/**************************************************
* Author: Morrison
* Date: 26 Apr 2021
**************************************************/
import java.math.BigInteger;
import java.util.ArrayList;
public class Big
{
public static void main(String[] args)
{
/*test drive your methods here. Since everything is static,
* you can call them directly.
*/
}
/**
* This finds the the number of characters in a BigInteger.
* @param b The big integer we are computing the number of characters of.
* @return the number of characters in the BigInteger b
.
*/
public static int length(BigInteger b)
{
return 0;
}
/**
* This finds the sum of the absolute values of a list
* of BigIntegers.
* @param nums The numerical list we are processing
* @return the sum of the absolute values of the entries in the list.
*/
public static BigInteger absSum(ArrayList nums)
{
return BigInteger.ZERO;
}
/**
* This finds the factorial of n
as a BigIntegert.
* @param n The number whose factorial we are calculating. You
* may assume as a precondition that n >= 0
.
* @return the sum of the absolute values of the entries in the list.
*/
public static BigInteger factorial(int n)
{
return BigInteger.ONE;
}
/**
* This finds the number of ways to make an ordered display
* of size k
from n
objects.
* @param n The size of the "box" of items we are drawing from
* @param k the size of the display we are creating.
* @return the number of possible ordered displays of k items
* from a box of n. FREE MATH
* permuation(n,k) → n*(n-1)*(n-2)* .... (n - k + 1) if
* 0 <= k < n, and 0 otherwise. (if n < 0, return 0).
*/
public static BigInteger permutation(int n, int k)
{
return BigInteger.ONE;
}
/**
* This computes F(n), the nth
fibonacci number.
* @param n The ordinal of the Fibonacci number we wish to compute
* @return The nth
fibonacci number
*/
public static BigInteger fibonacci(int n)
{
return BigInteger.ZERO;
}
}