q are boolean expressions. If P evaluates
to false, the expression Q is ignored.

[| or This is the boolean operator V. It is a binary
infix operator and the usage isP | | Q, where
P and Q are boolean expressions. If P evaluates
to true, the expression Q is ignored.

! not This negates a boolean expression. It is a
unary prefix operator. Be careful to use paren-
theses to enforce your intent!

Hand—in—hand with booleans go the relational operators. These work just
as they do in Python on primitive types. The operator == checks for equality,
= checks for inequality and the operators <, >, <= and >= act as expected on
the various primitive types. Numbers (integer types and floating point types)
have their usual orderings. Characters are ordered by their ASCII values. It is
an error to use inequality comparison operators on boolean expressions.

Now let us do a little interactive session to see all this at work. You are
encouraged to experiment on your own as well and to try to break things so you
better understand them.

jshell> 5 < 7
$7 ==> true

jshell> 5 + 6 == 11 // == tests for equality
$8 ==> true

jshell> ! (4 < 5) // ! is not
$9 ==> false

jshell> (2 < 3) && (1 + 2 ==5) // and at work
$10 ==> false

jshell> (2 < 3) || (1 + 2 == 5) // or at work
$11 ==> true

jshell> 100 %7 == // % is mod
$12 ==> false

5.2 Floating—Point Types

When dealing with floating—point numbers we will only use the double type.
Do not test floating—point numbers for equality. Since they are stored inexactly

23

in memory, comparing them exactly is a dangerous hit—or—miss proposition.
Instead, you can check and see if two floating—point numbers are within some
tolerance of one another. Here is a little lesson for the impudent to ponder. Be
chastened!

jshell> double q = .3
q==> 0.3

jshell> double r = .1 + .1 + .1
r ==> 0.30000000000000004

jshell> q ==
$25 ==> false

All integer types will upcast to the double type. You can also downcast
doubles to integer types; you should experiment and see what kinds of truncation
occur. You should experiment with this in jshell. Remember, downcasting
can be hazardous and . .. leave you downcast. Pay especial attention to negative
numbers. If you are a number theory geek, you will have a negative reaction.

5.3 The char type

In Python, characters are just one—character strings. Java works differently and
is more like C/C++ in this regard. It has a separate type for characters, char.

Recall that Western characters are really just bytes. Java uses the unicode
scheme for encoding characters. All unicode characters are two bytes. The
ASCII characters are prepended with a zero byte to make them into unicode
characters. You can learn more about unicode at http://www.unicode.org

Integers can be cast to characters, and the unicode value of that character
will appear.

Here is a sample interactive session. Notice that the integer 945 in unicode
translates into the Greek letter a.

> (char) 65
IAI

> (char) 97
'a
> (char)945
o

> (char)946

]

Similarly, you can cast an integer to a character to determine its ASCII (or
unicode) value.

1

24

http://www.unicode.org

The relational operators may be used on characters. Just remember that
characters are ordered by their Unicode values. The numerical value for the 8
bit characters are the same in Unicode. Remember, Unicode characters are two
bytes; all of the 8 bit characters begin with the byte 00000000.

6 More Java Class Examples

Now let us develop more examples of Java classes. Since we have the primitive
types in hand, we have some grist for producing useful and realistic examples.
Let us recall the basics. All Java code must be enclosed in a class. So far, we
have seen that classes contain methods, which behave somewhat like Python
functions.

Open an editor session and place this code in a file named MyMethods. java.

public class MyMethods

{
public double square(double x)
{
return x*Xx;
}
}

Compile this program. Once it compiles, open it and jshell and create an
instance of it.

jsyell> MyMethods m = new MyMethods() ;

Recall that new tells Java, “make a new MyMethods object.” Furthermore,
we have assigned this to the variable m. Now type m.getClass() and see m’s
class.

jshell> m.getClass()
class MyMethods

Every Java object is born with a getClass() method. It behaves much like
Python’s type () function. For any object, it tells you the class that created the
object. In this case, m is an instance of the MyMethods class, so m.getClass ()
returns class MyMethods.

We endowed our class with a square method; here we call it.

jshell> m.square(5)
25.0

25

The name of the method leaves us no surprise as to its result. Now let us look
inside the method and learn its anatomy.

public double square(double x)
{
return x*x;

}
In Python, you would make this function inside of a class by doing the following.

class MyMethods:
def square(self, x):
return x*x

in both the top line is called the function header. Notice that in Python, you
must use the self variable in the argument list for any methods you create.
Python functions begin with the def statement; this tells Python we are defining
a function. Java methods begin with an access specifier and then a return type.
The access specifier controls visibility of the method. The access specifier public
says that the square method is visible outside of the class MyMethods. The
return type says that the square method will return a datum of type double.

In both Python and Java, the next thing you see is the function’s name,
which we have made square. The rules for naming methods in Java are the
same as those for naming variables. To review, an identifier name may start
with an alpha character or an underscore. The remaining characters may be
numerals, alpha characters or underscores.

Inside the parentheses, we see different things in Java and Python. In
Python, we see a lone x. In Java, we see double x. Since Java is statically
typed, it requires all arguments to specify the type of the argument as well as
the argument’s name. This restriction is enforced at compile time. In contrast,
Python makes these and all decisions at run time.

In general every Java method’s header has the following form.

returnType functionName (typel argl, type2 arg2, ... , typen argn)
The list
[typel, type2, ... typenl

of a Java method is called the method’s signature, or “sig” for short. Notice that
the argument names are not a part of the signature of a method. Remember,
such names are really just dummy placeholders. Methods in Java may have zero
or more arguments, just as functions and methods do in Python.

Try entering m.square(’a’) into jshell.

26

jshell> m.square('a')
Error: No Dsquarem method in DMyMethodsm with arguments: (char)

Compilation would fail for this program, and , jshell objects by saying that
a character is an illegal argument for your method square. Java methods have
type restrictions in their arguments. Users who attempt to pass data of illegal
type to these methods are rewarded with compiler errors. This sort of protection
is a two—edged sword. Add this method to your MyMethods class.

public double dublin(double x)
{

return x*2;

}
Now let us do a little experiment.

jshell> /open MyMethods. java

jshell> MyMethods m = new MyMethods() ;
jshell> m.dublin(5)

$1 ==> 10.0

jshell> m.dublin("string")

Error: No ['/dublin| method in |'MyMethods'|
with arguments: (java.lang.String)

What have we seen? The dublin method belonging to the MyMethods class
will accept integer types, which upcast to doubles, or doubles, but it rejects a
string. (More about Java’s string type later)

We will now write the analogous function in Python; notice what happens.
Place this Python code in a file named method.py.

def dublin(x):
return x*2

x =5

print "dublin(" + str(x) + ") =" + str(dublin(x))
x = "string"

print "dublin(" + str(x) + ") =" + str(dublin(x))

Now let us run it at teh command line..

$ python method.py
dublin(5) = 10
dublin(string) = stringstring

$

27

Python makes decisions about objects at run time. The call dublin(5) is fine
because it makes sense to take the number 5 and multiply it by the number 2.
The call dublin("string") is fine for two reasons. First, multiplication of a
string by an integer yields repetition, so the return statement in the function
dublin makes sense to Python at run time. Secondly, variables in Python have
no type, so there is no type restriction in dublin’s argument list. You will notice
that static typing makes the business of methods more restrictive. However,
compiler errors are better than run time errors, which can conceal ugly errors
in your program’s logic and which can cause surprisingly unappealing behavior
from your function.

Just as in Python, you may have functions that produce no output and
whose action is all side—effect. To do this, just use the void return type, as we
did in the Hello class.

Programming Exercises

1. Add a method double cube(double x) to the class MyMethods. java.
Can you use the square method to do part of the computation?

2. Modify the square method as follows.

public double square(double x)
{

double y = x*Xx;

return y;

}

Create a main method for this class and try placing this command in it.
System.out.println(y);

What happens? Why is this like Python?

28

	Welcome to JShell!
	How does Java Work on a Mechanical Level?
	Python Classes and Objects
	Java Classes and Objects
	Java's Integer Types
	Using Java Integer Types in Java Code

	The Rest of Java's Primitive Types
	The boolean Type
	Floating–Point Types
	The char type

	More Java Class Examples

