
Contents

0 Getting Started 1

0.0 Introduction . 1

0.1 Server Access . 1

0.2 Installing Python . 3

0.3 Getting a JDK . 4

1 Linux 7

1.1 Introduction . 7

1.2 In the Beginning . 8

1.3 Anatomy of a Command . 9

1.4 Managing Directories . 10

1.4.1 Processes and Directories 14

1.5 Paths . 15

1.6 A Field Trip . 15

1.7 Directories and Files . 17

1.8 Renaming and Deleting . 20

1.8.1 Everything is a Program 22

1.9 Editing Files . 25

1.9.1 Launching vi . 26

1.9.2 vi Modes . 27

1.9.3 Cut and Paste . 29

1.9.4 Using External Files . 30

1

CONTENTS CONTENTS

1.9.5 Search and Replace . 31

1.10 Visual Mode . 32

1.10.1 Replace Mode . 33

1.11 Copy Paste from a GUI . 34

1.11.1 Permissions . 35

1.12 The Octal Representation . 36

1.13 The Man . 38

1.14 Scripts . 41

1.15 Redirection of Standard Output and Standard Input 42

1.16 More Filters . 45

1.16.1 The sort �lter . 45

1.16.2 The Filters head, tail, and uniq 46

1.16.3 The grep Filter . 46

1.16.4 Serving up Delicious Data Piping Hot 47

2 Python 49

2.0 Running Python . 49

2.1 Scalar Types . 50

2.2 Variables and Assignment . 55

2.2.1 The Lowdown on Assignment 57

2.3 Pooling . 58

2.4 Writing a Program . 59

2.5 Objects . 60

2.5.1 How do I �nd all of the string behaviors? 62

2.5.2 Compound Assignment 63

2.6 Sequence Types . 64

2.6.1 Slicing of Sequences . 66

2.6.2 Slicing of Lists . 68

2.7 Casting About . 69

2.8 List Behaviors . 70

2.9 Hashed Types . 70

©2009-2021, John M. Morrison 2

CONTENTS CONTENTS

2.9.1 What hashing? Why do it? 71

2.10 Sets . 72

2.11 Dictionaries . 76

2.12 Terminology Roundup . 78

3 Boss Statements 81

3.0 Introduction . 81

3.1 Functions . 82

3.2 Scoping . 83

3.3 Conditional Logic . 85

3.4 Stack and Heap . 90

3.4.1 The Heap . 90

3.4.2 Program Life Cycle . 91

3.5 Recursion . 94

3.6 The Standard Library . 96

3.6.1 Accessing the File System 98

3.6.2 Random Thoughts . 101

3.7 Termnology Roundup . 103

4 Repetition 105

4.0 Introduction . 105

4.1 Iterables and De�nite Loops . 106

4.2 File IO . 109

4.2.1 A Helpful Tool: Raw Strings 113

4.3 Some FileIO Applications . 114

4.4 while and Inde�nite Looping . 119

4.5 Programming Projects . 120

4.6 Function Flexibility . 121

4.6.1 A Star is Born . 123

4.6.2 Keyword Arguments . 125

4.7 Generators . 125

©2009-2021, John M. Morrison 3

CONTENTS CONTENTS

4.7.1 Holy Iterable, Batman! 130

4.8 Terminology Roundup . 133

5 Algorithms 135

5.0 Introduction . 135

5.1 A Rough Measure of Growth . 135

5.2 Searching . 135

5.2.1 Binary Search . 136

5.3 Root Finding . 138

5.4 A little number theory . 138

5.5 The Performance of isPrime . 144

5.6 Iterative Techniques . 144

5.7 Mergesort . 151

5.8 Terminlogy Roundup . 153

6 Introducing Java 155

6.0 Introduction . 155

6.1 Welcome to JShell! . 156

6.2 Coding Mechanics . 159

6.3 Python Classes . 161

6.4 Java Classes . 164

6.5 Java's Integer Types . 170

6.5.1 Using Java Integer Types in Java Code 172

6.6 Four More Primitive Types . 178

6.6.1 The boolean Type . 179

6.6.2 Floating�Point Types . 180

6.6.3 The char type . 181

6.7 More Java Class Examples . 181

7 Classes and Objects 187

7.0 Java Object Types . 187

7.1 Java Strings . 188

©2009-2021, John M. Morrison 4

CONTENTS CONTENTS

7.1.1 But is there More? . 190

7.2 Primitive vs. Object . 195

7.2.1 Aliasing . 198

7.3 More String Methods . 199

7.4 The Wrapper Classes . 202

7.4.1 Autoboxing and Autounboxing 203

7.5 Two Caveats . 204

7.6 Classes Know Things: State . 204

7.6.1 Quick! Call the OBGYN! And get a load of this! 206

7.6.2 Now Let's do the Same Thing in Python 207

7.6.3 Method and Constructor Overloading 208

7.6.4 Get a load of this again! 209

7.6.5 Now Let Us Make this Class DO Something 210

7.6.6 Who am I? . 212

7.6.7 Mutator Methods . 213

7.7 Java Scope . 216

7.8 OO Weltanschauung . 219

7.8.1 Procedural Programming 219

7.8.2 OO Programming . 221

8 Python −→ Java 225

8.0 Introduction . 225

8.1 Java Data Structures . 225

8.1.1 java.util.Arrays . 227

8.1.2 Fixed Size? C'mon! . 228

8.1.3 What is this Object? . 230

8.1.4 Back to the Matter at Hand 231

8.2 Conditional Execution . 234

8.2.1 The New switch Statement 237

8.3 Big Integers . 237

8.4 Recursion in Java . 240

©2009-2021, John M. Morrison 5

CONTENTS CONTENTS

8.5 Looping in Java . 241

8.6 Starguments for Java . 243

8.7 static and final . 247

8.7.1 Etiquette for Static Members 249

9 BigFraction 251

9.0 Case Study: An Extended-Precision Fraction Class 251

9.0.1 A Brief Orientation . 251

9.1 Starting BigFraction.py . 252

9.1.1 Reducing Fractions . 253

9.1.2 Speeding things up . 255

9.1.3 Finishing __init__ . 257

9.2 Starting BigFraction.java . 258

9.3 Arithmetic . 261

9.3.1 Addition . 261

9.3.2 Subtraction . 263

9.3.3 Multiplication . 263

9.3.4 Division . 264

9.3.5 Pow! . 265

9.4 Adding Static Constants . 266

9.5 Documenting Your Code . 267

9.5.1 Documenting BigFraction.py 267

9.5.2 Documenting BigFraction.java 271

9.5.3 Triggering Javadoc . 272

9.5.4 Documenting toString() and equals() 273

9.5.5 Putting in a Preamble and Documenting the Static Con-
stants . 273

9.5.6 Documenting Arithmetic 274

9.5.7 The Complete Code . 276

10 Types and Subtypes 281

10.0 Introduction . 281

©2009-2021, John M. Morrison 6

CONTENTS CONTENTS

10.1 Interfaces . 282

10.1.1 Pretty Polymorphism . 283

10.2 The API Guide . 286

10.3 Subclasses . 286

10.4 Overriding Methods . 289

10.5 API/Inheritance . 291

10.6 Subinterfaces . 292

10.6.1 Default Methods . 294

10.7 Functional . 294

10.8 Lambdas . 296

10.8.1 Lambda Grammar . 297

10.9 Comparators . 297

10.10Multiple Parents? . 302

10.10.1The Deadly Diamond . 302

10.10.2A C++ Interlude . 302

10.11Abstract Classes . 303

10.12Functional . 307

10.12.1Declarative vs. Imperative 309

10.12.2Using map . 310

11 Files and Exceptions 311

11.0 Introduction . 311

11.1 Exceptions . 311

11.2 Throwable . 313

11.3 Throwing . 315

11.4 Checked v. Run-Time . 315

11.5 Path . 316

11.6 Reading a Text File . 320

11.7 Bu�ering . 324

11.8 Writing a Text File . 327

11.9 Binary/Bu�ered . 328

©2009-2021, John M. Morrison 7

CONTENTS CONTENTS

©2009-2021, John M. Morrison 8

Chapter 0

Getting Started

0.0 Introduction

In this chapter you will learn how to prepare your computer so it can do all of
the things you will learn about in this book. There are three major things that
need to be addressed: getting a text editor, installing Python, and installing
Java. First, a couple of preliminary notes.

A Word About Your File System It is a smart idea to create a directory
to hold all of your programs. Do this in your home directory. If you are using
a text editor other than vim, avoid storing your stu� in the editor's directory
tree; the path is long and annoying. If you upgrade your editor, you can lose
all of your programs.

A Convention We shall refer to a command window as a PowerShell, cmd,
or Mac/UNIX terminal window. The system prompt for any of these window
will be shown as unix>.

We will run both Python and Java out of a command window, so get used
to the command-line interface for your computer.

0.1 Server Access

If you are given a server account, you will need some (tiny) pieces of software
to connect to it from your PC. This server will likely have both Python3 and
Java installed.

Your system administrator will tell you three things about your account.

1

0.1. SERVER ACCESS CHAPTER 0. GETTING STARTED

1. Your server's name, exxample cs.ncssm.edu

2. Your user name, example hart21g

3. A password

Windoze Obtain puTTY from
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html".

This will enable you to connect to a server over the network. When you
open PuTTy, a window will pop up. Put your server's name in the box labeled
�hostname.� Under Port, select 22. Then in the Saved Sessions area, type
myLogin. Hit the Save button.

Now double-click on the word myLogin in the Saved session area. You will
see a terminal window appear on your desktop.

Mac or UNIX Do this in a command window.

unix> ssh yourUserName@yourServerName

replacing yourUserName with your acutal user name and yourServerNamme
with your server's name. A terminal session with the server will begin.

For Both You can enter your user name under login: and hit the ENTER
key. Next, type your password under password:

Note: You will not see any characters appear when typing your pasword. If
you have successfully logged in, type exit to cleanly log out.

Once you have the basics of login and logout mastered, the next step is
to install �le-transfer software. Go to the FileZilla download site at https://
filezilla-project.org/download.php?type=client and download the client.

Once it's installed, �re it up. Enter your login name, server name, and
password into the appropriate boxes. Select Port 22. Once you launch it, you
will see your local machine on the left and the server on the right. File transfer
works by drag-and-drop. It's butt simple, which is why we recommend it for
everyone.

Editing Environments You will need a plain-text editor for creating source
code �les.

You cannot edit source code �les using a word processor; they are full of
hidden stu� for formatting that will prevent your programs from running. These
editors color your code in a manner that makes it easy to spot misspellings and
mistakes. Here are some recommended possibilities. All are free software.

©2009-2021, John M. Morrison 2

https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html"
 https:// filezilla-project.org/download.php?type=client
 https:// filezilla-project.org/download.php?type=client

CHAPTER 0. GETTING STARTED 0.2. INSTALLING PYTHON

� The Atom text editor is available here http://atom.io. It has many
excellent features and provides syntax coloring for all major programming
languages. It works on all platforms. Installation is quick and simple. It
has extensions called packages that give it some useful capabilities.

� Windoze users can download Notepad++ at https://notepad-plus-plus.
org This is an excellent editor. It will replace the clunky and nigh useless
Notepad.

� The VSCode editor comes with many superpowers, You can download it
here: https://code.visualstudio.com/

� Macs and UNIX boxes come equipped with vi (vim). By default they have
no .vimrc �le. Create this in your home directory and enter this text into
it.

syntax on
set et
set tabstop=4
set nohlsearch
set number

You can download vim for Windoze from https://www.vim.org/download.
php.

� You can work with an IDE (I don't like these for beginners). NetBeans,
IntelliJ, and Eclipse are all solid choices and are freely available.

0.2 Installing Python

The people at Python make this a very simple process. Go to https://www.
python.org. Click on Downloads and select your operating system. Obtain the
latest Python 3 installer; we will be using Python3 in this book. You should
note that Python2 goes end of life in December 2020. When you install, watch
for a checkbox asking if you want to update your PATH. Check that box to save
having to edit your environment variables. To test it open a command window
and do the following.

unix> python
Python 3.8.5 (default, Sep 4 2020, 02:22:02)
[Clang 10.0.0] :: Anaconda, Inc. on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

Your version number might di�er; it should be at least Python 3.8.

©2009-2021, John M. Morrison 3

http://atom.io.
https://notepad-plus-plus.org
https://notepad-plus-plus.org
https://code.visualstudio.com/
 https://www.vim.org/download.php
 https://www.vim.org/download.php
https://www.python.org
https://www.python.org

0.3. GETTING A JDK CHAPTER 0. GETTING STARTED

0.3 Getting a JDK

To build Java programs on your box, you will need a Java Development Kit
(JDK). This piece of software is available for all major computing platforms.
We will step through the process for the Windoze, Mac and Linux platforms.

� Windoze/Mac Go to https://adoptopenjdk.net/, and you can get
the most current JDK (as of 11/2020, version 15). The site has complete
instructions for doing the install. We will use Java 15, so make sure you
are install that version or later.
When the �custom install� window comes up, check the boxes for �update
PATH� and �update JAVA_HOME.� Then you will not need to edit your
environment variables to get the commands java and javac onto your
path so you can use them in the command-line interface.
If it has installed
properly, you should see this in a command window.

(base) MAC:Fri Nov 27:15:27:java> java -version
openjdk version "15.0.1" 2020-10-20
OpenJDK Runtime Environment AdoptOpenJDK (build 15.0.1+9)
OpenJDK 64-Bit Server VM AdoptOpenJDK (build 15.0.1+9, mixed mode, sharing)
(base) MAC:Fri Nov 27:15:27:java>

� Linux You can install this from your package manager or install it from
adoptopenjdk.

If you are going to work o�ne, you should also download the Java API docu-
mentation and install it on your machine. This documentation is a free �Ency-
clopaedia of Java� that will be extremely helpful.

How do I know it's working? Create this program in a �le named Foo.java.

public class Foo
{
}

Now open a command window (cmd or PowerShell on windoze) and compile
your Java program as follows.

unix> javac Foo.java

Then, list your �les; you should see a �le named Foo.class. If so, you are
golden. Go ahead and remove it.

©2009-2021, John M. Morrison 4

https://adoptopenjdk.net/

CHAPTER 0. GETTING STARTED 0.3. GETTING A JDK

Exercise Take some time to customize your text editor. Here are some sug-
gestions. The .vimrc �le takes care of some of this if you are a vim user. In
MacOSX or Linux, you can use your terminal preferences to make these changes.
Here are some things you might like to do.

1. Change the background color from white to an o�-white color such as
0xFFF8E7. This is much easier on your eyes; staring at a white screen
increases eye strain.

2. Adjust the font size to your liking, but do not change from a monospace
font. We recommend a monospaced font such as Courier or Courier New.

3. Have line numbers displayed, since error messages in Java often cite errors
by line number.

4. You can have a dark background if you wish.

5. Set your indent level to 4 spaces.

©2009-2021, John M. Morrison 5

0.3. GETTING A JDK CHAPTER 0. GETTING STARTED

©2009-2021, John M. Morrison 6

Chapter 1

Linux

1.1 Introduction

You are probably used to running a computer with a graphical user interface
(GUI) that gives you a desktop and icons to work with using your mouse and
keyboard.

You likely run Windoze, MacOSX, or you may be running a Linux GUI on
your machine. The GUI allows you to communicate with the operating system,
which is the master program of your computer that manages such things as
running applications and maintaining your �le system.

In this book, we will study the Linux operating system in its command-line
guise. You will control the computer by entering commands into a text window
called a terminal window. Typically they look something like this.

7

1.2. IN THE BEGINNING . . . CHAPTER 1. LINUX

The name �terminal� name harkens back to the days when you had an actual
appliance on your desk consisting of a (heavy) CRT screen and keyboard that
was connected to a computer elsewhere. Your terminal window is just a software
version of this old appliance. You will enter commands into this window to get
the remote machine you are communicating with to perform various tasks.

The text string morrison@odonata appearing in the window is called the
prompt. Its presence indicates that the computer is waiting for you type in a
command. Your prompt will likely be di�erent.

1.2 In the Beginning . . .

As we progress, everything will seem unfamiliar, but actually relate very directly
to some very familiar things you have seen working with a computer having a
GUI. We assume you have basic pro�ciency using some kind of computer such
as a Mac or a Windoze box, and we will relate the things you do in Linux to
those you do in your usual operating system.

Log in to your UNIX account. If you are working in a Linux GUI, or a Mac,
just open a terminal session. The �rst thing you will see after any password
challenge will resemble this

[yourUserName}@hostName yourUserName}]$

or this

[yourUserName}@hostName ~]$

On a Mac, it will resemble this

©2009-2021, John M. Morrison 8

CHAPTER 1. LINUX 1.3. ANATOMY OF A COMMAND

John-Morrisons-MacBook-Pro:~ morrison$

The presence of the prompt means that Linux is waiting for you to enter a com-
mand. The token yourUserName will show your login name. Your prompt may
have an appearance di�erent from the ones shown here; this depends on how
your system administrator sets up your host or on the type of Linux distribution
you are using. The appearance of your prompt does not a�ect the underlying
performance of UNIX. In fact, the properties of your session are highly con�g-
urable, and you can customize your prompt to have any appearance you wish.

To keep things simple and uniform throughout the book, we will always use
unix> to represent the UNIX prompt. You will interact with the operating
system by entering commands, instead of using a mouse to push buttons or
click in windows.

When you see this terminal, a program called a shell is running. The shell
takes the commands you type and passes them on to the operating system
(kernel) for action. You will type a command, then hit the ENTER key; this
causes the command to be shipped to the OS by the shell. The shell then
conveys the operating system's reply to your terminal screen. Think of the shell
as a telephone through which you communicate with the operating system. This
analogy is only �tting since UNIX was originally developed at AT&T Bell Labs.

We will begin by learning how to interact with the �le system. This is what
give you access to your programs and data, so it is very fundamental.

1.3 Anatomy of a Command

Every UNIX command has three parts: a name, options, and zero or more
arguments. They all have the following appearance

commandName -option(s) argument(s)

Notice how the options are preceded by a -. Certain �long�form� options are
preceded by a --. In a Mac terminal, all options are preceded by a simple -.

A command always has a name. Grammatically you should think of a com-
mand as an imperative sentence. For example, the command passwd means,
�Change my password!� You can type this command at the prompt, hit enter,
and follow the instructions to change your password any time you wish.

Arguments are supplementary information that is sometimes required and
sometimes optional, depending on the command. Grammatically, arguments
are nouns: they are things that the command acts upon.

Options are always, well, ... optional. Options modify the basic action of the
command and they behave grammatically as adverbs. All familiar features of a

©2009-2021, John M. Morrison 9

1.4. MANAGING DIRECTORIES CHAPTER 1. LINUX

graphics-based machine are present in Linux, you will just invoke them with a
text command instead of a mouse click. We will go through some examples so
you get familiar with all the parts of a Linux command.

Two very basic Linux commands are whoami and hostname. Here is a typical
response. These commands give, respectively, your user name and the name of
the host you log in to.

Now we run them. We show the results here; your computer will show your
login name and your host name. Here is what they look like on a server.

unix> whoami
morrison
unix> hostname
carbon.ncssm.edu
unix>

Here is their appearance on a PC (A Mac in this instance).

unix> whoami
morrison
unix> hostname
John-Morrisons-MacBook-Pro.local
unix>

We will next turn to the organization of the �le system.

1.4 Managing Directories

We will do a top�down exploration of the �le system. In this spirit, we will �rst
learn how to manage directories; this is the UNIX name for folders. You will
want to know how to create and manage folders, ummmm... directories , and
how to navigate through them.

You have been in a directory all along without knowing it. Whenever you
start a UNIX session, you begin in your home directory. Every user on a UNIX
system owns a home directory. This is where you will keep all of your stu�. You
will see that ownership of stu� is baked right into a UNIX system.

To see your home directory, type pwd at the UNIX prompt. This command
means, �Print working directory!� You will see something like this.

unix> pwd
/home/faculty/morrison

©2009-2021, John M. Morrison 10

CHAPTER 1. LINUX 1.4. MANAGING DIRECTORIES

This directory is your home directory. Whenever you start a new session, you
will begin here. This is the directory where all the stu� that belongs to you is
kept.

In this example,morrison is a directory inside of faculty, which is inside
a directory home, which is inside the root directory, /. Your home directory
will likely be slightly di�erent. It is very common for UNIX systems to keep all
user directories inside of a directory named home. Often, several di�erent types
of users are organized into sub-directories of home. You will later see that all
directories live inside of the root directory, /. Enter the pwd command on your
machine and compare the result to what was shown here. Become familiar with
your home directory's appearance so you can follow what goes on in the rest of
this chapter.

If you are using Linux on your PC, your home directory will likely look like
this.

/home/morrison

This directory structure is exactly the same as your hierarchy of folders and
�les on a Mac or a Windoze box. You already know that folders can contain
�les and other folders. This is also true in a UNIX environment.

To make a new directory in Mac or Windoze, you right click in the open folder
and choose a menu for making a new folder. In UNIX, the mkdir command
makes a one or more new directories. It requires at least one argument, the
name(s) of the director(ies) you are creating. Let us make a directory by typing

unix> mkdir Projects

makes a directory called Projects; this directory is now empty. We can always
get rid of an empty directory or directories by typing the rmdir command like
so.

unix> rmdir garbageDirectory(ies)

In this case, garbageDirector(ies) stands for the directory or directories you
wish removed.

The rmdir command will not remove a directory unless it is empty. There
is a way to snip o� directories with their contents, but we will avoid it for now
because it is very dangerous. For now, you can delete the contents of a directory,
then remove the directory. Be warned as you proceed: When you remove �les
or directories in Linux, they are gone for good! There is no �undelete.�

If you got rid of the Projects directory, re-create it with mkdir. To get into
our new directory Projects, enter this command.

©2009-2021, John M. Morrison 11

1.4. MANAGING DIRECTORIES CHAPTER 1. LINUX

unix> cd Projects

and type ls. You will see no �les. This is because the directory Projects
is empty, and ls by default only shows you the �les in the directory you are
currently occupying. The command cdmeans, �Change directory!� Having done
this now type

unix> pwd

You will see a directory path now ending in Projects.

There is a command called touch which will create an empty �le(s) with a
name(s) you specify. Create �les named moo and baa with touch as follows.

unix> touch moo baa

Then enter ls at the command line. This command means �list stu�.� You
will see just the �les you created.

As we said before, The command ls displays only �les in the directory you
are currently occupying. This directory is called your current working directory,
or cwd for short. Every terminal session has a working directory. When you
�rst log in, your working directory is always your home directory.

/home/yourUserName/Projects

This directory is the Projects directory you just created.

If you type cd without arguments, you will go straight back to your home
directory. This should make you will feel like Dorothy going back to Kansas.
Now if we use pwd again we see our home directory printed out.

©2009-2021, John M. Morrison 12

CHAPTER 1. LINUX 1.4. MANAGING DIRECTORIES

You can also see your home directory anywhere you are by typing

unix> echo $HOME

The fearsome�looking object $HOME is just a symbol that points to your home
directory. There are various items like this present in your system. They are
called environment variables. Other examples of environment varialbes include`
$PWD, which is just your current working directory and $OLDPWD which is your
previous working directory.

Programming Exercises

1. Navigate to a directory. Then enter this.

unix> pushd

Then navigate to anohter directory and repeat this a few times. Now
alternately type

unix> popd
unix> pwd

©2009-2021, John M. Morrison 13

1.4. MANAGING DIRECTORIES CHAPTER 1. LINUX

What does this do? Think of Hansel and Gretel!

2. Crawl aroud in your directory strucutre. Each time you enter a new
directory type

unix> echo $PWD
unix> echo $OLDPWD

3. Use cd to change into some directory. Then type cd - and then pwd.
Repeat this. What does - mean?

1.4.1 Processes and Directories

We know that when we log in, we are starting a program called a shell. The
shell is a process, or running program. Every process has a cwd (current working
directory). When you type pwd into your shell, you are asking the OS to tell
you your shell's current working directory. If you log in to a UNIX server in
several terminal windows, each runs in a separate shell, so each has can have its
own working directory.

Observe that, much of the time, your shell is idle. When you �nish typing
a command and hit the enter key, that command launches a program, that
program runs, and any output is directed to your terminal window.

The command cd is a computer program. What it does is it changes the cwd
of the shell that calls it. Now you know what it means to be �in� a directory: it
means the cwd of your shell is that directory.

Programming Exercises

1. Enter

unix> cd $HOME/Projects

and see what happens.

2. Make these directories inside of Projects labors, feats and chores

3. Type cd labors at the command line then pwd.

4. Type cd .. at the command line then pwd. What happened?

5. Type cd .. at the command line again, then pwd. What happened?

6. What do you think .. is?

7. Type cd . at the command line then pwd. What happened?

8. Type ls . at the command line then pwd. What happened?

9. What do you think . is?

©2009-2021, John M. Morrison 14

CHAPTER 1. LINUX 1.5. PATHS

1.5 Paths

The location of your home directory is speci�ed by a path that looks something
like this /home/morrison. This path is an example of an absolute path, because
it speci�es a location in the �le system starting at the root directory.

All absolute paths start with a / or a ~. Here are the three kinds of absolute
paths.

� Paths beginning with a / are speci�ed starting at the root directory.

� The symbol ~ is shorthand for your home directory. It is an absolute
path. Try going anywhere in the �le system and type cd ~; it will take
you straight home, just as cd does by itself.

� A path beginning with ~someUserName speci�es the home directory of the
user someUserName.

Absolute paths work exactly the same, no matter where you are in the �le
system.

Relative paths are relative to your cwd. Every directory contains an entry
for its parent and itself. Make an empty directory named ghostTown and do an
ls -a.

unix> mkdir ghostTown
unix> cd ghostTown/
unix> ls -a
. ..

If you type cd .., you are taken to the parent directory of your cwd; this
path is relative to your cwd. Any path that is not absolute is relative. When
you are navigating in your home directory, you are mostly using relative paths.
Note that any relative path can also be represented as an absolute path.

Programming Exercises

1. Try typing cd .. then pwd a few times. What happens?

2. Type cd. Where do you go?

3. Type cd /bin (on a mac /usr/bin) then ls cd* You will see a �le named
cd that lives in that directory.

1.6 A Field Trip

To get to our �rst destination, type cd /. The directory / is the �root� directory;
it is an absolute path. If you think of the directory structure as an upside-down

©2009-2021, John M. Morrison 15

1.6. A FIELD TRIP CHAPTER 1. LINUX

(Australian) tree (root at top), the directory / is at the top. Type pwd and
see where you are. Type ls; you should see that the directory home listed with
several other directories. Here is what the directory structure looks like on a PC
running Red Hat Fedora Core 9. Yours may have a slightly di�erent appearance.

unix> cd /
unix> ls
bin etc lib mnt root srv usr
boot home lib64 opt run sys var
cdrom initrd.img lost+found proc sbin tmp vmlinuz.old
dev initrd.img.old media root selinux vmlinuz
unix>

Now type if we type cd home then ls, you will see one or more directories. On
the machine being used here, you would see

unix> cd home
unix> ls
guest lost+found morrison

This machine has two users, morrison and guest. Since it is a personal com-
puter, it does not have many users. You may be working on a server in which
there could be dozens, or even hundreds of other users who are organized into
various directories.

Here is an example from a fairly busy server.

unix> cd /home
unix> ls
2016 2018 2020 gotwals menchini rash
2017 2019 cs keethan.kleiner morrison rex.jeffries
unix>

The directories with the years are directories full of user's home directories. We
will list one here. It has quite a few users in it.

unix> ls 2019
allen19m hablutzel19k laney19m mullane19n wang19e
bounds19a hirsch19m lheem19h ou19j wolff19o
carter19d hou19b lin19b overpeck19c yang19j
cini19a houston19b liu19c perrin19p zhuang19a
eun19e houston19p manocha19a sakarvadia19m
gupta19a knapp19t mitchell19m villalpando-hernandez19j
unix>

©2009-2021, John M. Morrison 16

CHAPTER 1. LINUX 1.7. DIRECTORIES AND FILES

See if you can follow this all the way down to another user's home directory.
You may be able to list the �les there, or even read them, depending on that
user's permissions. From this modest demonstration, you see that you can step
down through the directory structure using cd. Now we will learn how to step
up.

Try typing cd ..; the special symbol .. represents the directory above your
cwd. Now you can climb up and down the directory structure! The .. symbol
works like the up-arrow in a �le chooser dialog box in Mac or Windoze. You
saw this when you did the last group of exercises.

Practice this; go back to your home directory. Make a new directory called
mudpies. Put some �les in it. Make new directories in mudpies, got down inside
these and make more directories and �les. Practice using cd to navigate the
tree you create. When you are done, get rid of the whole mess; remember you
have to go to the bottom, empty out the �les using rm and then use rmdir to
get rid of the empty directories.

If you type ls in a directory, notice how any directories inside it are in
di�erently colored type than regular �les. This color is often blue. You can use
the -F option in ls to print directory names with a slash (/) after them. Try
this; it was an important option back in the days of monochrome monitors. If
you use the -l option in ls, you will see that in the permissions column, the
column begins with a d for any directory. Here is a possible sample

-rw-rw-r-- 1 morrison morrison 0 Jun 9 14:54 bar
-rw-rw-r-- 1 morrison morrison 0 Jun 9 14:54 foo
drwxrwxr-x 2 morrison morrison 4096 Jun 9 14:54 junk

You can see there that bar and foo are empty �les. Notice the d at the
beginning of the line in junk; this tells you junk is a directory.

1.7 Making and Listing Regular Files

The operating system is responsible for maintaining the �le system. The �le
system maintained by a UNIX system consists of a hierarchy of �les. Two types
of �les will be of interest to us: directories (folders) and regular �les, i.e. �les
that are not directories. Regular �les may hold data or programs. They may
consist of text or be binary �les that are not human-readable.

You are used to working with regular �les and directories in Windoze or
MacOSX. Things in UNIX work the same way, but we will use commands to
manage �les instead of mouse clicking or dragging.

As we have already seen us now use the UNIX command touch to create
new �les. This command creates an empty �le for each argument given it. At
your UNIX prompt, enter

©2009-2021, John M. Morrison 17

1.7. DIRECTORIES AND FILES CHAPTER 1. LINUX

unix> touch stuff

This creates the empty �le named stuff in your account.

Now let us analyze the anatomy of this command. The name of the command
is touch; its purpose is to create an empty �le. Since you do not see a - sign,
there are no options being used. The argument is stuff. This is the name of
the �le you created. Create a few more empty �les. Enter these commands

unix> touch foo
unix> touch bar

You may create several �les at once by making a space-separated list as we show
here.

unix> touch aardvark buffalo cougar dingo elephant

Now you have eight new �les in your account. Next we will see how to list the
�les. Enter this command at the UNIX prompt

unix> ls

The command ls lists your �les. Notice we had neither options nor arguments.
If you created the �les using touch as instructed, they should appear on your
screen like this

unix> aardvark bar buffalo cougar dingo elephant foo stuff

The command ls has several options. One option is the l option; it list the
�les in long format. To invoke it, type

unix> ls -l

You will see a listing like this

-rw-rw-r-- 1 morrison morrison 0 Jun 9 10:50 aardvark
-rw-rw-r-- 1 morrison morrison 0 Jun 9 10:50 bar
-rw-rw-r-- 1 morrison morrison 0 Jun 9 10:50 buffalo
-rw-rw-r-- 1 morrison morrison 0 Jun 9 10:50 cougar
-rw-rw-r-- 1 morrison morrison 0 Jun 9 10:50 dingo
-rw-rw-r-- 1 morrison morrison 0 Jun 9 10:50 elephant
-rw-rw-r-- 1 morrison morrison 0 Jun 9 10:49 foo
-rw-rw-r-- 1 morrison morrison 0 Jun 9 10:49 stuff

The �rst column re�ects the permissions for the �les. The sequence

©2009-2021, John M. Morrison 18

CHAPTER 1. LINUX 1.7. DIRECTORIES AND FILES

-rw-rw-r--

indicates that you and your group have read/write permission and that others
(�the world�) has read permission. We will discuss permissions in more detail
when we discuss the management of directories.

You can see the name here is listed in two columns; on this machine morrison
is in his own group. On another system, you may live in group with several other
people; if so you will see the name of that group in one of these columns. The
zero indicates the size of the �le; each �le we created is empty. Then there is a
date, a time and the �le name. This is the long format for �le listing; it is seen
by using the -l option in the ls command.

Another option is the -a option. This lists all �les, including �hidden� �les.
Hidden �les have a dot (.) preceding their name. To see them, enter

unix> ls -a

at the command line. One thing you are guaranteed to see, no matter where
you are are are the directories .. (parent) and . (current). If you are in you
home directory, You will see the �les you saw using ls and several hidden �les
with mysterious names like bash_profile. Do not delete these; they provide
the con�guration for your account and do things like record preferences for
applications you have used or installed. You can also list all �les including
hidden �les by entering

unix> ls --all

You can use more than one option at once. For example, entering

unix> ls -al

or

unix> ls -a -l

unix> ls --all -l

shows all of your �les and hidden �les in long format. Try this now on your
machine.

Note to Mac Users Mac users should precede verbose commands with a
single -. So on a Mac, you type

unix> ls -all -l

©2009-2021, John M. Morrison 19

1.8. RENAMING AND DELETING CHAPTER 1. LINUX

and not

unix> ls --all -l

Otherwise, your Mac will respond with a cryptic error message.

Next we will show how to display a �le to the screen. UNIX commands that
process �les are called �lters. Filters accept input from a �le,

Let us peek inside your .bash_profile �le. Enter the command

unix> cat .bash_profile

The command name is cat, short for catalog (the �le to the screen). The cat
command is a �lter that does not �ltering at all; it simply dumps the entire
�le to the screen all at once. We are using no options, but the �le name is an
argument to cat. If a �le is long and you want to see it one screenful at a time,
use the �lter more. The command more takes a �le name as an argument and
shows it on the screen a screenful at a time. You can hit the space bar to see
the next screenful or use the down-arrow or enter key to scroll down one line at
a time. To exit more at any time, type a q and more quits. You can use several
arguments in cat or more and the indicated �les will be displayed in seriatum.

1.8 Renaming and Deleting

Three commands every beginner should know are: cp,rm and mv. These are,
respectively, copy, remove and move(rename). Here are their usages

cp oldFile newFile

rm garbageFile(s)

mv oldFile newFile

Warning! Pay heed before you proceed! To clobber a �le means to unlink
it from your �le system. When you clobber a �le it is lost and there is virtually
no chance you will recover its contents. There is no undelete facility as you
might �nd on other computing systems you have used.

If you remove a �le it is clobbered, and there is no way to get it back without
an in�nitude of horrid hassle. If you copy or rename onto an existing �le, that
�le is clobbered, and it is gone forever. Always check to see if the �le name
you are copying or moving to is unoccupied! When in doubt, do an ls to look
before you leap. All three of these commands have an option -i, which warns
you before clobbering a �le. Using this is a smart precaution.

The �rst command copies oldFile to newFile. If newFile does not exist, it
creates newFile; otherwise it will overwrite any existing newFile.

©2009-2021, John M. Morrison 20

CHAPTER 1. LINUX 1.8. RENAMING AND DELETING

Try this at your UNIX prompt: cp .bash_profile quack

Notice that the command cp has two arguments: the source �le and the
recipient �le. If you executed the last command successfully, you made a copy
of your .bash_profile �le to a �le called quack.

Next, let's get rid of all the animals in the zoo we had created before. The
command rm will accept one or more arguments and remove the named �les.
We can accomplish this in one blow with

unix> rm aardvark buffalo cougar dingo elephant

Now enter

unix> ls -l

You will see that quack's size is nonzero because it has a copy of the contents
of your .bash_profile �le in it. The �le shown here has size 191. The size is
the number of bytes contained in the �le; yours may be larger or smaller. You
will also see that the menagerie has been sent packing.

-rw-rw-r-- 1 morrison morrison 0 Jun 9 10:50 bar
-rw-rw-r-- 1 morrison morrison 0 Jun 9 10:49 foo
-rw-r--r-- 1 morrison morrison 191 Jun 9 11:25 quack
-rw-rw-r-- 1 morrison morrison 0 Jun 9 10:49 stuff

Let us now remove the �le stuff. We are going to use the -i option. Enter
this at the UNIX prompt.

unix> rm -i stuff

The system will then ask you if you are sure you want to remove the �le. Tell
it yes by typing the letter y. Be reminded that the -i option is also available
with cp and mv. You should you use it to avoid costly mistakes.

Finally, we shall use mv This �moves� a �le to have a new name. Let's change
the name of quack to honk and back again. To change quack to honk, proceed
as follows.

unix> mv quack honk

Once you do this, list the �les in long format. Then change it back.

Now you know how to copy, move, and create �les. You can show them to
the screen and you can list all the �les you have. So far, we can create �les two
ways, we can create an empty �le with touch or copy an existing �le to a new
�le with cp.

©2009-2021, John M. Morrison 21

1.8. RENAMING AND DELETING CHAPTER 1. LINUX

1.8.1 Everything is a Program

Now let us take a little look under the hood. When you log in, shell is launched.
The shell accepts commands you enter at the prompt and sends them to the
kernel, or operating system, which runs the program. This can cause output to
be put to the screen, as in ls, or happen without comment, as in rm.

Programs that are running in UNIX are called processes. Every process has
an owner and an integer associated with it called a process ID (PID). The user
who spawns a process will generally be its owner. You are the owner of all
processes you spawn. Many, such as ls, last such a short time you never notice
them beyond the output they produce; they terminate in a fraction of a second
after you enter them. When you log into your host, you actually are launching
a program; this is your shell. When the shell terminates, your terminal session
will be gone. At the command line, enter ps and you will see something like
this.

unix> ps
PID TTY
10355 pts/1
10356 pts/1
unix>
TIME CMD
00:00:00 bash
00:00:00 ps

The ps command shows all processes currently running spawned by your
shell. On this machine, the shell's (bash) process ID is 10355. By entering
ps aux at the command line, you can see all processes running on your UNIX
server, along with their process IDs and an abundance of other information. Try
this at several di�erent times. If you are using a server, you will see processes
spawned by other users. You will also see other processes being run by the
system to support your machine's operation.

An example of a program that does not �nish its work immediately is the
program bc. We show a sample bc session here; this application is a simple
arbitrary-precision calculator.

unix> bc
bc 1.06.94
Copyright 1991-1994, 1997, 1998, 2000, 2004, 2006
Free Software Foundation, Inc.
This is free software with ABSOLUTELY NO WARRANTY.
For details type `warranty'.
3+4
7

©2009-2021, John M. Morrison 22

CHAPTER 1. LINUX 1.8. RENAMING AND DELETING

4*5
20
2^20
1048576
2^100
1267650600228229401496703205376
quit

When you type bc at the command prompt, the shell runs the bc program.
This program continues to run until you stop it by typing quit. To see bc's
process ID, start bc and then type Control-Z to put it to sleep. This interrupts
the bc process, puts it in the background, and returns you to your shell. Then
enter ps at the command prompt to see the process ID for your bc session.

unix> bc
bc 1.06.94
Copyright 1991-1994, 1997, 1998, 2000, 2004, 2006
Free Software Foundation, Inc.
This is free software with ABSOLUTELY NO WARRANTY.
For details type `warranty'.
[1]+
unix> ps
PID
14110
14253
14254
unix>
Stopped
TTY
pts/4
pts/4
pts/4
bc
TIME
00:00:00
00:00:00
00:00:00
CMD
bash
bc
ps

Try typing exit to log out; you will see something like this.

unix> exit

©2009-2021, John M. Morrison 23

1.8. RENAMING AND DELETING CHAPTER 1. LINUX

exit
There are stopped jobs.
unix>

Now type jobs at the command prompt. You will see this.

unix> jobs
[1]+ Stopped
unix>
bc

You can end the job bc labeled [1] by doing the following

unix> kill %1
unix> jobs
[1]+ Terminated
unix> jobs
unix>
bc

If several jobs are stopped, each will be listed with a number. You can end any
you wish to by entering a kill command for each job. When you type jobs
at the command line the �rst time, it will tell you what jobs it has suspended.
After that, you will see a (possibly empty, like here) list of jobs still in the
background. Do not dismiss a shell with running jobs; end them to preserve
system resources.

You can bring your stopped job into the foreground by entering fg at the
command prompt.

Exercises

1. Start up a session of bc and put it into the background using control-Z.
Do this for several sessions. Type in some calculations into some of the
sessions and see if they reappear when you bring the bc session containing
that calculation into the foreground.

2. The bc calculator has variables which allow you to store numbers under
a name. These play the role of the symbols described in Chapter 0, but
they are limited to storing numbers. Here we show some variables being
created and some expressions being evaluated.

morrison@ghent:~unix> bc
bc 1.06.94
Copyright 1991-1994, 1997, 1998, 2000, 2004, 2006
Free Software Foundation, Inc.

©2009-2021, John M. Morrison 24

CHAPTER 1. LINUX 1.9. EDITING FILES

This is free software with ABSOLUTELY NO WARRANTY.
For details type `warranty'.
cow = 5
pig = 2
horse = 7
horse + cow
12
horse/pig
3
pig/horse
0
cow^horse
78125

Replicate this session. Put it into the background and bring it into the
foreground. Were your variables saved? Notice that this calculator does
integer arithmetic. The = sign you see is actually assignment, which was
discussed in Chapter 0.

3. Look at one of the algorithms for converting a binary number into a dec-
imal number described in Chapter 0. Can you step through the process
using bc and make it work?

1.9 Editing Files

We can create �les with touch and use cp to copy them. How do we edit text
�les and place information in them? This is the role of the UNIX text editor, vi.
The O'Reilly book [6] on it comes highly recommended if you want to become a
power user (you do). A second text editor, emacs is also available. It is powerful
and extensible. Like vi it is a serious tool requiring serious learning, and like
vi there is an O'Reilly book on it, too. You may use emacs instead of vi if you
wish. Both of these are just tools for creating and editing text �les, and both
do a great job. You may create or modify any text �le with either program.
Ubuntu users can also use gedit or gvim, which have some nice advantages.

A Note for Ubuntu Users Ubuntu by default installs the package vi-tiny.
We want vi with all bells and whistles. To get this, make sure you are connected
to the Internet, then type the following command in an terminal window.

unix> sudo apt-get install vim

You will be asked to enter your password, then it will install the full vi package.
The sudo command tells Ubuntu you are behaving as a system administrator,
so you must enter your password to proceed. It will ask you to con�rm you wish

©2009-2021, John M. Morrison 25

1.9. EDITING FILES CHAPTER 1. LINUX

to install, and then it will download the package from the repositories, install,
and con�gure it for you. Ubuntu has lots of programs and packages that are
freely available, and you use sudo apt-get install to obtain them.

1.9.1 Launching vi

To create a new �le or open an existing �le, type

unix> vi someFileName

at the UNIX command line. If the �le someFileName exists, it will be opened;
otherwise, it will be created. Now let us open the �le bar we created with touch.
You will see this:

~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
"bar" 0L 0C

©2009-2021, John M. Morrison 26

CHAPTER 1. LINUX 1.9. EDITING FILES

DONOT TYPE YET! Read ahead so you avoid having a passel of confusing
annoying things plaguing you. The tildes on the side indicate empty lines; they
are just placeholders that are not a part of the actual �le. It is fairly standard for
the tildes to be blue. The OL OC "bar" indicates that �le bar has no lines and
no characters. If the �le bar were not empty, its contents would be displayed,
then blue tildes would �ll any empty screen lines.

1.9.2 vi Modes

Before you hit any keys there is something important to know. The vi editor
is a moded editor. It has four modes: command mode, visual mode, insert
mode, and replace mode. Command mode provides mobility, search/replace,
and copy/paste capabilities. Insert mode allows you to insert characters using
the keyboard. Visual mode provides the ability to select text using the keyboard,
and then change or copy it. Replace mode overwrites existing text with new
text. When you �rst open a �le with vi, you will be in command mode.

We will begin by learning how to get into insert mode. You always begin a
vi session in command mode. There are lots of ways to get into insert mode.
Here are a six basic ones that are most often used.

keystroke Action
i insert characters before the cursor
I insert characters at the beginning of the line
a append characters after the cursor
A append characters at the end of the line
o open a new line below the cursor
O open a new line above the cursor

Here is an easy way to remember. What happens if you accidentally step on
your cat's tail? He says IAO!!!

©2009-2021, John M. Morrison 27

1.9. EDITING FILES CHAPTER 1. LINUX

There is one way to get out of insert mode. You do this by hitting the
escape (ESC) key. Let's now try this out. Go into your �le bar and hit the i
key to enter text. Type some text. Then hit ESC. To save your current e�ort
type this anywhere:

:w

This will write the �le; a message will appear at the bottom of the window
indicating this has happened. Do not panic; that message is not a part of the
�le that is saved. To quit, type

:q

this will quit you out of the �le. You can type

:wq

to write and quit. The command :qw does not work for obvious reasons. You
have just done a simple vi session. You can reopen the �le bar by typing

unix> vi bar

at the UNIX command line; the contents you last saved will be re-displayed.
You should take a few minutes to try all of the ways of getting into insert mode.
Change the �le and save it. Quit and display it to the screen with cat and
more.

At �rst, vi will seem clunky and awkward. However, as you ascend the
learning curve, you will see that vi is blazingly fast and very e�cient. One of
its great strengths is the ability to search for and replace text. As your skill
grows with it, you will see it is an amazing productivity tool.

A Reassuring Note If you are in command mode and hit ESC, your com-
puter will just beep at you. This is its way of letting you know you were already
in command mode. Nothing additional happens. If you are unsure what mode
you are in, hit ESC and you will be back in command mode, no matter what.
You can hit ESC and relax.

The �gure below will help you to remember the structure of vi. When you
�rst start editing a �le, you enter in in command mode. Typing i, a, o, I, A or
O all put you into insert mode. You can also see in the diagram how to get out
of insert mode by typing ESC.

|---
| command mode |

©2009-2021, John M. Morrison 28

CHAPTER 1. LINUX 1.9. EDITING FILES

| ---------------i, a, o, I, A, O to get in----------- |
	insert mode:	
	insert characters	
	paste in text with GUI	
-----------------------------------ESC to get out---		
search, replace		
copy with yy, paste with p		
delete lines with dd		
all "colon commands" (commands that start with :)		
----------------------------------- --------------------------		

Let's go back in our �le now and learn some more useful commands. We will
look at command mode commands now.

Sometimes, line numbers will be helpful; these are especially useful when
you program. To see them, you get into command mode and type the colon
command :set number. Do this and watch them appear. Now type :set nonu
or :set nonumber and watch them disappear. Line numbers are not a part of
the �le; however, they are a helpful convenience.

Here are some useful command mode mobility features. Experiment with
them in a �le.

Command Action
: lineNumber Go to indicated line number.
� Go to the beginning of the current line.
$ Go to the end of the current line.
G Go to the end of the �le.
gg Go to the beginning of the �le; note that :1 also works.

These colon commands in this table will allow you to alter your editing
environment. The last two are useful editing tricks that are sometimes quite
convenient. Open a �le and try them all.

Command Action
:set number display line numbers
:set nonu get rid of line numbers
:set autoindent This causes vi to autoindent.
:set noautoindent This causes vi to turn o� autoindent.
r (then a character) replace character under cursor
~ change case upper → ;lower or lower → upper

1.9.3 Cut and Paste

The vi editor has a a space of memory called the unstable bu�er, which we
nickname Mabel. Mabel provides a temporary cache for holding things while

©2009-2021, John M. Morrison 29

1.9. EDITING FILES CHAPTER 1. LINUX

we are editing and she is very helpful for doing quick copy-paste jobs.

This bu�er is unstable because it loses its contents every time new text is
placed in it. Do not use it to store things for a long time; instead write those
things to �les and retrieve them later. You will learn several ways to do this.

We show here a table with some cut, copy, and paste commands you will
�nd helpful.

yy Yank line to Mabel
dd Delete line starting at the cursor; this

cuts to Mabel
dw Delete word; this cuts to Mabel
cw Delete word, then enter insert

mode(change word) The changed
word is cut to Mabel.

p Paste Mabel's contents at the cursor.
D Cut line at cursor; this cuts the stricken

text to Mabel
C Cut line at cursor and enter insert

mode; this cuts the stricken text to Ma-
bel

All of these commands can be preceded by a number, and they will happen
that number of times. For example typing 10yy in command mode will yank
ten lines, starting at the cursor, to Mabel. Since so many of these commands
place new text in Mabel, you should know that if you copy or cut to Mabel
and intend to use the text, paste it right away. You should open a �le and
experiment with these. Spend some time fooling around with this mechanism;
you will make some delightful discoveries, as well as dolorous ones.

1.9.4 Using External Files

You can select a range of line numbers before each of these commands, or select
in visual mode and use these commands.

:w fileName Write a copy of the entire the �le fileName
:w! fileName Write selection to existing �le fileName, and clobber it.
:w >> fileName Append selection to �le fileName.
:r fileName Read in �le fileName starting at the cursor

For example

:20,25 w foo.txt

©2009-2021, John M. Morrison 30

CHAPTER 1. LINUX 1.9. EDITING FILES

will write lines 20-25 to the �le foo.txt. If you want to write the entire �le,
omit the line numbers and that will happen. If you want to write from line 20
to the end of the �le, the usage is as follows.

:20,$ w foo.txt

Note the use of $ to mean �end of �le.� When you learn about visual mode (just
ahead), you can use these command to act on things you select in visual mode
as well.

Housekeeping Tip If you use this facility, adopt a naming convention for
these �les you create on a short-term basis. When you are done editing, get rid
of them or they become a choking kudzu and a source of confusion in your �le
system. Use names such as buf, buf1, etc as a signal to yourself that these �les
quickly outlive their usefulness and can be chucked.

1.9.5 Search and Replace

Finally we shall look at search capabilities. These all belong to command mode.
Enter

/someString

in command mode and vi will seek out the �rst instance of that string in the
�le or tell you it is not found. Type an n to �nd the next instance. Type N to
reverse direction. You can enter

?someString

to search for someString backwards from the cursor. Type n to �nd the previous
instance, and N to revese direction. Your machine may be con�gured to highlight
every instance of the string you searched for. If you �nd this feature annoying,
you can deactivate it with

:set nohlsearch

Now let us look at search and replace. This is done by a colon command
having this form.

:s/old/new/(g|c|i)

The s means substitute; this substitutes old for new. The three �ags at the end
specify how the substitution should work By default, substitutions are con�ned
to the cursor line, but you can control the scope of a substitution in these two
ways.

©2009-2021, John M. Morrison 31

1.10. VISUAL MODE CHAPTER 1. LINUX

Bound Scope
a,b s/old/new/(g|c|i) Perform the substitution on lines a through b, inclusive.
a, $ Perform the substitution on line a until the bottom of the �le.

Here is how the �ags work. At the end you can append any of g, c, or i.
Here is a decoder ring.

c Check after each substitution to see if you want ot replace.
g Replaces all instances on each line. By default, only the �rst one is replaced.
i Replace old case-insensitive.

You will also learn how to control the scope of substitutions in visual mode
below. That method is extremely nice and quite simple to learn.

1.10 Visual Mode

The third mode of the vi editor, visual mode is actually three modes in one:
line mode, character mode, and block mode. To enter line mode from command
mode, hit V; to enter character mode hit v, and to enter block mode, hit Control-
v. You can exit any of these by hitting the ESC key; this places you back in
command mode. Visual mode has one purpose: it allows you to select text
using keyboard commands; you may then perform various operations on these
selections. First, let us see the selection mechanism at work.

Go into a �le and position your cursor in the middle of a line. Hit v to enter
visual character mode. Now use the arrow keys; notice how the selected text
changes in response to arrow key movement. Try entering gg and G and see
what happens. Hit ESC to �nish. Now enter visual mode and use the / search
facility to search up something on the page. What happens? Search backward
and try that too.

Now enter visual line mode by hitting V; now try the keystrokes we just
indicated and see how the selection behaves. This mode only selects whole
lines.

Finally if you enter Control-V and you enter visual block mode, you can
select a rectangular block of text from the screen by using the keyboard.

Now let's see what you can do with these selections. First let us look at
character and line mode, as block mode behaves a little di�erently. You can
delete the selected text by hitting d. You can yank it into Mabel by hitting y.
Upon typing either command, you will be put back into command mode. Once
any text is yanked into Mabel, you can paste it with p as you would any other

©2009-2021, John M. Morrison 32

CHAPTER 1. LINUX 1.10. VISUAL MODE

text yanked there. If you hit c, the selection will be deleted and you will be in
insert mode so you can change the text.

In block mode, things are a little di�erent. If you hit d, the selected block
will be deleted, and the lines containing it shortened. The stricken text is cut to
Mabel. If you hit y, the block will be yanked just as in any other visual mode,
and its line structure will be preserved. If you hit c, and enter text, the same
change will be made on all line selected provided you do not hit the ENTER
key. If you do, the change will only be carried out on the �rst line. You can
insert text rather than change by hitting I, entering your text, and then hitting
ESC. If the text you enter has no newline in it, the same text will be added to
each line; if it has a newline, only the �rst line is changed.

If you hit r then any character in any visual mode, all selected characters
are changed to that character.

Here is a very common use for character or line visual mode. Suppose you
are editing a document and the lines end in very jagged fashion. This sort of
thing will commonly happen when maintaining a web or if you are editing a
LATEXdocument such as this one, where the page that is subjected to repeated
edits. Use visual mode to select the a�ected paragraphs and hit gq (think
Gentleman's Quarterly) and your paragraphs will be tidied up.

You can also do search-and-replace using visual mode to select the text to
be acted upon. Simply select the text in visual mode. Then hit

: s/outText/inText/g

to perform the substitution in the selected text. For example if you select text
in visual mode and change every w to a v, you will see this.

:'<,'>s/w/v/g

The <,'> is a quirky way of indicating you are doing a visual-mode search-
replace operation.

1.10.1 Replace Mode

In vi if you hit r then a character, the character under the cursor is replaced
with the character you it. If you hit R, you are in replace mode, and any test
you type �overruns� existing text. Experiment with this in a �le you don't care
about.

Replace mode is fabulous for making ASCII art such as this.

< Galactophagy >

©2009-2021, John M. Morrison 33

1.11. COPY PASTE FROM A GUI CHAPTER 1. LINUX

\ ^__^
\ (oo)_______

(__)\)\/\
||----w |
|| ||

You should play around with this. Do a Google search to learn about ASCII
art.

1.11 Copy Paste from a GUI

You can copy and paste with the mouse in a window or between windows. The
way you do it varies by OS so we will quickly discuss each. If you are pasting
into a �le you are editing with vi, it is a smart idea to use the colon command
:set paste. This will prevent the �mad spraying� of text. For certain types
of �les, this turns o� automatic indentation or formatting. You can use :set
nopaste to turn o� the paste mode.

Windoze If you are copying from a Windoze application into a terminal win-
dow, select the text you want to copy and use control-C in the usual way. This
places the text in your Windoze system clipboard. Now go into your terminal
window and get into insert mode where you want to paste. It is also wise, in
command mode, to enter :set paste. Right-click to paste the contents of your
system clipboard into the terminal window. Many of you will say, �Why did the
beginning of the text I copied get cut o� or why didn't it appear at all?� This
will occur if you are not in insert mode when you paste. It is important to be
in insert mode before pasting to avoid unpleasant surprises. If this happens, hit
ESC then u in command mode. The u command undoes the last vi command.
Then you can take a fresh run at it.

If you are copying from a terminal window, select the text you wish to copy;
PuTTY will place the text in your system clipboard. Then go into the window
in which you wish to paste it. If the window is another terminal, get into insert
mode and right-click on the mouse. If it's a Windoze app, use control-V as you
usually do.

Mac Use apple-c to copy and apple-v to paste to or from a terminal window,
just as you would with any other mac app. Mac gets this right.

Linux If you use a Linux box, use control-shift-C for copying in terminal
windows and control-shift-V for pasting to terminal windows.

©2009-2021, John M. Morrison 34

CHAPTER 1. LINUX 1.11. COPY PASTE FROM A GUI

A Reprise: A Warning About autoindent and paste Before pasting
with the mouse make sure you have autoindent turned o�. Otherwise, your text
will �go mad and spray everywhere,� especially if you are copying a large block
of text with indents in it. You can turn autoindent on with :set autoindent
and o� with :set noautoindent. This feature can be convenient when editing
certain types of �les. You can use the command :set paste to turn o� all
smart indentation; when �nished use :set nopaste to set things back to their
original state.

A Warning abut Line Numbers If you copy-paste to a GUI, line numbers
will get copied. To prevent this from happening, use the colon command :set
nonu before copying.

Experiment with these new techniques in some �les. Deliberately make
mistakes and see what happens. Then when you are editing �les, you will know
what to expect and how to recover.

There are a lot of excellent tutorials on vi on the web; avail yourself of these
to learn more. Remember the most important thing: you never stop learning
vi! Here are some useful vi resources on the web.

� The site [3] for is complete, organized and well-written. You can download
the whole shebang in a PDF. Read this in little bits and try a few new
tricks at a time.

� The site [8], vi for Smarties will introduce you to vi with a bit of churlish
sneery attitude. It's pretty cool. And it's sneery like the author of this
august volume.

� The link ftp://ftp.vim.org/pub/vim/doc/book/vimbook-OPL.pdf will
download The Vim book for you. It is a very comprehensive guide, and it
has excellent coverage on the visual mode.

1.11.1 Permissions

Now we will see how you can use permissions to control the visibility of your
�les on the system. You are the owner of your home directory and all directories
and �les it contains. This is your �subtree� of the system's directories belonging
to you. You may grant, revoke or con�gure permissions for all the �les and
directories you own as you wish. UNIX was designed with the fundamental idea
that your data are your property, and you can control what others see of them.

There are three layers of permission: you, your group, and others. You is
letter u, your group is letter g and others is letter o. There are three types of
permission for each of these: read, write and execute. Read means that level can
read the �le, write means that level can execute the �le, and execute means that

©2009-2021, John M. Morrison 35

1.12. THE OCTAL REPRESENTATION CHAPTER 1. LINUX

level can execute the �le. In the example above, the �le bar has the permission
string

-rw-rw-r--

which means the following.

� You can read or write to the �le. You cannot execute.

� Your group can read or write but not execute.

� The world can read this �le but neither write nor execute.

For the user to execute this �le, use the chmod command as follows

unix> chmod u+x bar

The u(ser's, that's you) permission changed to allow the user to execute the �le.

If you do not want the world to see this �le you could enter

unix> chmod o-r bar

and revoke permission for the world to see the �le bar. Since you are the owner
of the �le, you have this right. In general you can do

$ chmod (u or g or o)(+ or -)(r or w or x) fileName

to manage permissions. You can omit the u, g or o and the permission will be
added or deleted for all three categories. In the next subsection, we discuss the
octal representation of the permissions string. This will allow you to change all
three levels of permissions at once quickly and easily.

1.12 The Octal Representation

There is also a numerical representation for permissions. This representation
is a three-digit octal (base 8) number. Each permission has a number value as
follows.

� The permission r has value 4.

� The permission w has value 2.

� The permission x has value 1.

� Lack of any permission has has value 0.

©2009-2021, John M. Morrison 36

CHAPTER 1. LINUX 1.12. THE OCTAL REPRESENTATION

We show how to translate a string in this example.

-rw-r--r--
6 4 4

The only way to get a sum of 6 from 1,2 and 4 is 4 + 2. therefore 6 is read-
write permission. The string translates into three digits 0-7; this �le has 644
permissions. It is a simple exercise to look at all the digits 0-7 and see what
permissions they convey.

We show some more examples of chmod at work. Look at how the permis-
sions change in response to the chmod commands. Suppose we are a directory
containing one �le named empty, which has permission string extt -rw-r�r�, or
644. We begin by revoking the read permission from others.

unix> chmod o-r empty

We now list the �les in the directory

unix> ls -l
total 0
-rwxr----- 1 morrison morrison 0 2008-08-26 10:52 empty
unix> ls
empty

We can now restore the original permissions all at once by using the octal
number representation for our permissions.

chmod 644 empty
unix> ls -l
total 0
-rw-r--r-- 1 morrison morrison 0 2008-08-26 10:52 empty

Notice what happens when we try to use a 9 for a permission string.

unix> chmod 955 empty
chmod: invalid mode: `955'
Try `chmod --help' for more information.

Try typing the chmod �help command at your prompt and it will show you some
useful information about the chmod command. Almost all UNIX commands
have this help feature.

Directories must have executable permissions, or they cannot be entered, and
their contents are invisible. Here we use the -a option on ls. Notice that the

©2009-2021, John M. Morrison 37

1.13. THE MAN CHAPTER 1. LINUX

current working directory and the directory above it have execute permissions
at all levels. Try revoking execute permissions from one of your directories and
attempt to enter it with cd; you will get a Permission Denied nastygram from
the operating system.

unix> ls -al
total 20
drwxr-xr-x 2 morrison faculty 4096 2008-10-17 11:51 .
drwx--x--x 9 morrison faculty 4096 2008-10-16 08:39 ..
-rw-r--r-- 1 morrison faculty 0 2008-10-17 11:51 empty
unix>

Here we shall do this so you can bear witness

unix> mkdir fake
unix> chmod u-x fake
unix> cd fake
bash: cd: fake: Permission denied
unix>

Assigning 600 permissions to a �le is a way to prevent anyone but yourself
from seeing or modifying that �le. It is a quick and useful way of hiding things
from public view. Later, when you create a web page, you can use this command
to hide �les in your website that you do not want to be visible.

1.13 The Man

The command man is your friend. Type man then your favorite UNIX command
to have its inner secrets exposed! For example, at the UNIX prompt, enter

unix> man cat

This brings up the man(ual) page for the command cat. A complete list of
options is furnished. Notice that some of these have the �, or long form.

CAT(1) User Commands CAT(1)

NAME
cat - concatenate files and print on the standard output

SYNOPSIS
cat [OPTION] [FILE]...

©2009-2021, John M. Morrison 38

CHAPTER 1. LINUX 1.13. THE MAN

DESCRIPTION
Concatenate FILE(s), or standard input, to standard output.

-A, --show-all
equivalent to -vET

-b, --number-nonblank
number nonblank output lines

-e equivalent to -vE

-E, --show-ends
display $ at end of each line

-n, --number
number all output lines

-s, --squeeze-blank
never more than one single blank line

-t equivalent to -vT

-T, --show-tabs
display TAB characters as ^I

-u (ignored)

-v, --show-nonprinting
use ^ and M- notation, except for LFD and TAB

--help display this help and exit

--version
output version information and exit

With no FILE, or when FILE is -, read standard input.

EXAMPLES
cat f g

Output f's contents, then standard input,
then g's contents.

cat Copy standard input to standard output.

AUTHOR
Written by Torbjorn Granlund and Richard M. Stallman.

©2009-2021, John M. Morrison 39

1.13. THE MAN CHAPTER 1. LINUX

REPORTING BUGS
Report bugs to <bug-coreutils@gnu.org>.

COPYRIGHT
Copyright Â© 2006
Free Software Foundation, Inc.
This is free software. You may redistribute
copies of it under the terms of the GNU General
Public License <http://www.gnu.org/licenses/gpl.html>.
There is NO WARRANTY, to the extent permitted by law.

SEE ALSO
The full documentation for cat is maintained
as a Texinfo manual. If the info and cat
programs are properly installed at your site,
the command info cat should give you access
to the complete manual.

cat 5.97 August 2006 CAT(1)

You can see here that even humble cat has some options to enhance its
usefulness. Here is cat at work on a �le named trap.py.

unix> cat trap.py
def trap(a, b, n, f):

a = float(a)
b = float(b)
h = (b - a)/n
list = map(lambda x: a + h*x, range(0,n+1))
tot = .5*(f(a) + f(b))
tot += sum(map(f, list[1:n]))
tot *= h

return tot
def f(x):

return x*x
print trap(0,1,10,f)
print trap(1,2,100,f)

Using the -n option causes the output to have line numbers.

cat -n trap.py
1 def trap(a, b, n, f):
2 a = float(a)
3 b = float(b)
4 h = (b - a)/n

©2009-2021, John M. Morrison 40

CHAPTER 1. LINUX 1.14. SCRIPTS

5 list = map(lambda x: a + h*x, range(0,n+1))
6 tot = .5*(f(a) + f(b))
7 tot += sum(map(f, list[1:n]))
8 tot *= h
9 return tot

10 def f(x):
11 return x*x
12 print trap(0,1,10,f)
13 print trap(1,2,100,f)

unix>

View the manual pages on commands such as rm, ls chmod and cp to learn
more about each command. Experiment with the options you see there on some
junky �les you create and do not care about losing.

Exercises

1. Use the man command to learn about the UNIX commands more and less.
You will see here, that in fact, less is more!

2. Use the man command to learn about the UNIX commands head and tail.
Can you create a recipe to get the �rst and last lines of a �le?

3. What does the ls -R command do?

1.14 Lights, Camera, Action! Where's the Script?

Sometimes you will �nd yourself doing certain chores repeatedly. An intelligent
question to ask is, �Can't I just save this list of commands I keep typing over
and over again in a �le?�

Happily, the answer to this is �yes.� It's called writing a shell script. In its
simplest form, a shell script is just a list of UNIX commands in a �le. We will
see how to make one of these and run it. Begin by creating this �le, greet.sh.

#!/bin/bash
echo Hello, $LOGNAME!
echo Here is the calendar for this month:
cal

Type commands you see in this �le into your shell. You will see this.

unix> echo Hello, $LOGNAME!
Hello, morrison!
unix> echo Here is the calendar for this month:

©2009-2021, John M. Morrison 41

1.15. REDIRECTION OF STANDARD OUTPUT AND STANDARD
INPUT CHAPTER 1. LINUX

Here is the calendar for this month:
unix> cal

January 2020
Su Mo Tu We Th Fr Sa

1 2 3 4
5 6 7 8 9 10 11

12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

Now give this �le execute perimssions like so.

unix> chmod +x greet.sh

Now run it (note the slash-dot).

unix> ./greet.sh
Hello, morrison!
Here is the calendar for this month:

January 2020
Su Mo Tu We Th Fr Sa

1 2 3 4
5 6 7 8 9 10 11

12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

We can make this process even better. If you don't have one, create a directory
named bin in your home directory. Then open the dot�le .bash_profile and
add this line to it.

export PATH=$PATH:"/Users/morrison/bin"

Replace the /Users/morrison with the path to your home directory. Put your
shiny new script into this directory. Then you don't need the slash-dot any
more unless you are in the bin directory. This has the bene�t of allowing you
to run the script from anywhere in the �le system.

1.15 Redirection of Standard Output and Stan-

dard Input

UNIX treats everything in your system as a �le; this includes all devices such as
printers, the screen, and the keyboard. Things put to the screen are generally

©2009-2021, John M. Morrison 42

CHAPTER 1. LINUX
1.15. REDIRECTION OF STANDARD OUTPUT AND STANDARD

INPUT

put to one of two �les, stdout, or standard output and stderr, or standard
error. You will see that it is veryeasy to redirect standard output to a another
�le.

The keyboard, by default, is represented by the �le stdin, or standard
input. It is also possible to redirect standard input and take standard input
from a �le.

UNIX �lters, such as cat and more have as their default input stdin and
as output stdout. This section will show you how to redirect these to �les.

Sometimes a UNIX command or a program puts a large quantity of text to
the screen; redirection allows you to capture the results into a �le. You can
open this �le with vi, search it, or edit it. The examples here are based on the
�les animalNoises.txt; make them and follow along.

miao
bleat
moo

and physics.txt

snape
benettron
stephan

First we show how cat puts �les to stdout.

unix> cat animalNoises.txt physics.txt
miao
bleat
moo
snape
benettron
stephan

Now let us capture this critical information into the �le stuff.txt by redi-
recting stdout. We then use cat to display the resulting �le to stdout.

unix> cat animalNoises.txt physics.txt > stuff.txt
unix> cat stuff.txt
miao
bleat
moo
snape
benettron
stephan

©2009-2021, John M. Morrison 43

1.15. REDIRECTION OF STANDARD OUTPUT AND STANDARD
INPUT CHAPTER 1. LINUX

The cat command has a second guise. It accepts a �le name as an argument,
but it will also accept standard input; this is no surprise since stdin is treated
as a �le. At the UNIX command line enter

unix> cat

The cat program is now running and it awaits word from stdin. Enter some
text and then hit the enter key; cat echoes back the text you type in. To �nish,
hit control-d (end-of-�le).

unix> cat
me too
me too
ditto
ditto
unix>

The control-d puts no response to the screen. You can also put a �le to the
screen with

unix> cat < someFile

Here, the �le someFile becomes stdin for the cat command. This phenomenon
is shown in the man page for cat. Under the description of the command it
says, � Concatenate FILE(s), or standard input, to standard output.�

Let us now come back to stdout. Next create a new �le named sheck.txt
with these contents.

roach
stag beetle
tachnid wasp

Were we to invoke the command

unix> cat animalNoises.txt physics.txt > sheck.txt

we would clobber the �le sheck.txt and lose its valuable contents. This may
be our intent; if so very well. If we want to add new information to the end of
the �le we use the >> append operator to append it to the end of the receiving
�le. If we do this

unix> cat animalNoises.txt physics.txt >> sheck.txt

we get the following result if we use the original �le sheck.txt.

©2009-2021, John M. Morrison 44

CHAPTER 1. LINUX 1.16. MORE FILTERS

unix> cat sheck.txt
roach
stag beetle
tachnid wasp
miao
bleat
moo
snape
benettron
stephan

The >> redirection operator will automatically create a �le for you if the �le to
which you are redirecting does not already exist.

1.16 More Filters

It is very common to want to use stdout from one command to be stdin for
another command. This will grant us the ability to chain the actions of the
existing �lters we have cat, more and less with some new �lters to do a wide
variety of tasks To achieve this tie, we use a device called a pipe. Pipes allow
you to chain the action of various UNIX commands. We shall add to our palette
of UNIX commands to give ourselves a larger and more interesting collection of
examples. These commands are extremely useful for manipulating �les of data.

1.16.1 The sort �lter

Bring up the man page for the command sort. This command accepts a �le (or
stdin) and it sorts the lines in the �le.

This begs the question: how does it sort? It sorts alphabetically in a case-
insensitive manner, and it �alphabetizes� non-alphabetical characters by ASCII
value. The sort command several four helpful options.

-b �ignore-leading-blanks ignores leading blanks
-d �dictionary-order pays heed to alphanu-

meric characters and
blanks and ignores
other characters

-f �ignore-cases ignores case
-r �reverse reverses comparisons

Here we put the command to work with stdin; use a control-d on its own
line to get the prettiest format. Here we put the items moose, jaguar, cat

©2009-2021, John M. Morrison 45

1.16. MORE FILTERS CHAPTER 1. LINUX

and katydid each on its own line into stdin. Without comment, a sorted list
is produced.

unix> sort -f
moose
jaguar
cat
katydid (now hit control-d)
cat
jaguar
katydid
moose
unix>

You should try various lists with di�erent options on the sort command to see
how it works for yourself. You can also run sort on a �le and send a sorted
copy of the �le to stdout. Of course, you can redirect this result into a �le
using > or �.

1.16.2 The Filters head, tail, and uniq

The commands head and tail put the top or bottom of a �le to stdout; the
default amount is 10 lines. To show the �rst 5 lines of the �le foo.txt, enter the
following at the UNIX command line.

unix> head -5 foo.txt

You can do exactly the same thing with tail with an entirely predictable
result. The command uniq weeds out consecutive duplicate lines in a �le, leaving
only the �rst copy in place. These three commands have many useful options;
explore them in the man pages.

1.16.3 The grep Filter

This command is incredibly powerful; here we will just scratch the surface of
its protean powers. You can search and �lter �les using grep; it can be used to
search for needles in haystacks. In its most basic form grep will inspect a �le
line-by-line and put all lines to stdout containing a speci�ed string. Here is a
sample session.

unix> grep gry /usr/share/dict/words
angry
hungry
unix>

©2009-2021, John M. Morrison 46

CHAPTER 1. LINUX 1.16. MORE FILTERS

The �le /usr/share/dict/words is a dictionary �le containing a list of words,
one word to a line in (mostly) lower-case characters. Here we are searching the
dictionary for all lines containing the character sequence gry; the result is the
two words angry and hungry. There are options -f and �ignore-case to ignore
the case of alphabetical characters.

1.16.4 Serving up Delicious Data Piping Hot

Pipes allow you to feed stdout from one command into stdin to another with-
out creating any temporary �les yourself. Pipes can be used along with redirec-
tion of stdin and stdout to accomplish a huge array of text-processing chores.

Now let us do a practical example. Suppose we want to print the �rst 5 lines
alphabetically in a �le named sampleFile.txt. We know that sort will sort the
�le asciicographically; we will use the -f option to ignore case. The command
head -5 will print the �rst �ve lines of a �le passed it or the �rst �ve lines of
stdin. So, what we want to do is sort the �le ignoring case, and pass the result
to head -5 to print out the top �ve lines. You join two processes with a pipe; it
is represented by the symbol | , which is found by hitting the shift key and the
key just above the enter key on a standard keyboard. Our command would be

unix> sort -i sampleFile.txt | head -5

The pipe performs two tasks. It redirects the output of sort -f into a tempo-
rary bu�er and then it feeds the contents of the bu�er as standard input to head
-5. The result: the �rst �ve lines in the alphabet in the �le sampleFile.txt
are put to stdout.

Suppose you wanted to save the results in a �le named results.txt. To do
this, redirect stdout as follows

unix> (sort -i sampleFile.txt | head -5) > results.txt

Note the use of defensive parentheses to make our intent explicit. We want the
�ve lines prepared, then stored in the �le results.txt.

Programming Exercises Here are two more �lters, wc and a command echo.
You will use the man pages to determine their action and to use them to solve
the problems below.

1. Tell how to put the text �Cowabunga, Turtle soup!� to stdout.

2. Tell how to get the text �This is written in magic ink� into a text �le
without using a text editor of any kind.

©2009-2021, John M. Morrison 47

1.16. MORE FILTERS CHAPTER 1. LINUX

3. The ls command has an option -R, for �list �les recursively.� This lists
all of the sub-directories and all of their contents within the directory
being listed. Use this command along with grep to �nd a �le containing
a speci�ed string in a �le path.

4. Put a list of names in a �le in lastName, �rstName format. Put them in
any old order and put in duplicates. Use pipes to eliminate duplicates in
this �le and sort the names in alphabetical order.

5. Find the word in the system dictionary occupying line 10000.

6. How do you count all of the words in the system dictionary containing the
letter x?

7. Find all words in the system dictionary occupying lines 50000-50500.

8. Tell how, in one line, to take the result of the previous exercise, place it
in reverse alphabetical order and store in in a �le named myWords.txt.

©2009-2021, John M. Morrison 48

Chapter 2

Python

Beginning with Python

2.0 Running Python

You can visit [1] for installing the entire Python apparatus. This is available for
the MacOSX, Windoze, and Linux platforms. This book will be an introduction
to both plain-vanilla Python and the SciPy stack, which is an important tool
for data visualization and analysis.

You will also want a plain text editor (not a word processor). If you are a
UNIX/Mac user, there is good old vim. Other excellent choices for all platforms
include include SublimeText, Atom, and VSCode. Notepad++ is an excellent
choice for Windoze users. All are free and all do a great job, and can be easily
found with a little Googling.

Throughout this book, we will use the symbol unix> to represent your system
prompt, whether it is a Windoze cmd window or a UNIX terminal window. You
can start Python at the command line like so.

unix> python3
Python 3.7.4 (default, Aug 13 2019, 15:17:50)
[Clang 4.0.1 (tags/RELEASE_401/final)] :: Anaconda, Inc. on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

What you see is the Python prompt. To exit, type control-D or quit(). To
make a program, you can use your favorite text editor (vi, gedit, Atom, Sublime
Text, etc). We will go into this in more detail later.

49

2.1. SCALAR TYPES CHAPTER 2. PYTHON

A useful accompaniment to this chapter is a series [4] of videos by the zany
Net Ninjas. Corey Schaefer's YouTube channel [7] contains a wealth of infor-
mation on Python.

2.1 Scalar Types

We begin by looking at the simplest types Python's type system. We will explore
this via the interactive Python prompt. All of these types are immutible objects.
The most basic type is the integer type, int. Integers have the expected behavior
in the presence of arithmetic operators. We demonstrate the basic operators
here.

You also see how comments are done; everything on a line after a # is a
comment.

>>> 42 + 58 #addition

100
>>> 21-57 #subtraction

-36
>>> 66*5 #multiplication

330
>>> 44/3 #division

14.666666666666666
>>> 44//3 #integer division

14
>>> 365%7 #mod

1
>>> 2**20 #exponentiation

1048576

Integers do not over�ow. This type admits integers of arbitrary precision, sub-
ject to the (gargantuan) limits on memory.

>>> 2**1000
10715086071862673209484250490600018105614048117055336074437503883703510511249361
22493198378815695858127594672917553146825187145285692314043598457757469857480393
45677748242309854210746050623711418779541821530464749835819412673987675591655439
46077062914571196477686542167660429831652624386837205668069376
>>>

Python 2 Note Note that division is integer division in Python 2. In Python
3, division of integers returns a �oating-point number that conforms to the
IEEE754 standard; you can learn about it in [10]. Python 2 automatically

©2009-2021, John M. Morrison 50

CHAPTER 2. PYTHON 2.1. SCALAR TYPES

converts huge integers into a separate type called long. To do integer division
in Python 3, use the // operator.

Programming Exercises

1. Can you compute 210000?

2. There is an in�x binary operator on the integers, �. Can you experiment
with this and �gure out what it does? Hint. Look at the binary expansions
of numbers you operate on. Use the built-in Python function bin to
compute binary expansions for the integers you �ddle with. We show bin
in action here. A 0b pre�x means, �this is a binary number.�

>>> bin(42)
'0b101010'
>>> 0b1110
14

3. Look up bin, hex, and oct in [5] and read about them. Experiment with
them and see their aciton.

4. There is an in�x binary operator on the integers, &. Can you experiment
with this and �gure out what it does? Look at binary expansions for a
clue.

5. There is an in�x binary operator on the integers, |. Can you experiment
with around with this and �gure out what it does?

Since we have seen a �oating point number, let us formally introduce those.
This type is known as float. You will see few surprises.

>>> 2.0 + 3
5.0
>>> 6.02e23 * 100
6.02e+25
>>> 5.3 - 6.1
-0.7999999999999998
>>> 3/666
0.0045045045045045045
>>> 1.0001**10000
2.7181459268249255

Notice that when you add an integer and a �oating point number, that the
integer gets converted into a �oating point number. As we said before, Python's
�oating point numbers are IEEE 754 double-precision 64 bit numbers.

©2009-2021, John M. Morrison 51

2.1. SCALAR TYPES CHAPTER 2. PYTHON

Programming Exercise: Exploring Numbers This is a little puzzler
project in which you do some scienti�c calculations. You are allowed only these
facts. Remember in the metric system, centi- means 1/100, milli- means 1/1000
and kilo- means 1000. Use Python's interactive mode to make this happen.

� 1 in = 2.54 cm (length)

� 1 liter = 33.8 �uid ounces (volume) = 1000 cm3

� 1 mile = 5280 ft (length)

� 1 foot = 12 in (length)

� 1 hour = 60 min (time)

� 1 min = 60 sec (time)

� 1 yr = 365.24 days (time)

� 1 kg = 2.204 lbs

� 1 hr = 60 min, 1 min = 60 s, 1 day = 24 hr(time)

� 1 ton = 2000 lbs

� 1 acre = 1/640 mi2

Now use these facts to answer these questions.

1. Given that light travels at 2.9979e8 (that's 2.9979*108 in scienti�c no-
tation) meters per second, �gure out how fast light moves in miles per
second. Then convert this to miles per hour.

2. Tell the time it take for light to go from the sun to the earth if the mean
distance of the sun to the earth is 93.0 million miles.

3. Use the fact that a liter of water weighs one kilogram and that one gallon
of water weighs 8.33 lbs to determine the number of cubic inches in a
gallon and the number of pounds in a cubic foot of water.

4. Let us assume that humans weigh an average of 140 lbs and that humans
have about the same density as water. If the population of the earth is
7.0 billion humans, estimate the total volume of humanity in cubic miles.
Do you �nd this counterintuitive?

5. An acre-foot of water is enough water to cover one acre one foot deep.
How many gallons of water are in an acre-foot? What does that water
weigh in tons?

Programming Exercises: A peek ahead Note: you will see we are using
the new Python3 style of f-string, instead of the old �%� and format methods.
Eventually % that will be deprecated. If you are going to write new code, use
the newer methods.

©2009-2021, John M. Morrison 52

CHAPTER 2. PYTHON 2.1. SCALAR TYPES

1. Enter these things in an interactive session.

f"{3/7:.1f}"
f"{3/7:.2f}"
f"{3/7:.8f}"

What kind of object is returned? What do you see? What does the
number to the right of the point do? If it's not clear from the examples
shown, try a few more.

2. Enter this in an interactive session.

f"{3/7:.8e}"

Experiment with di�erent numbers. What is nice about this?

3. Now test-drive this.

f"{2:.5f}"

4. What happens if you put an integer in front of the point? What if that
integer is negative? Experiment and determine. You will learn some nifty
stu� about formatting numbers.

The most commonly-used type in any programming languages is the string;
you just got a preview of strings in the exercises above. Strings are used in
Python to hold globs of text. Strings support the in�x binary operator + and
an in�x operator * that takes an integer and a string as arguments.

>>> "Happy " + "Happy"
'Happy Happy'
>>> "*"*50
'**'

The * operator requires an integer and a string and it returns a string that
repeats the string operand the integer number of times. If the integer is 0 or
negative, an empty string is returned.

Python has a boolean type, bool which has two elements True and False.
There are two in�x binary operators on Booleans; they are and and or. If P and
Q are predicates (Boolean-valued expressions), then P and Q is true precisely
when both P and Q are true. The predicate P or Q is true precisely when at
least one of P and Q is true.

There is also a unary pre�x operator not which reverses the truth-value of
its operand. The order of operations in Boolean expressions is not, and, then
the lowest is or. As you would expect, you can use parentheses to override this
order of operations; when in doubt avail yourself of them.

Python has the standard relational operators. They all return a Boolean
value, as you would expect. We show them here in a table.

©2009-2021, John M. Morrison 53

2.1. SCALAR TYPES CHAPTER 2. PYTHON

< less than
> greater than
<= less than or equal to
>= greater than or equal to
== equal to
!= not equal to

For number types they do numerical comparison. For strings, they compare
asciicographically. Python has an additional in�x binary operator, is, which
tests for equality of identity.

All of the scalar types we have seen so far are immutable objects. Once
created they cannot be changed in-place. You might ask, �why this immutabil-
ity?� Immutability allows Python to pool objects, which enables the recycling of
commonly used objects without wasting a lot of time creating and deallocating
them. In fact, when Python runs, it pre-loads small integers into its memory

For evidence of this take note of this little Python session.

>>> hex(id(0))
'0x10b242470'

We see the virtual address where Python is storing zero. Now watch this.

>>> id(1) - id(0)
32

Notice that 1 is stored 32 bits away from zero. Now observe this.

>>> id(256) - id(0)
8192
>>> id(260) - id(0)
3130752

We see that 0-256 are in the little integer pool. Once you get to 257 we surnmise
things get stored elsewhere because of what we see here.

>>> hex(id(256)
...)
'0x10b244470'
>>> hex(id(257))
'0x10b53edf0'

You are encouraged to do a little spelunking and see where the negative integers
go.

©2009-2021, John M. Morrison 54

CHAPTER 2. PYTHON 2.2. VARIABLES AND ASSIGNMENT

Programming and Writing Exercise: PEMDAS for George George
Boole was a pioneer of modern logic, as well as a versatile mathematician who
studied di�erential equations. He is the source of the name boolean you see
that refers to a calculus of true/false values.

You are to perform experimments in the interactive shell to make an airtight
case for your deteerminiation of the order of operations and, or and not.

Documentation Go to this URL, https://docs.python.org/3/library/
stdtypes.html" for a repository of information on Python's built-in types.
You will see the number and boolean types near the begging. Further down the
page is a section entitled, �Text Sequence Type � str.� You can explore the
string type there.

This URL, https://docs.python.org/3/library/functions.html has all
of the Python built-in functions. You should poke around in here and look up
the functions we have seen so far.

2.2 Variables and Assignment

You have programmed in some other language, and if you did, you might have
seen that variables have a type. This is true in Java, C, and C++. This is not
true in Python. Variables are typeless names that allow you to refer to objects.

Do not make the mistake of thinking Python is �weakly typed.� Objects are
keenly aware of their types. Bear witness to this little session. Every Python
object knows its type. Python is duck typed ; you can read about duck typing
in [9].

>>> type(1)
<class 'int'>
>>> type(1.0)
<class 'float'>
>>> type("caterwaul")

©2009-2021, John M. Morrison 55

https://docs.python.org/3/library/stdtypes.html"
https://docs.python.org/3/library/stdtypes.html"
https://docs.python.org/3/library/functions.html

2.2. VARIABLES AND ASSIGNMENT CHAPTER 2. PYTHON

<class 'str'>
>>> type(True)
<class 'bool'>

Objects do not have an identity crisis either. Every object in a Python
program has a unique ID during its lifetime. We will use Python's built-in hex
function to see these as hex numbers. These values will vary for your session.
What you see is the memory address of your object in Python's virtual machine.

>>> hex(id(1))
'0x100214870'
>>> hex(id(2))
'0x100214890'
>>> hex(id(1))
'0x100214870'
>>> hex(id(1.0))
'0x10036f180'
>>> hex(id("caterwaul"))
'0x1019a4bf0'
>>> hex(id(True))
'0x1001b76b0'

The rule for Python variable naming is that the �rst character must be
alphabetical or an underscore. Remaining characters can be alphanumeric or
underscores. The operator = is used to bind variable to objects. It works in a
manner entirely similar to other languages. Here we show it at work.

>>> x = 5
>>> y = 6
>>> x*y == 30
True

The value x is not storing the value 5. What it is storing is the location in
memory (memory address) where the value 5 is being kept. You can see that
what x is actually storing is the id of 5. In a word: Python variables know where
to �nd their objects. In all cases, variables refer indirectly to their objects. What
they actually store is a integer indicating where that object is being stored in
memory. Bear this in mind as we proceed; it will save you a lot of confusion.

>>> hex(id(x))
'0x1002148f0'
>>> hex(id(5))
'0x1002148f0'

What happened on the last line, x*y == 30? Here, the expression was

©2009-2021, John M. Morrison 56

CHAPTER 2. PYTHON 2.2. VARIABLES AND ASSIGNMENT

evaluated by fetching the values of x and y, substituting them into the expression
and �nding that 5 ∗ 6 indeed equals 30.

2.2.1 The Lowdown on Assignment

The familiar arithmetic operations and the Boolean operations all associate from
left to right. To wit, when you evaluate expressions, you work from left to right.
Here we see this in action with multiplication and division.

4 ∗ 5/2 ∗ 8 = 20/2 ∗ 8 = 10 ∗ 8 = 80.

Now see it in a complex operation. Consider this expression.

43 − 2 ∗ 7 ∗ 5/35 + 4 ∗ 18

We begin by doing all exponentiation.

43 − 2 ∗ 7 ∗ 5/35 + 4 ∗ 18 = 64− 2 ∗ 7 ∗ 5 + 4 ∗ 18

We then munch up the multiplication and division in each term from left to
right.

64− 2 ∗ 7 ∗ 5 + 4 ∗ 18 = 64− 14 ∗ 5 + 72 = 64− 70 + 72

Lastly we resolve addition and subtraction.

64− 14 ∗ 5 + 72 = 64− 70 + 72 = −6 + 72 = 66.

Notice how we work in each case from left to right.

Assignment works backwards. It begins on the right and works left. It also
has lower precedence than any other arithmetic operation, so it happens last.

Here is a very typical assignment you might see.

>>> x = 5
>>> x = 2*x + 10
>>> x
20

Let us look at this in detail. Python �rst sees the variable x being bound to the
value 5. Now we turn our attention to the second line. We begin with

x = 2*x + 10.

Multiplication is �rst carried out. The term 2*x evaluate to 10 and we have

x = 10 + 10.

©2009-2021, John M. Morrison 57

2.3. POOLING CHAPTER 2. PYTHON

Now addition occurs.

x = 20

Now, x is bound to the value 20. What happened to its prior value 5? This
value got orphaned. To change the value of any variable pointing at any of scalar
types we have seen so far, we have we get it to point at an entirely di�erent
object. We never modify the object sitting in memory. All of the scalar types
are immutable; once created in memory they never change. In particular, the
objects True and False are unique in memory.

Things that can appear on the left-hand side of an assignment are called
lvalues. Variables are always lvalues; we will meet a few other things as we go
along that are also lvalues. Literals, or actual objects, are not. You cannot
assign to numbers, Booleans, or strings.

Python o�ers a lagniappe that is a twist on assignment. Look at this.

>>> a = 5
>>> b = 4
>>> a,b = b,a
>>> a
4
>>> b
5

Just a spoonful of syntactic sugar helps the medicine go down.

Programming Exercises

1. Do this and see how Python hisses.

5 = x

2. What happens here?

>>> a = 1
>>> b = 2
>>> c = 3
>>> a,b,c = b,c,a

3. What happens when you do this?

>>> a, b, c = c

2.3 Pooling

Python is a garbage-collected language. A mechanism called the garbage col-
lector lurks behind the scene, deallocating the memory for objects no longer in

©2009-2021, John M. Morrison 58

CHAPTER 2. PYTHON 2.4. WRITING A PROGRAM

use.

Some objects don't get picked up by the garbage collectors; these exceptions
are pooled objects. Python caches small integers in memory; when they reap-
pear because a variable needs to point at them, the variable just points at the
pooled value. Python also caches small strings in memory in an area called the
string pool. Pooling of these immutable objects increases e�ciency; equality of
pooled strings is achieved by comparing memory addresses, obviating the need
to loop through the strings.

Now, it's time to break out the is operator and see it at work.

>>> x = 5
>>> y = 5
>>> x is y
True
>>> name = "flibbertygibbet"
>>> elisa = "flibbertygibbet"
>>> name is elisa
True

The variables x and y are sharing the common item 5 in memory. The same is
true for the two strings pointing at "flibbertygibbet". Note that only two
Boolean values are ever stored in memory, True and False.

>>> True is True
True
>>> False is (6*4 == 5*50)
True

Programming Exercises: Time for a dip!

1. Run this code.

for k in range(200,300):
print(k, hex(id(k)))

What can you discern about the pooling of small integers?

2. Can you �nd anything out about negative integers by replaying this theme?

2.4 Writing a Program

A Python program is just a sequence of Python statements in a �le. We will use
the creation of this example as an opportunity to introduce the built-in function
print, which puts things to stdout. Enter this with your favorite text editor
into a �le named print_example.py.

©2009-2021, John M. Morrison 59

2.5. OBJECTS CHAPTER 2. PYTHON

print("Hello, World")
print(1,2,3,4, sep="|")
print(1,2,3,4, sep = " ", end = "peep")

Now open a cmd or terminal window and navigate to the directory containing
your program. Run this program at the command line as follows. The items
sep and end are referred to as keyword arguments.

unix> python print_example.py
Hello, World
1|2|3|4
1 2 3 4peep
unix>

A Note to UNIX (Yes, Mac too... Users) When you make your program,
place this line at the top

#!/usr/bin env python3

and use chmod to make the program executable If you do this to our litle sample
program, you can do this. Notice what the keyword arguments sep and end do.

unix> ./print_example.py
Hello, World
1|2|3|4
1 2 3 4peep
unix>

Programming Exercises

1. You can get textual input from the user with the input function. It works
like this.

some_variable = input("Your prompt: ")

Write a program that asks for a name and which replies with Hello,
<Name>.

2. Write a program that asks for two numbers and which presents the user
with their product. Note that input returns a string.

2.5 Objects

The term object simply refers to a datum stored in memory along with its
associated code. There are three important properties of an object

©2009-2021, John M. Morrison 60

CHAPTER 2. PYTHON 2.5. OBJECTS

� State This refers to things an object knows.

� Identity This refers to an object's physical presence in memory. It is not
possible for two di�erent objects to occupy the same space in memory.
This is what an object is.

� Behavior This refers to what an object does.

Let us look at the scalar types we have seen through this lens. Integers
exhibit expected behavior when in the presence of arithmetic and relational
operators. They know the value that they store. The same is true of �oating-
point numbers.

Strings are more complex. Their state is simple; this is just the blob of text
being stored in the string.

Strings have a wide variety of behaviors. Let us look at a few. We can index
into a string; most languages you have seen have this feature.

>>> x[0]
'a'
>>> x[1]
'b'
>>> x[2]
'c'
>>> x[25]
'z'

Notice that the indexing is zero-based. The best way to think about these
indices is that they live, like rats, �inside of the walls." We say thes because
they reside between then entries of the string.

---------------------------------- -----------
| | | | | |
| a | b | c | . . . | z |
0 1 2 4 | |
--------------------------------- 25----------26

As you can see in the picture, there is an index 26 in this string; it is just
at the far right-hand end. Each index points at the character just to its right.
There is no character for index 26 to point at. Try and see it; Python will hiss
at you.

Let us illustrate another behavior, find.

>>> x.find("c")
2
>>> x.find("fgh")

©2009-2021, John M. Morrison 61

2.5. OBJECTS CHAPTER 2. PYTHON

5
>>> x.find("cow")
-1

When find does not �nd, it punts and returns a -1. This is often referred to
as a sentinel value. Notice how find needs to be told what to �nd.

2.5.1 How do I �nd all of the string behaviors?

Visit the URL https://docs.python.org/3/library/stdtypes.html for in-
formation on all of Python's built-in types. Then �nd the section on the �Text
Sequence Type.� Here is what you will �nd at the top.

String literals are written in a variety of ways:

1. Single quotes: 'allows embedded "double" quotes'

2. Double quotes: "allows embedded 'single' quotes".

3. Triple quoted: '''Three single quotes''', """Three double quotes"""

Triple quoted strings may span multiple lines, and all associated whitespace
will be included in the string literal. You can use single or double quotes to
bound a triple-quoted string.

Now scroll down the page a short bit to the section entitled �String Methods.�
The capitalize() method is very simple. We show its action. It creates a new
string that is capitalized. The original string is untouched.

>>> president = "lincoln"
>>> president.capitalize()
'Lincoln'

Let us look at how to read the documentation for center().

str.center(width[, fillchar])

Return centered in a string of length width. Padding is done using the speci�ed
�llchar (default is an ASCII space). The original string is returned if width is
less than or equal to len(s).

This method has two arguments. The �rst one, width, is required. The
second, fillchar, is optional; this is indicated by the presence of the square
brackets surrounding it. Let us show this at work.

>>> x = "Cows With Guns"
>>> x.center(10) #too little space: same string comes back

©2009-2021, John M. Morrison 62

https://docs.python.org/3/library/stdtypes.html

CHAPTER 2. PYTHON 2.5. OBJECTS

'Cows With Guns'
>>> x.center(50) #default padding is spaces

' Cows With Guns '

>>> x.center(50, "*") #padding with stars

'******************Cows With Guns******************'
>>> x.center() #error: width is required.

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: center() takes at least 1 argument (0 given)
>>>

We should mention that Python has many useful built-in functions. Here
are three you want to know about.

Function Input Output
len a string the string's length
ord a one-character string the char's ASCII code
chr an integer the char with the given

ASCII code

Programming Exercises Experiment with these useful string methods. Fig-
ure out what they do.

1. rfind

2. endswith

3. startswith

4. lower

5. upper

6. strip, lstrip and rstrip

2.5.2 Compound Assignment Operators

Many languages have this feature.

>>> x = 5
>>> x += 3
>>> x
8

Here x += 3 is shorthand for x = x + 3. If you have an in�x binary operator
op, then x op= foo is the same as x = x op foo. The compound assignment
operator works from right to left. Its precedence, like that of = is lower than
almost everything else.

©2009-2021, John M. Morrison 63

2.6. SEQUENCE TYPES CHAPTER 2. PYTHON

Notice this little session with strings.

>>> x = "some"
>>> id(x)
4323956024
>>> x += "thing"
>>> x
'something'
>>> id(x)
4323954160

The variable x is a pointing at a new string, because strings cannot be changed
in-place. You can see this because the id of the object pointed at by x changed.

2.6 Sequence Types

So far, we have concerned ourselves with scalar types that hold a single datum.
Now we will look at two new types, lists and tuples. These types have some
common features with strings, because a string can be thought of as a character
sequence, as well as a glob of text.

Sequences in Python store sequences of memory addresses where the objects
comprising them can be found. The objects themselves are not stored in these
containers.

Let us �rst look at lists. We make a list, show its type, and index into it.
Notice that the indexing mechanism looks identical to that of strings.

>>> x = [1,2,3,4,5]
>>> type(x)
<class 'list'>
>>> x[0]
1
>>> x[1]
2
>>> x[4]
5
>>> x[5]
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
IndexError: list index out of range
>>>

What is di�erent is that lists are mutable. Watch this.

©2009-2021, John M. Morrison 64

CHAPTER 2. PYTHON 2.6. SEQUENCE TYPES

>>> id(x)
4323859272
>>> x[0] = 100
>>> id(x)
4323859272
>>> x
[100, 2, 3, 4, 5]
>>>

We changed this list in-place. It is the same object, but its state has been
changed by the assignment x[0] = 100. Each entry in the list is an lvalue.

Python tuples are similar to lists, but they are immutable. Once you make
a tuple, you cannot change it in-place. Let us imitate the list session. All of
this looks the same.

>>> x = (1,2,3,4,5)
>>> x
(1, 2, 3, 4, 5)
>>> x[0]
1
>>> x[1]
2
>>> x[4]
5
>>> x[5]
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
IndexError: tuple index out of range
>>> type(x)
<class 'tuple'>
>>>

Now watch this.

>>> x[0] = 100
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment

Oops. You cannot change a tuple in-place. Tuple entries are not lvalues.

Both tuples and lists are heterogeneous. You can put objects of any types
into them.

>>> motley = [True, "foo", 2, 2.0, ["cat", False, -1]]
>>> motley[4]

©2009-2021, John M. Morrison 65

2.6. SEQUENCE TYPES CHAPTER 2. PYTHON

['cat', False, -1]
>>> motley[4][1]
False
>>>

You can do all of this stu� with a tuple, since you are only reading from it. Try
it now!

The + operator works just as you might expect for tuples and lists.

>>> [1,2,3] + [4,5,6]
[1, 2, 3, 4, 5, 6]
>>> (1,2,3) + (4,5,6)
(1, 2, 3, 4, 5, 6)

The built-in len function will calculate the length of any sequence. For
tuples and lists, this is the number of items present in the tuple or list. For
strings, this is the number of characters in the string.

Here are common features for all sequences.

Operation List/Tuple String
x in s True if x equals a member

of s
True if x is a substring of
s

s + t concatenates s and t
s*n or n*s repeats s n times
len(s) number of objects in s number of characters is s
min(s) smallest object in s character in s with small-

est ASCII value
max(s) largest object in s character in s with largest

ASCII value
s.count(x) counts the number of

times x is equal to an el-
ement of s

counts the number of
times the sting x appears
in s

When we refer to the �largest� item in a sequence, we need to do this operation
on a list where it makes sense to compare the items. It is best to use this on
sequences that are homogeneous, i.e., where all elements are of the same type.

2.6.1 Slicing of Sequences

Slicing is convenient way of obtaining a subset of a sequence. For strings and
tuples, a slice returns a copied subset of the sequence. First we see slicing at an
index for a list and a string. Notice that the slice goes all the way to the end.

©2009-2021, John M. Morrison 66

CHAPTER 2. PYTHON 2.6. SEQUENCE TYPES

>>> min(x)
'a'
>>> x = "abcdefg"
>>> x[:2]
'ab'
>>> x[2:]
'cdefg'
>>> foo = ["a", "bc", "defg", "hijk"]
>>> foo[2:]
['defg', 'hijk']
>>> foo[:2]
['a', 'bc']

You can specify both ends of a slice.

>>> foo[1:3]
['bc', 'defg']
>>> x[1:3]
'bc'

You can also specify a third �skip� parameter.

>>> alpha = "abcdefghijklmnpqrstuvwxyz"
>>> alpha[::3]
'adgjmqtwz'
>>> alpha[5::3]
'filpsvy'
>>> alpha[5:10:3]
'fi'

In the �rst case, we extracted every third character from the string. In the
second we did so starting at index 5. In the third, we did so between indices
5 and 10. Be reminded: the indices of a sequence lurk between the sequence's
elements.

Programming Exercises

1. How do you �nd the item in a list or tuple of strings that is �rst in
asciicographical order?

2. How do you count the number of elements in a list of integers of even
index that equal 5?

3. How do you count the number of times the letter A appears in a string,
case insensitive?

4. If you have a sequence what does the slice [::-1] return? What happens if
you put indices between the colons?

©2009-2021, John M. Morrison 67

2.6. SEQUENCE TYPES CHAPTER 2. PYTHON

2.6.2 Slicing of Lists

Because lists are mutable, they have additional behavior when slicing occurs.
Observe this.

>>> x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
>>> x[:5] = []
>>> x
[5, 6, 7, 8, 9, 10, 11, 12]

A slice is an lvalue. We can, within bounds, assign to it. If you assign an empty
list to a slice of a list consisting of consecutive elements, the slice is removed
from the list. Beware of this.

>>> x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
>>> x[::2] = []
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: attempt to assign sequence of size 0
to extended slice of size 7

There are limits. Here the slice you tried to assign to had non-consecutive
elements. You can, however assign this slice to a list of equal length like so.

>>> x[::2] = [0, 10, 20, 30, 40, 50, 60]
>>> x
[0, 1, 10, 3, 20, 5, 30, 7, 40, 9, 50, 11, 60]

It is interesting to compare the action of += on lists, strings and tuples.
Compare these three sessions.

>>> x = [1,2,3,4,5]
>>> id(x)
4323953160
>>> x += [6,7, 8]
>>> x
[1, 2, 3, 4, 5, 6, 7, 8]
>>> id(x)
4323953160

Here we just modi�ed an object in-place

>>> id(x)
4298553304
>>> x += (6,7,8)

©2009-2021, John M. Morrison 68

CHAPTER 2. PYTHON 2.7. CASTING ABOUT

>>> x
(1, 2, 3, 4, 5, 6, 7, 8)
>>> id(x)
4323935288

Here a new object got created because tuples are not mutable.

>>> x = "12345"
>>> id(x)
4323956024
>>> x += "678"
>>> x
'12345678'
>>> id(x)
4323953840

The same thing happened to the string and the tuple. New objects got created
by +=.

2.7 Casting About

A cast is a temporary request to view an object of one type as being that of
another. We show some examples here. Any Python object may be cast to a
string.

>>> int("12345")
12345
>>> float("12345")
12345.0
>>> str(12345)
'12345'
>>> int("12345", 2)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 2: '12345'
>>> int("10101110", 2)
174
>>> int("22123312", 4)
42742

Observe that you can pass a radix to cast a string to a number in that base.
Lists can be cast to tuples and vice versa in the obvious way. You can also cast
a string to a list.

©2009-2021, John M. Morrison 69

2.8. LIST BEHAVIORS CHAPTER 2. PYTHON

>>> t = (1, 2, 3, 4)
>>> list(t)
[1, 2, 3, 4]
>>> l = [1,2,3,4]
>>> tuple(l)
(1, 2, 3, 4)
>>> list("caterwaul")
['c', 'a', 't', 'e', 'r', 'w', 'a', 'u', 'l']

Programming Exercises

1. Cast all of the types we have seen so far to a string and see what happens.

2. Strings have a method called join that takes a list or tuple as an input.
If you cast a string to a list, how can you use join to undo the action?

2.8 List Behaviors

Because they are mutable, lists exhibit some behaviors not available to tuples
and strings. We have noted already that they behave di�erently when slices are
taken. Here is a table of some of the most important operations and methods.

Operation Action
s[x] = y reassigns the value held by s at index x

to y. List entries are lvalues.
s[m:n] = [], del s[m:n] deletes all values between the indices m

and n provided m < n.
del s[a:b:c] deletes all elements of the indicated

slice
s.append(x) appends item x to the list s
s.extend(t), s += t appends items in the sequence t to the

list s
s.clear() empties the list s
s.insert(i, t), s[i:i]=t splice in the sequence t into the list s
s.reverse() reverses the list in place.

2.9 Hashed Types

Python has two unordered types, dictionary (dict) and (set). A set is a con-
tainer that does not admit duplicate entries, as de�ned by ==. A dictionary is
a container holding key-value pairs. These are made very e�cient via a means
called hashing. We will begin by describing this very clever mechanism. It
makes access to items in sets and dictionaries fast and e�cient.

©2009-2021, John M. Morrison 70

CHAPTER 2. PYTHON 2.9. HASHED TYPES

2.9.1 What hashing? Why do it?

A hash function is a mathematical function whose domain is some collection of
Python objects (e.g. strings) and whose codomain is the integers. Here we show
the hashing function at work on strings.

>>> hash("a")
-8506767599803020586
>>> hash("b")
-7609782221146829849
>>> hash("c")
-5419851217699219052
>>> hash("ab")
-2244008983755709986

Here it is on integers. �Small" integers hash as themselves; once they get to
a certain outrageous size, a truncation process occurs.

>>> hash(0)
0
>>> hash(1)
1
>>> hash(1024)
1024
>>> hash(1024576)
1024576
>>> hash(331214214214241)
331214214214241
>>> hash(413908140942980249081902)
97417085330101598
>>>

A perfect hash function will give di�erent values to di�erent objects. Hash
functions depend on the state of the object they are hashing. Because mutable
objects can have their state changed, this hashing process is not possible for
them. Were a mutable object hashable, its hash would change whenever its
state did. And, for the purposes we are about to describe here, that is very bad
news.

One way we could implement a set us just to use a list and to reject the
addition of duplicate elements. This causes ine�ciency. Searching a list for an
item is an O(n) process, because the amount of resources it takes is at worst
proportional to n, the size of the list.. As the set got big, adding new elements
would become burdensome.

So what do we do? The hash function provides the key. First, we reserve a
big chunk of memory, say of size M . When we add an element we hash it, mod

©2009-2021, John M. Morrison 71

2.10. SETS CHAPTER 2. PYTHON

out byM and get an nonnegative integer less thanM . We then store that object
at that index in the chunk of memory (I lied... we store its memory address
so we have access to it). So, to check for the presence of that object, we hash
it and know precisely where it is stored. Hey, this is an O(1) (constant-time)
procedure.

The Nasty Hairy Fly in the Sweet Ointment Even if you have a perfect
hash function (in practice never), this process of modding by M can cause a
new item to be placed into an occupied slot. Beezlebub! Defeat!

Nah, what we do is store a little list of objects; we can go to that location
and check that list. This kind of thing happens if the chunk of memory gets too
crowded.

At some level of crowding, the whole thing will be put in a new, bigger,
chunk of memory and everything will be rehashed to relieve the crowding.

Both sets and dictionaries achieve quick access of elements in this manner.
Next, we will learn about sets mathematically and learn how they are imple-
mented in Python.

2.10 Sets

Informally, in mathematics, a set is a collection of objects with along with a
notion of belonging. In computer science, we are concerned with �nite collections
of objects, so some of the hairier aspects of axiomatic set theory will not come
our way. However, we will have a brief discussion of some basic ideas of set
theory and we will see how they are implemented in Python.

No meaningful discussion is possible in the absence of context. So, when we
discuss sets, we will discuss them withing a universe of discourse which we will
generally denote by Ω. Such a thing is often in�nite. Example: the set of all
ASCII characters strings. Or, perhaps the set of all integers. When we discuss
sets, we will always have some universe of discourse in mind.

Inside of our universe of discourse, we can de�ne sets two ways. One is by
making an explicit list of elements. For example if Ω = Z, the set of all integers,

A = {1, 6,−5, 4, 3}

is a legitimate way to de�ne a set. For belonging, we use the symbol ∈. So,
here 6 ∈ A. To negate belonging, we use /∈; for example 100 /∈ A.

A set in our universe is well-de�ned if we can tell if any given element in the
universe is or is not in the set. This leaves us another way to de�ne a set, by
using a predicate. For example let

E = {x ∈ Ω|x%2 = 0}

©2009-2021, John M. Morrison 72

CHAPTER 2. PYTHON 2.10. SETS

is the set of even numbers. Note we are using mathematical notation here; the
Python form of this predicate is x % 2 == 0.

If A and B are sets in a universe Ω, we will write A ⊆ B to mean that every
element of A belongs to B. We de�ne A = B to mean A ⊆ B and B ⊆ A. In
other words, sets are equal if they contain exactly the same elements. We write
A ⊂ B to indicate that A ⊆ B, but that B has some element not in A and we
say that A is a proper subset of B.

One implication of this de�nition is that the order in which elements of a set
are presented is immaterial, and if you list an element twice, it is no di�erent
from having the element in once.

Now it's time for some nitty-gritty with Python. Let's put some animals on
our farm in a list. We will then cast the list to a set.

>>> farm = ["sheep", "sheep", "cow", "horse",
"pig", "goose", "pig", "cow"]

>>> animals = set(farm)
>>> animals
{'pig', 'horse', 'goose', 'sheep', 'cow'}

Notice that all duplicates got removed.

Take note that only hashable elements can be placed in a set. In this book,
we will only put immutable objects in a set; these are always hashable. This
restriction makes access to items in a set very fast, as we described at the
beginning of this section.

Bear witness to this punishment dished out by an irate python when we try
to hash the unhashable.

>>> hash("cow")
7419535498109472991
>>> hash([1,2,3])
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'

Also, notice that items in a set seem to be presented in no seemingly discernible
order.

Now let us see how Python implments these concepts. We begin with ∈.

>>> "horse" in animals
True
>>> "rhino" in animals
False

©2009-2021, John M. Morrison 73

2.10. SETS CHAPTER 2. PYTHON

We see that x ∈ A if x in A is True, and x /∈ A otherwise.

Python also implements /∈. If x not in A is true, then x 6∈ A.

Now let's go for ⊆.

>>> sample = {"goose", "cow"}
>>> animals.issubset(sample)
False
>>> sample.issubset(animals)
True

You can also do this; its a nice mnenomonic.

>>> animals <= sample
False
>>> sample <= animals
True

The relational operator <= is the subset relation on sets. It has a strict version
to indicate the �is a proper subset of� relation ⊂.

>>> sample < animals
True
>>> animals < animals
False
>>>

Now we will see how boolean operations can be used in set-world. If A and
B are sets in a universe Ω, we de�ne the complement of A by

Ac = {x ∈ Ω|x /∈ A}.

The union of A and B is de�ned by

A ∪B = {x ∈ Ω|x ∈ A ∨ x ∈ B}.

Note that math uses ∨ for the in�x binary or operator, and ∧ for the in�x and
operator. It is easy to see that A ∪ B = B ∪ A, since this set is everything
belonging to at least one of A or B.

We de�ne the intersection of A and B by

A ∩B = {x ∈ Ω|x ∈ A ∧ x ∈ B}.

To say it quickly, A ∩ B contains exactly all elements common to A and B.
Think: street intersection, that which belongs to both streets.

Let us now see what Python has for union and intersection. There is no
surprise here.

©2009-2021, John M. Morrison 74

CHAPTER 2. PYTHON 2.10. SETS

>>> zoo = {"rhino", "zebra", "sheep", "horse", "elephant"}
>>> zoo.intersection(animals)
{'sheep', 'horse'}
>>> zoo.union(animals)
{'horse', 'elephant', 'pig', 'zebra', 'goose', 'rhino',

'sheep', 'cow'}
>>> zoo | animals
{'horse', 'sheep', 'rhino', 'pig', 'elephant', 'goose', 'cow', 'zebra'}
>>> zoo & animals
{'horse', 'sheep'}

There are two other set-theoretic operations that come in handy when han-
dling data. There is the relative complement de�ned by

A−B = A ∩Bc = {x ∈ Ω|x /∈ B}.

This is the set of all things present in A not present in B. And there is the
symmetric di�erence

A4B = (A−B) ∪ (B −A),

which consists of all elements belong to exactly one of A or B. Note the

A4B = {x ∈ Ω|x ∈ A⊕ x ∈ B},

where ⊕ is the in�x exclusive or operator. Python handles this with aplomb.

>>> animals.symmetric_difference(zoo)
{'elephant', 'pig', 'zebra', 'goose', 'rhino', 'cow'}
>>> animals.difference(zoo)
{'cow', 'goose', 'pig'}
>>> zoo.difference(animals)
{'zebra', 'rhino', 'elephant'}
>>> animals ^ zoo
{'goose', 'rhino', 'elephant', 'pig', 'cow', 'zebra'}
>>> animals - zoo
{'goose', 'pig', 'cow'}

A set is a mutable object. It supports the len function, which will tell you how
many elements it has.

Here is how to add new elements to a set.

>>> new_set=set()
>>> ne_set.add(1)
>>> ne_set.add(False)

©2009-2021, John M. Morrison 75

2.11. DICTIONARIES CHAPTER 2. PYTHON

>>> ne_set.add("cows")
>>> ne_set
{False, 1, 'cows'}

Now let's add a duplicate.

>>> ne_set.add("cows")
>>> ne_set
{False, 1, 'cows'}

The addition of the duplicate is ignored. To get rid of an element, use discard

>>> new_set.discard("cows")
>>> new_set
{False, 1}

Here is how to chuck everything.

>>> new_set.clear()
>>> new_set
set()

Programming Exercises

1. What does is_disjoint() do?

2. What does pop do? What is maddening about it?

3. Spelunking exercise: What types can you cast a set to? What types can
you cast as a set? What happens in each case?

4. What happens if you try to index into a set?

2.11 Dictionaries

Imagine that you might want to have a list indexed by something other than
numbers. For this purpose, Python features a second hashed data structure, the
dictionary. Hashing, as we discussed before, gives rapid access to dictionary
entries. Here we create a dictionary that stores telephone extensions. First we
show how to create an empty dictionary.

>>> phone = {}

Now we show how to pre�populate a dictionary with a couple of entries.

©2009-2021, John M. Morrison 76

CHAPTER 2. PYTHON 2.11. DICTIONARIES

>>> phone = {"morrison":2746, "yeh": 2725}
>>> phone["morrison"]
2746

Each dictionary entry consists of two parts. The �rst part is called the key and
the second part is called the value. For any key k, its corresponding value is
phone[k]. Shortly, we shall see that the value phone[k] is an lvalue. Because
dictionary entries are retrieved via their keys, the keys of the dictionary must
be hashable objects.

Notice the action of the in operator in a dictionary; this checks for mem-
bership in the keys.

>>> "morrison" in phone
True
>>> "sarocco" in phone
False

We can also check for the presence of a value.

>>> 2746 in phone.values()
True
>>> 2020 in phone.values()
False
>>>

It is very easy to add a new entry. Just associate a value with a key not present
in the dictionary.

>>> phone["sarocco"] = 2722
>>> phone
{'yeh': 2725, 'sarocco': 2722, 'morrison': 2746}
>>> phone["miller"] = 2741
>>> phone
{'miller': 2741, 'yeh': 2725, 'sarocco': 2722, 'morrison': 2746}

You can get all of the key values in a list by using the keys() method. You can
do a similar thing for getting all of the values in the dictionary.

>>> phone.keys()
dict.keys('miller', 'yeh', 'sarocco', 'morrison')
>>> phone.values()
dict.values([2741, 2725, 2722, 2746])
>>>

Finally you can change the value for any key as follows.

©2009-2021, John M. Morrison 77

2.12. TERMINOLOGY ROUNDUP CHAPTER 2. PYTHON

>>> len(phone)
3

So if you make an assignment phone[foo] = blah, the dictionary checks itself
for the presence of foo; if foo is present, the value attached to it is changed to
blah. If not, then the value foo is added to the keys and blah is assigned as
its value.

Also, dictionaries know their size; just use len.

>>> phone["miller"] = 3714
>>> phone

2.12 Terminology Roundup

� cast This is a temporary request to regard an object to be regarded as
another type

� complementA is a set, then the complement of A is the set of all elements
in the universe of discourse not belonging to A.

� disjoint Two sets are disjoint if the have no elements in common.

� garbage-collected language these languages manage memory for you.
Unused objects are automatically deallocated by a background process
called the garbage collector

� f-string This is a format string. It is preceded by an f and can contain
expressions that are surrouned by curly braces. These expressions are
evaluated, converted into strings, and placed in evaluation of the f-string.

� hash function This is a function whose domain is a set of Python objects
and whose codomain is the integers. A hash function is perfect if di�erent
objects always return di�erent values.

� intersection The intersection of two sets is the set of all elemenets be-
longing to both of the sets.

� keyword arguments These are named arguments which are optional and
which go at the end of a function's argument list.

� lvalue This is a symbol representing addressable memory. Variables, list
items, and list slices are all lvalues. The term object simply refers to a da-
tum stored in memory along with its associated code. Objects have three
attributes, state (what an object knows), identity (an object's presence in
memory), and behavior (what an object does).

� proper subset We say that A is a proper subset of B if every element of
A belongs to B as well, and B contains at least one element not belonging
to A.

©2009-2021, John M. Morrison 78

CHAPTER 2. PYTHON 2.12. TERMINOLOGY ROUNDUP

� relative complement This is the set of all elements lying in one set but
not another.

� string This refers to a contiguous piece of a sequence type. You can use
the post�x [:::] operator to obtain a slice of a sequence

� string pool This is an area of memory in which small strings are kept
and which is not garbage collected.

� sentinel value This is a return value for function that tells you something
has gone wrong.

� string This is a character sequence.

� subset We say that A is a subset of B if every element of A belongs to B
as well.

� symmetric di�erence The symmetric di�erence of two sets is the set of
all element beloning to exactly one of the two sets.

� type This refers to the species of an object. Examples include integer,
string, and boolean. The union The union of two sets is the set of all
elements belonging to at least one of the sets.

� universe of discourse In set theory, this is the contextual bounds of the
discussion; to wit, it is the set of all objects we speak of.

©2009-2021, John M. Morrison 79

2.12. TERMINOLOGY ROUNDUP CHAPTER 2. PYTHON

©2009-2021, John M. Morrison 80

Chapter 3

Boss Statements

Python Boss Statements

3.0 Introduction

Here is what we have at our disposal so far. Python objects can respond to op-
erators and methods. We have a rich ecosystem of very useful objects, including
collections such as sets, lists and dictionaries. In this way, a Python method
can do quite a bit of work for us.

Despite this, our palette for writing programs is pretty limited. All we can
do at this time is to write a list of Python worker statements and to execute
them in seratum. Since you have programmed before you will �nd this to be
very dull indeed. We shall remedy that. The cure is the boss statement.

Statements work like clauses in English. A statement that reads as a com-
plete sentence, or independent clause, is called a worker statement. A worker
statement is a simple imperative sentence with tacit subject �Python.� Here are
some some examples.

1. x = 5 Read this as �x gets 5� or �make x point at the value 5.�

2. print(x*x + 3) Read this �Evaluate the expression x*x + 3 and put it
to stdout.�

3. x = 3*x - 7 Read this as �Evaluate the expression 3*x + 7 and have x
point at the result.

81

3.1. FUNCTIONS CHAPTER 3. BOSS STATEMENTS

3.1 Functions

Our �rst boss statement is the function header. Functions in Python work much
like functions in other languages such as Java, JavaScript, or C. Let us begin
by showing a function that squares a number.

def square(x):
return x*x

The �rst statement def square(x) should be read, �To de�ne square(x),�
Notice that it is a grammatically incomplete sentence. This statement is an
example of a boss statement, which controls the �ow of execution in a program.
A boss statement must own a block of code, which is one or more lines of code
underneath it that are indented the same amount. This block of code, combined
with the boss statement, constitutes a grammatically complete sentence. Notice
that the block is indented one tab stop.

Reminder for users of vi/vim Change to your home directory now and edit
our .vimrc �le; if you don't have it, create it. Make sure these lines are in it

syntax on
set tabstop=4
set et

The �rst line gives you syntax coloring for all of your favorite �le types. The
second line sets the tab stop at 4 spaces. Do not put spaces around the equal
sign or you will get annoying error messages! The third line turns every tab into
4 spaces. This eliminates a serious aggravation. Do this now and there will be
peace in the valley.... or else. This will spare you annoying �inconsistent use of
tabs and spaces,� and other whitespace-related errors. You can also do this in
other text editors by hunting in the preferences.

Now add to your function as follows. Put this in a �le named boss.py.

def square(x):
return x*x

print(type(square))
print(f"The Square of 10 is {square(10)}")

Now we run it and we see this.

unix> python boss.py
<class 'function'>
The Square of 10 is 100

©2009-2021, John M. Morrison 82

CHAPTER 3. BOSS STATEMENTS 3.2. SCOPING

A function is just another Python object! Now we see why def square(x):
is really not a complete sentence. It is about as complete as the half-done
assignment x =. In fact, de�ning a function is an assignment.

On the second line we are using, or calling our function. It does what it
expected; it squares the number given or passed it and it outputs, or returns
100.

The code following the def boss statement return x*x is its block of code.
Read it now; you have the complete sentence, �To de�ne square(x), return x*x.�
Et voila! The block completes the boss statement grammatically. The block of a
boss statement can contain one or more lines of code. The block ends where the
indentation ends. Boss statements can be nested; a block of code can include
boss statements, each of which owns a block of code.

3.2 Scoping

Variables created outside of any function live in the program's global scope. It
is best not to minimize the use of these, for they will give you worlds of pain
and little joy or use. In this book, we will eschew them assiduously.

Functions residing directly in a �le also have global scope. This means that
functions can be seen by other functions and that they can call each other.
This is good. It allows you to create �teams� of functions that work together to
accomplish a task.

Let us do something interesting with our little square function. Make this
program called evil_scope.py

def square(x):
y = x*x
return y

print(square(12))
print(x)
print(y)

We now get hissed at by an angry Python.

unix> python evil_scope.py
144
Traceback (most recent call last):

File "evil_scope.py", line 6, in <module>
print(x)

NameError: name 'x' is not defined

©2009-2021, John M. Morrison 83

3.2. SCOPING CHAPTER 3. BOSS STATEMENTS

It would seem that x would be storing the value 12. Evidently not. Here is
what happened.

1. A copy of the memory address stored by the variable is sent to the func-
tion's parameter x.

2. If a literal is passed, a copy of its location in memory is sent to the pa-
rameter x.

3. An internal variable y got created here. It got the value 144.

4. The memory address where 144 is stored is passed back to the print
function, which prints 144.

5. Once the function returned, all traces of the variable x disappeared. The
same thing happened to y. To see this, delete the line where x is printed
and re-run the program.

We have just learned two things about Python. One is that Python has func-
tion scope. Arguments of functions and variables created inside of a functions
are not visible outside of that function.

The other is that Python is a pure pass-by-value language. When you pass
a variable or a literal to a function, the function actually gets a copy of the
memory address of that item.

You might ask, �Why all of this hiding of stu�?� You have seen us use some
built-in functions such as len, min and max. Would you want to have to worry
about variables created inside of these and have to keep track of their names?
This would quickly lead to choking levels of complexity. When using functions
all we need to care about is what sorts of parameters they need and what they
do. This frees us to think about the problem we are trying to solve and not
about the internal �nickiness of our tools.

When writing a function, you must concern yourself with these major areas.

1. parameters How many of these are there are of what type(s) should they
be?

2. preconditions More generally, what should be true when you call this
function? Really, a description of your parameters is part of the precon-
ditions.

3. side-e�ects Does this function leave stu� behind once it returns? Does
it create a �le? Does it put things to stdout? Does it modify the state of
any mutable objects?

4. return value What kind of object, if any is returned by the function? If
you do not return anything a graveyard object named None is automati-
cally returned.

5. postconditions This is what is true when a function is done executing.
This contains a description of a function's side-e�ects and return value, if
any.

©2009-2021, John M. Morrison 84

CHAPTER 3. BOSS STATEMENTS 3.3. CONDITIONAL LOGIC

As with any programming language, Python has a system that makes it easy
to document your function. You insert a docstring, as shown here.

def square(x):
"""precondition: x is a number (integer or float)

postcondition: This function returns the square of x.

It has no side-effects."""

y = x*x
return y

print(square.__doc__)

Now we run this; you will see how to print the docstring of any function that
has one.

unix> python docstring.py
precondition: x is a number (integer or float)
postcondition: This function returns the square of x.
It has no side-effects.

3.3 Conditional Logic

A mainstay of computer languages is the if statement and its friends. We will
now explore these in Python. There are three important boss statements in
Python's conditional logic, if, else, and elif.

We being by looking at the simple if. Its usage is as follows.

if predicate:
code

The item predicate is any boolean-valued expression. If predicate evaluates
to True, the code in the block executes. If not, the code in the block is skipped.

The else construct allows you to provide code that is executed if an if
statement's predicate evaluates to false. Here is its usage.

if predicate:
codeIfPredicateIsTrue

else:
codeIfPredicateIsFalse

This puts a two-way fork in your code. One of the two alternatives must be
executed.

The elif construct provides a means of producing a multi-way fork. Let
us create an example. Imagine you are assigning grades. Let's do this. For A,

©2009-2021, John M. Morrison 85

3.3. CONDITIONAL LOGIC CHAPTER 3. BOSS STATEMENTS

B, C and D, you can have a + or - mark, but not for F. The input will be a
percentage; if the last digit is 7,8 or 9, a + is granted. If it is a 0, 1, or 2, a - is
given. Otherwise, there is no + or -. Let us build this.

So here is how we will get the score.

score = input("Enter a percentage: ");

Run it and see that it works. We will write two functions, one for the letter
grade, the other for the +/- modi�er.

def letter_grade(n):
if n < 60:

out = "F"
elif n < 70:

out = "D"
elif n < 80:

out = "C"
elif n < 90:

out = "B"
elif n <= 100:

out = "A"
else:

out = "Illegal grade!"
return out

score = input("Enter a percentage: ");

Run this and you are now reminded: cast things you get from input to a number
type. For the sake of simplicity, we will use integers here.

unix> python grades.py
Enter a percentage: 95
Traceback (most recent call last):

File "grades.py", line 16, in <module>
print(letter_grade(score))

File "grades.py", line 2, in letter_grade
if n < 60:

TypeError: unorderable types: str() < int()

Just add this line

score = int(score)

The letter in the grade looks good.

©2009-2021, John M. Morrison 86

CHAPTER 3. BOSS STATEMENTS 3.3. CONDITIONAL LOGIC

unix> Feb 02:13:15:ppp> python grades.py
Enter a percentage: 95
A
unix> python grades.py
Enter a percentage: 90
A
Enter a percentage: 88
B
unix> python grades.py
Enter a percentage: 77
C
unix> python grades.py
Enter a percentage: 66
D
unix> python grades.py
Enter a percentage: 44
F

One lurking issue to watch for is to ensure a 100 gets an A+. We will make
a second function to produce the modi�er. Notice that if the student fails, he
gets no modi�er.

def modifier(n):
out = ""
if n >= 60:

if n % 10 <= 2:
out = "-"

if n % 10 >= 8:
out = "+"

if n == 100:
out = "+"

return out

Here is some testing. You should check all branches and see to it that you are
happy.

Enter a percentage: 100
A+
unix> python grades.py
Enter a percentage: 98
A+
unix> python grades.py
Enter a percentage: 94
A
unix> python grades.py
Enter a percentage: 91

©2009-2021, John M. Morrison 87

3.3. CONDITIONAL LOGIC CHAPTER 3. BOSS STATEMENTS

A-
unix> python grades.py
Enter a percentage: 88
B+
unix> python grades.py
Enter a percentage: 59
F
unix> python grades.py
Enter a percentage: 61
D-

But what if the fool enters gibberish? Take exception. The fool! Spec-
tate, videte, et ecce!

unix> python grades.py
Enter a percentage: cats
Traceback (most recent call last):

File "grades.py", line 28, in <module>
score = int(score)

ValueError: invalid literal for int() with base 10: 'cats'

We will �try� to convert the input and punt if the ValueError rears its ugly
head. Raising this error brings the program to a screeching halt at the scene of
the crime. Here is the full code listing.

def letter_grade(n):
if n < 60:

out = "F"
elif n < 70:

out = "D"
elif n < 80:

out = "C"
elif n < 90:

out = "B"
elif n <= 100:

out = "A"
else:

out = "Illegal grade!"
return out

def modifier(n):
out = ""
if n >= 60:

if n % 10 <= 2:
out = "-"

if n % 10 >= 8:

©2009-2021, John M. Morrison 88

CHAPTER 3. BOSS STATEMENTS 3.3. CONDITIONAL LOGIC

out = "+"
if n == 100:

out = "+"
return out

def grade(n):
return letter_grade(n) + modifier(n)

score = input("Enter a percentage: ")
try:

score = int(score)
except ValueError:

print("Illegal entry. Try an integer 0-100.")
quit()

print(grade(score))

You now begin to see how functions can call each other and how they can work
as a team to separate a problem into manageable pieces that you can easily
code. The function grade is an orchestrator that spits out the grade and which
is really the only function the end-user ever calls.

So, now by example we see three conditional situations. The simple if just
skips its code if its predicate is true. An if-else progression executes the if
block if the predicate is true and the else block if the predicate is not true.

An if-elif-else progression keeps trying until a predicate is true. When
it occurs, it executes that predicate's block and drops out of the progression. Is
is good practice when using these to have an else block to handle any potential
errors. Note that without an else block, the progression can go by and do
nothing.

Programming Exercises Time for a date! Here are some calendar-oriented
programming challenges. Functions shown are stubbed in so you can put this
Python code in a �le and it will run.

1. Write a function called is_leap(year) which returns True if the year
leaps and which returns False otherwise. Here is the rule.

� If a year is divisilble by 4 it leaps.

� BUT every 100 years there is an exception.

� BUT every 400 years there is an exception to the exception!

2. Here are some other functions to implement.

def date_plus(the_date):
"""Precondition: the_date is a string containing a date.

Postcondition: Return the sum of the year, month, and day. You must accept any of the following formats of dates. You may assume that any year smaller than 15 is preceeded by 20 and any year larger than 15 is preceded by 19.

dd/mm/yyyy

dd-mm-yyyy

ddmmyyyy

©2009-2021, John M. Morrison 89

3.4. STACK AND HEAP CHAPTER 3. BOSS STATEMENTS

ddmmyy

dd/mm/yy

dd-mm-yy

"""

pass
#here are some tests to implement.

date_plus("01/01/1970") == 1972
date_plus("08/12/1995") == 2015
date_plus("08/12/95") == 2015
date_plus("08/12/14") == 2034

3. def dayInYear(year, month, day):
"""prec: year/month/day is a valid date

postc: returns the ordinal position of the day in the year

(Feb 15 is the 44th day of year 2000).

Hint: The list method sum is your friend. Learn about it."""

return 0

4. def daysLeftInYear(year, month, day):
"""prec: year/month/day is a valid date

postc: returns the number of days left in the year

(Feb 15 is the 44th day of year 2000)."""

return 0

3.4 Stack and Heap

There are two chunks of memory that are important to your programs. The
heap is a data warehouse where all of your objects are stored. Space on the
heap is quite plentiful but not unlimited. If a Python program is running out
of heap memory, it can request the operating system allocate it more.

The stack is the portion of memory where function calls are managed. This
segment of memory is of a �xed size; if you use all of its memory up you will
get a dreaded stack over�ow error handed to you and your program will die.

3.4.1 The Heap

If you make a variable pointing at War and Peace, the text of that book will be
stored on the heap, and the variable will store the memory address where the
text is kept. This is true of all Python objects. We learned earlier that small
integers are kept in an easy-access portion of the heap.

What about functions? The instructions necessary for them to execute are
stored on the heap.

©2009-2021, John M. Morrison 90

CHAPTER 3. BOSS STATEMENTS 3.4. STACK AND HEAP

What about a list or other container? The entries of any container actually
store the memory address of the objects they represent. So, for example, a
list lives on the heap. Its entries all store heap addresses for the objects they
represent. Visually, you can think of a list as resembling long-legged millipede,
whose �legs� point ot the objects being stored in the list.

3.4.2 Program Life Cycle

When your program is run, it begins by creating the global frame. This is a
container that stores all of the data you create in the main routine of your
program. Python reads all of your functions and stores the code for then to
execute on the heap. The variable names (function names) are stored in the
global frame, and under them the heap addresses for their code is stored. The
global frame only stores variables and their memory addresses. All of the objects
you create live on the heap.

In the beginning of our example,letter_grade, modifier, and grade are
read into memory. We then get to this code in the �main routine� of our program.

score = input("Enter a percentage: ")
try:

score = int(score)
except ValueError:

print("Illegal entry. Try an integer 0-100.")
quit()

print(grade(score))

The variable score is a global variable and it and the memory address of its
string are stored in the global frame. The global frame is at the bottom of the
call stack.

The stack stores data structures called activation records or stack frames;
the global frame forms the bottom of this stack. A stack frame contains several
pieces of information.

1. It stores a return address that tells the program where to go back to
after the function returns. The global frame is an exception; once it returns
execution ends.

2. It stores the parameters and the memory addresses of the objects passed
to them.

3. It holds a local symbol table with all of the variables created inside of the
function. The data from the parameters is loaded into this symbol table
as well. When the function returns, this symbol table is exposed to be
overwritten and it becomes inaccessible.

©2009-2021, John M. Morrison 91

3.4. STACK AND HEAP CHAPTER 3. BOSS STATEMENTS

When a function is executing, its local symbol table and the global symbol table
(which contains the other functions) are visible. All of Python's core linguistic
infrastructure are visible during the entire lifetime of your program.

The �rst line of the main routine makes a function call to input. This call is
placed on the stack. The input function waits for the user to type in an entry;
when the enter key is hit, it returns the string the user typed in. Once this
function returns, its stack frame is exposed to be overwritten; for all practical
purposes it is destroyed. It disappears with no trace.

Then we perform the cast, which is really a function call. If the user types in
gibberish, a ValueError is raised and, if there is no except block, the program
dies right on the spot, right in the middle of the call to the input function.

Now let us suppose that we successfully get an integer from the user. A call
is made to print. Right in the middle of print trying to do its job, we call
grade and pass it score. So, on top of print's stack frame we plop a stack
frame for grade.

This frame stores a return address so it can get back to where we left o� in
print's execution. Now grade is running and it can see n in its private symbol
table, which contains the memory address where score is living on the heap.

The �rst line of grade has a call to letter_grade in it; this call is being
passed n so it gets a copy of the memory address where score is stored. You
see a local variable out that gets created. The appropriate branch hands out
a letter grade. The actual letter is created on the heap; out merely knows
its memory address. That gets sent back to its caller, grade. This process is
repeated for modifier.

With both parts of its return value in place, grade returns a grade with its
modi�er to print, which ships the result to stdout and returns. The program
then ends. Throughout this book we will adhere to this style convention: All
functions should be de�ned before any other code is placed in a program. This
keeps things sane.

So to summarize, as a program runs, the following happen.

1. Python reads the program from top to bottom.

2. As functions are de�ned, their code is placed in heap memory and their
memory addresses where they are stored goes into the global symbol table.

3. The �rst unindented line after the functions are seen is the beginning of
the program's �main routine.� Variables created in the main routine go
in the global symbol table. Since the main routine is last, variables in it
cannot be seen by the functions without a little extra code. This is bad
practice; we will refrain from doing this.

4. When a function is called, its stack frame goes on the call stack. The func-
tion puts the function's parameters and local variables in a local symbol

©2009-2021, John M. Morrison 92

CHAPTER 3. BOSS STATEMENTS 3.4. STACK AND HEAP

table, which resides in its stack frame. The stack frame also maintains a
return address to go back to once it returns, and a bookmark of where
it is in its progress. If a function calls another function, a stack frame is
created for that function and it is placed on the stack.

5. When a function returns, its stack frame is popped (removed) from the
call stack and it is no longer accessible. All of the function's local variables
die.

6. The stack will grow and shrink as the program runs.

7. When the main routine returns, program execution is over. The OS re-
claims the space occupied by your program.

Recommendation A smart way to make programs is to place your main
routine inside of a function called main and just call main in the main routine.
Here is an example. In this way, the only occupants of the global symbol table
are functions. The only worker statement in the main routine is main(). Here
is a modest example.

def greet(name):
return "Hello, " + name

def main()
print(greet("General Grant"))

main()

The only items in your global symbol table are functions.

Programming Exericises

1. Run this program

def square(x):
y = x*x
print(f"inside squre: {locals()}")
return y

def cube(x):
y = x*square(x)
print(f"inside cube: {locals()}")
return y

def main():
print(f"inside cube: {locals()}")
print(cube(5))

main()

What is it showing you?

©2009-2021, John M. Morrison 93

3.5. RECURSION CHAPTER 3. BOSS STATEMENTS

2. Use the device you saw in the �rst problem to spy on the local variables
in the grading program.

3.5 Recursion

Functions can call themselves, and this can often be useful. In fact, we can
achieve repetition with this mechanism. Here is an example.

def rectangle(width, height, ch):
if height == 0:

return
print(ch* width)
rectangle(width, height - 1, ch)

rectangle(5,6, "*")

Let us run this for the doubting Thomases out there.

unix> python rectangle.py

So, what happened? To understand this we must analyze the call stack. Begin
by adding a line to our code to see the local symbols that are visible.

def rectangle(width, height, ch):
if height == 0:

return
print(dir())
print(ch* width)
rectangle(width, height - 1, ch)

rectangle(5,6, "*")

Running this we see the following.

unix> Feb 03:11:32:p1Code> python rectangle.py
['ch', 'height', 'width']

['ch', 'height', 'width']

©2009-2021, John M. Morrison 94

CHAPTER 3. BOSS STATEMENTS 3.5. RECURSION

['ch', 'height', 'width']

['ch', 'height', 'width']

['ch', 'height', 'width']

['ch', 'height', 'width']

unix>

Now let us print out the values held by these symbols. Delete the dir line and
do this.

def rectangle(width, height, ch):
if height == 0:

return
print("ch = %s, height = %s, width = %s" % (ch, height, width))
print(ch* width)
rectangle(width, height - 1, ch)

rectangle(5,6, "*")

Now run this to see more bread crumbs.

unix> python rectangle.py
ch = *, height = 6, width = 5

ch = *, height = 5, width = 5

ch = *, height = 4, width = 5

ch = *, height = 3, width = 5

ch = *, height = 2, width = 5

ch = *, height = 1, width = 5

unix>

We can now begin to see what has happened. The call to rectangle(5, 6,
"*") causes a line of stars to print, then it spawns a call to rectangle(4, 6,
"*"). The call to rectangle(4, 6, "*") causes a line of stars to print, then
it spawns a call to rectangle(3, 6, "*"). This continues until we have a call
to rectangle(1,6,"*") which spawns a call to rectangle(0, 6, "*")

We have now arrived at what is called the base case of our recursive function.
Since the height is now 0, this function immediately returns. Where are we now?

©2009-2021, John M. Morrison 95

3.6. THE STANDARD LIBRARY CHAPTER 3. BOSS STATEMENTS

We are at the end of the call rectangle(1, 6, "*"). Since we already printed
the stars and we made the function call inside, there is no more code. As a
result, the function does a tacit return. This function now returns to the call
rectangle(2, 6, "*"). This process continues until the original call returns
and we are back in the main routine. The one function call in the main routine
was done, so the main routine returns and our program's execution is over.
What is left over? Rows of stars.

How about printing a list? Here is a tip: to print a list, print do nothing
if the list is empty; otherwise print the �rst element, and then the rest of the
elements. If you think this way, the recursive recipe is simple.

def print_list(x):
if x == []:

return
first = x[0]
rest = x[1:]
print(first)
print_list(rest)

def main():
test = [1, 2, 3, 4, 5, 6]
print_list(test)

main()

Programming Exercises

1. Move one entire line of code so the list prints in the reverse order. Can
you also �nd another way to print the list backwards?

2. Use os.listdir to get the contents of your cwd. Use print_list to print
it out.

3. Can you make it print in asciicographical order? reverse asciicographical
order?

4. Can you write a recursive function that computes the sum of a list of
numbers? the concatenation of a list of strings?

5. Can you write a function that accepts a list of numbers and returns its
product?

3.6 The Standard Library

A module is a Python program. Modules in the standard library consist largely
of functions and constants. There are a plethora of these that accomplish a
wide array of very useful tasks. We will learn here how to use a standard

©2009-2021, John M. Morrison 96

CHAPTER 3. BOSS STATEMENTS 3.6. THE STANDARD LIBRARY

library module and how to read its documentation. We shall begin with the
library math, and then take a peek into the very useful os module. Open a
Python session. Use the import statement to make a library visible.

>>> import math

To see its contents, use the built-in function dir.

>>> dir(math)
['__doc__', '__file__', '__loader__', '__name__', '__package__',
'__spec__', 'acos', 'acosh', 'asin', 'asinh', 'atan', 'atan2', 'atanh',
'ceil', 'copysign', 'cos', 'cosh', 'degrees', 'e', 'erf', 'erfc', 'exp',
'expm1', 'fabs', 'factorial', 'floor', 'fmod', 'frexp', 'fsum', 'gamma',
'gcd', 'hypot', 'inf', 'isclose', 'isfinite', 'isinf', 'isnan', 'ldexp',
'lgamma', 'log', 'log10', 'log1p', 'log2', 'modf', 'nan', 'pi', 'pow',
'radians', 'sin', 'sinh', 'sqrt', 'tan', 'tanh', 'trunc']

You can see some familiar looking things. Here are some constants. Note that
they are pre�xed by math..

>>> math.e
2.718281828459045
>>> math.pi
3.141592653589793

Here we test-drive the logarithmic functions

>>> math.log2(1024)
10.0
>>> math.log10(1000)
3.0
>>> math.log(math.e)
1.0

Now let us see help on these functions.

>>> print(math.log.__doc__)
log(x[, base])

Return the logarithm of x to the given base.
If the base not specified, returns the natural logarithm (base e) of x.
>>> print(math.log2.__doc__)
log2(x)

Return the base 2 logarithm of x.

©2009-2021, John M. Morrison 97

3.6. THE STANDARD LIBRARY CHAPTER 3. BOSS STATEMENTS

>>> print(math.log10.__doc__)
log10(x)

Return the base 10 logarithm of x.

We see a mysterious function log1p. Let us plumb the depths.

>>> print(math.log1p.__doc__)
log1p(x)

Return the natural logarithm of 1+x (base e).
The result is computed in a way which is accurate for x near zero.

The thoughtful makers of the standard libraries provided docstrings for their
functions. When in doubt about a function, this is a quick handy reference.
Don't be shy.

Programming Exercises

1. Write a function sind that computes sines using degree angle measure.
Do the same for cos and tan. Make the best available use of standard
library functions.

2. What do floor and ceil do?

3. For a how large an argument can you compute math.factorial?

3.6.1 Accessing the File System

Let us learn about another standard library, os. This is very handy for inter-
acting with your �le system. Begin by importing it and viewing its contents.

>>> import os
>>> dir(os)
['CLD_CONTINUED', 'CLD_DUMPED', 'CLD_EXITED', 'CLD_TRAPPED',
'EX_CANTCREAT', 'EX_CONFIG', 'EX_DATAERR', 'EX_IOERR', 'EX_NOHOST',
'EX_NOINPUT', 'EX_NOPERM', 'EX_NOUSER', 'EX_OK', 'EX_OSERR', 'EX_OSFILE',
'EX_PROTOCOL', 'EX_SOFTWARE', 'EX_TEMPFAIL', 'EX_UNAVAILABLE', 'EX_USAGE',
'F_LOCK', 'F_OK', 'F_TEST', 'F_TLOCK', 'F_ULOCK', 'MutableMapping',
'NGROUPS_MAX', 'O_ACCMODE', 'O_APPEND', 'O_ASYNC', 'O_CLOEXEC', 'O_CREAT',
'O_DIRECTORY', 'O_DSYNC', 'O_EXCL', 'O_EXLOCK', 'O_NDELAY', 'O_NOCTTY',
'O_NOFOLLOW', 'O_NONBLOCK', 'O_RDONLY', 'O_RDWR', 'O_SHLOCK', 'O_SYNC',
'O_TRUNC', 'O_WRONLY', 'PRIO_PGRP', 'PRIO_PROCESS', 'PRIO_USER', 'P_ALL',
'P_NOWAIT', 'P_NOWAITO', 'P_PGID', 'P_PID', 'P_WAIT', 'RTLD_GLOBAL',
'RTLD_LAZY', 'RTLD_LOCAL', 'RTLD_NODELETE', 'RTLD_NOLOAD', 'RTLD_NOW',

©2009-2021, John M. Morrison 98

CHAPTER 3. BOSS STATEMENTS 3.6. THE STANDARD LIBRARY

'R_OK', 'SCHED_FIFO', 'SCHED_OTHER', 'SCHED_RR', 'SEEK_CUR', 'SEEK_END',
'SEEK_SET', 'ST_NOSUID', 'ST_RDONLY', 'TMP_MAX', 'WCONTINUED', 'WCOREDUMP',
'WEXITED', 'WEXITSTATUS', 'WIFCONTINUED', 'WIFEXITED', 'WIFSIGNALED',
'WIFSTOPPED', 'WNOHANG', 'WNOWAIT', 'WSTOPPED', 'WSTOPSIG', 'WTERMSIG',
'WUNTRACED', 'W_OK', 'X_OK', '_DummyDirEntry', '_Environ', '__all__',
'__builtins__', '__cached__', '__doc__', '__file__', '__loader__',
'__name__', '__package__', '__spec__', '_dummy_scandir', '_execvpe',
'_exists', '_exit', '_get_exports_list', '_putenv', '_spawnvef',
'_unsetenv', '_wrap_close', 'abort', 'access', 'altsep', 'chdir',
'chflags', 'chmod', 'chown', 'chroot', 'close', 'closerange', 'confstr',
'confstr_names', 'cpu_count', 'ctermid', 'curdir', 'defpath',
'device_encoding', 'devnull', 'dup', 'dup2', 'environ', 'environb',
'errno', 'error', 'execl', 'execle', 'execlp', 'execlpe', 'execv',
'execve', 'execvp', 'execvpe', 'extsep', 'fchdir', 'fchmod', 'fchown',
'fdopen', 'fork', 'forkpty', 'fpathconf', 'fsdecode', 'fsencode', 'fstat',
'fstatvfs', 'fsync', 'ftruncate', 'get_blocking', 'get_exec_path',
'get_inheritable', 'get_terminal_size', 'getcwd', 'getcwdb', 'getegid',
'getenv', 'getenvb', 'geteuid', 'getgid', 'getgrouplist', 'getgroups',
'getloadavg', 'getlogin', 'getpgid', 'getpgrp', 'getpid', 'getppid',
'getpriority', 'getsid', 'getuid', 'initgroups', 'isatty', 'kill',
'killpg', 'lchflags', 'lchmod', 'lchown', 'linesep', 'link', 'listdir',
'lockf', 'lseek', 'lstat', 'major', 'makedev', 'makedirs', 'minor',
'mkdir', 'mkfifo', 'mknod', 'name', 'nice', 'open', 'openpty', 'pardir',
'path', 'pathconf', 'pathconf_names', 'pathsep', 'pipe', 'popen', 'pread',
'putenv', 'pwrite', 'read', 'readlink', 'readv', 'remove', 'removedirs',
'rename', 'renames', 'replace', 'rmdir', 'scandir',
'sched_get_priority_max', 'sched_get_priority_min', 'sched_yield',
'sendfile', 'sep', 'set_blocking', 'set_inheritable', 'setegid', 'seteuid',
'setgid', 'setgroups', 'setpgid', 'setpgrp', 'setpriority', 'setregid',
'setreuid', 'setsid', 'setuid', 'spawnl', 'spawnle', 'spawnlp', 'spawnlpe',
'spawnv', 'spawnve', 'spawnvp', 'spawnvpe', 'st', 'stat',
'stat_float_times', 'stat_result', 'statvfs', 'statvfs_result', 'strerror',
'supports_bytes_environ', 'supports_dir_fd', 'supports_effective_ids',
'supports_fd', 'supports_follow_symlinks', 'symlink', 'sync', 'sys',
'sysconf', 'sysconf_names', 'system', 'tcgetpgrp', 'tcsetpgrp',
'terminal_size', 'times', 'times_result', 'truncate', 'ttyname', 'umask',
'uname', 'uname_result', 'unlink', 'unsetenv', 'urandom', 'utime', 'wait',
'wait3', 'wait4', 'waitpid', 'walk', 'write', 'writev']

Wow! The abundance of things is overwhelming. Let us play with a few. Here
we learn our Python process's current working directory and we list its contents.

>>> os.listdir()
['.pp1core.tex.swp', '_minted-p0', '_minted-p1', 'bmp', 'bol', 'bv',
'p0.aux', 'p0.log', 'p0.out', 'p0.pdf', 'p0.tex', 'p0.toc', 'p0Code',
'p1.aux', 'p1.log', 'p1.out', 'p1.pdf', 'p1.tex', 'p1.toc', 'p1Code',

©2009-2021, John M. Morrison 99

3.6. THE STANDARD LIBRARY CHAPTER 3. BOSS STATEMENTS

'piCode', 'pp0core.tex', 'pp1core.tex', 'rectangle.py']
>>> os.getcwd()
'/Users/morrison/book/ppp'

Now here is something that is interesting.

>>> print(os.path.__doc__)
Common operations on Posix pathnames.

Instead of importing this module directly, import \texttt{os} and refer to
this module as \texttt{os.path}. The "os.path" name is an alias for this
module on Posix systems; on other systems (e.g. Mac, Windows), os.path
provides the same operations in a manner specific to that platform, and is
an alias to another module (e.g. macpath, ntpath).

Some of this can actually be useful on non-Posix systems too, e.g.
for manipulation of the pathname component of URLs.
>>> dir(os.path)
['__all__', '__builtins__', '__cached__', '__doc__', '__file__', '__loader__',
'__name__', '__package__', '__spec__', '_get_sep', '_joinrealpath', '_varprog',
'_varprogb', 'abspath', 'altsep', 'basename', 'commonpath', 'commonprefix',
'curdir', 'defpath', 'devnull', 'dirname', 'exists', 'expanduser',
'expandvars', 'extsep', 'genericpath', 'getatime', 'getctime', 'getmtime',
'getsize', 'isabs', 'isdir', 'isfile', 'islink', 'ismount', 'join', 'lexists',
'normcase', 'normpath', 'os', 'pardir', 'pathsep', 'realpath', 'relpath',
'samefile', 'sameopenfile', 'samestat', 'sep', 'split', 'splitdrive',
'splitext', 'stat', 'supports_unicode_filenames', 'sys']
>>>

Look at the �is� functions. We can test and see if an item present is a directory
with isdir. Notice we can peek inside, too, using os.listdir.

>>> os.path.exists("p1.pdf")
True
>>> os.path.isdir("p1Code")
True
>>> os.listdir("p1Code")
['.grades.py.swp', 'docstring.py', 'evilScope.py', 'grades.py']

This module gives you all sorts of great access to your �le system. You should
experiment with it and see what you can do. Be careful: you can delete �les
with it! Explore it and its submodule os.path.

Programming Exercises

©2009-2021, John M. Morrison 100

CHAPTER 3. BOSS STATEMENTS 3.6. THE STANDARD LIBRARY

1. How can you compute the size of a �le?

2. Write a function called get_permission_string(�le) that does the following

� It prints out an error message if the �le does not exist.

� If the �le exists, it prints its permission string (do an ls -l to remind
yourself what this looks like)

3. How do you �nd the absolute path of a �le or directory?

3.6.2 Random Thoughts

If you ever want to write a game, you will want the ability to deal with random
phenomena, such as the drawing of a card from a deck or rolling dice.

The Python library random is a powerful tool for accomplishing this sort
of task. This library has the capability of generating pseudo-random numbers.
There is a whole industry behind the generation of random numbers. Computers
actually use determininistic formulae to generate random numbers, hence the
term pseudo-random.

Let us have a peek at what is inside of this module with our old friend dir.

>>> import random
>>> dir(random)
['BPF', 'LOG4', 'NV_MAGICCONST', 'RECIP_BPF', 'Random',

'SG_MAGICCONST', 'SystemRandom', 'TWOPI', '_BuiltinMethodType',
'_MethodType', '_Sequence', '_Set', '__all__', '__builtins__',
'__cached__', '__doc__', '__file__', '__loader__', '__name__',
'__package__', '__spec__', '_acos', '_bisect', '_ceil', '_cos',
'_e', '_exp', '_inst', '_itertools', '_log', '_pi', '_random',
'_sha512', '_sin', '_sqrt', '_test', '_test_generator',
'_urandom', '_warn', 'betavariate', 'choice', 'choices',
'expovariate', 'gammavariate', 'gauss', 'getrandbits',
'getstate', 'lognormvariate', 'normalvariate', 'paretovariate',
'randint', 'random', 'randrange', 'sample', 'seed', 'setstate',
'shuffle', 'triangular', 'uniform', 'vonmisesvariate',
'weibullvariate']

>>>

Suppose you want to roll a pair of dice. You will want to get a tuple whose
entries are random numbers 1-6. The randint function is just the tool for the
job. Here we see its docstring.

>>> print(random.randint.__doc__)
Return random integer in range [a, b], including both end points.

>>>

©2009-2021, John M. Morrison 101

3.6. THE STANDARD LIBRARY CHAPTER 3. BOSS STATEMENTS

The roll of a die gives us a number 1-6, so we can roll a die with a call to
random.randint(1,6). Let's have a look by running it a few times.

>>> import random
>>> random.randint(1,6)
4
>>> random.randint(1,6)
3
>>> random.randint(1,6)
1
>>> random.randint(1,6)
1
>>> random.randint(1,6)
4
>>> random.randint(1,6)

We can now create a function to roll a pair of dice. Create the program
dice.py

import random
def roll_dice():

return (random.randint(1,6), random.randint(1,6))
for k in range(6):

print(roll_dice())

Run and see this. Your result, of course, will likely be di�erent.

unix> python dice.py
(5, 6)
(4, 6)
(5, 6)
(2, 4)
(4, 6)
(1, 3)

Another useful method is random.choice, which will pick a random element
out of a sequence. Here we create a function that tosses a coin.

def toss():
return random.choice(["H", "T"])

Put this in a �le and call toss repatedly. Two related method are shuffle and
sample. We demonstrate them here.

>>> team = ["Pete", "Jane", "Evelyn", "Mario", "Maria", "Edward"]
>>> import random

©2009-2021, John M. Morrison 102

CHAPTER 3. BOSS STATEMENTS 3.7. TERMNOLOGY ROUNDUP

>>> random.shuffle(team)
>>> team
['Edward', 'Evelyn', 'Jane', 'Mario', 'Maria', 'Pete']
>>> random.shuffle(team)
>>> team
['Edward', 'Jane', 'Maria', 'Pete', 'Evelyn', 'Mario']
>>> random.sample(team, 3)
['Mario', 'Evelyn', 'Edward']
>>> random.sample(team, 3)
['Maria', 'Mario', 'Evelyn']
>>> random.sample(team, 3)
['Maria', 'Evelyn', 'Edward']

The sample method picks a sample without replacement.

Programming Exercises

1. Write function that chooses a random number in [0, 1) and squares it. Run
this ten times and average the results. What do you see?

2. Write a function toss_coin that randomly returns a "T" or an "H".

3. Write a recursive function that tosses a fair coin until a head appears and
which returns the number of tosses.

3.7 Termnology Roundup

� base case This is a case in a recursive function that causes its ultimate
return.

� block This is one or more lines of code that is indented a tabstop.

� boss statement This is a statement that controls the �ow of a program.
It must own a block of code, and it is a grammatically incomplete sentence.

� call To use a function.

� docstring This is a string in the �rst line of a function that gives infor-
mation on the function's action.

� function scope Varibles created inside of functions and parameters of
functions are invisible when the function is not executing.

� global scope Variables with global scope are visible at all times.

� module This is a �le with Python code.

� parameter This is a value that is passed to a function.

� pass This is the act of sending an argument of a function to the function's
code when the function is called.

©2009-2021, John M. Morrison 103

3.7. TERMNOLOGY ROUNDUP CHAPTER 3. BOSS STATEMENTS

� postcondition This is what is true when a function is done executing.

� precondition A condition that should inhere before we call a function

� return value The object, if any, that is returned by the function?

� side-e�ect This refers to actions whose consequences persist beyond the
lifetime of a function.

� worker statement This is a Python statement containing executable
code. Grammatically, it is a complete sentence.

©2009-2021, John M. Morrison 104

Chapter 4

Repetition

4.0 Introduction

The goal of this chapter is to bring you to the point where Python is Turing-
Complete, which means that, given su�cient time and memory, it can solve any
solvable computational problem.

In the beginning, all Python programs were lists of worker statements that
executed in seriatum. Then we started realizing, �If we keep doing the same
thing over and over again, can't we store a procedure under a single name so
we can reuse it?� This brought us to functions. Functions are objects that
store sets of instructions. In fact, they are �rst-class objects of type <class
'function'>.

We then decided that our programs should be able to make decisions based
on visible variables; this brings us conditional logic.

The �ow of programs is no longer linear. However, if we do things right,
it is structured. And the use of functions can help make programs more un-
derstandable if we choose names for our functions that are evocative of their
actions.

We have actually taken the �nal step on the road to Turing-completeness:
all repetition in programs can be done by recursion. However, the appearance
of our code might be somewhat recondite and opaque. Take note, however, that
recursion can be a very handy tool for solving problems that initially appear to
be unwieldy impossible snarls.

Python provides two programming constructs for repetition: while and for.
It also provides objects called iterators that walk through collections and show
us objects in succession, and some python objecs are iterables, which means
they can be walked through with a de�nite loop.

105

4.1. ITERABLES AND DEFINITE LOOPS CHAPTER 4. REPETITION

Once we master these ideas, Python becomes a Turing-complete language;
it, given su�cient memory and time, can be used to solve any computational
problems that is solvable. Let us now set out on this next exploration.

4.1 Iterables and De�nite Loops

Iterables show us a collection of objects in succession. A very simple iterable is
called a range object. If you cast a range object as a list, you can see all of the
values it exposes.

>>> range(10)
range(0, 10)
>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> range(1,5)
range(1, 5)
>>> list(range(1,5))
[1, 2, 3, 4]
>>> list(range(2,101,7))
[2, 9, 16, 23, 30, 37, 44, 51, 58, 65, 72, 79, 86, 93, 100]

To do something with each value of an iterable, you use the for keyword as
follows.

>>> for quack in range(10):
... print(f"{quack}\t\t{quack*quack}")
...
0 0
1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81

Lurking inside of any collection (list/tuple/string/dictionary/set) is an it-
erator that serves its items up in some order; this object is what makes these
collections iterable. For a hashed collection, the iterator serves up the items in
no particualar discernable order. A dictionary iterates through its keys. The
use of the for loop automatically brings out that feature.

©2009-2021, John M. Morrison 106

CHAPTER 4. REPETITION 4.1. ITERABLES AND DEFINITE LOOPS

>>> for f in os.listdir():
... print(f"{f}\t\t{os.path.getsize(f)}\t{os.path.abspath(f)}"
...
docstring.py 200 /Users/morrison/book/ppp/p1Code/docstring.py
evil_scope.py 78 /Users/morrison/book/ppp/p1Code/evil_scope.py
grades.py 671 /Users/morrison/book/ppp/p1Code/grades.py
rectangle.py 215 /Users/morrison/book/ppp/p1Code/rectangle.py

Here we see the name, size and absolute path of each �le in a directory.

Watch the for loop work on tuples and strings.

>>> t = (1,2,3,4,5)
>>> tot = 0
>>> for k in t:
... tot += k
...
>>> print(tot)
15

We just found the sum of the entries in the tuple. A string's iterator walks
through the string one character at a time.

>>> for k in s:
... print(k*6)
...
ffffff
oooooo
oooooo
mmmmmm
eeeeee
nnnnnn
tttttt

A Cautionary Tale Watch this attempt to zero out a list.

>>> x = [1,2,3,4,5,6]
>>> for k in x:
... k = 0
...
>>> x
[1, 2, 3, 4, 5, 6]

What happened? What the iterator did is assign each element in succession to
the temporary name k, so reassigning k has no e�ect on the list itself.

Contrast that to this.

©2009-2021, John M. Morrison 107

4.1. ITERABLES AND DEFINITE LOOPS CHAPTER 4. REPETITION

>>> for k in range(len(x)):
... x[k] = 0
...
>>> x
[0, 0, 0, 0, 0, 0]

Here we are indexing into the list using copies of the integers starting at 0 and
ending before len(x). Note that the indexed entries of the list are lvalues, so
we can assign to them.

The for loop is a de�nite loop; its purpose is to walk through a speci�ed
collection of objects, or visit all of the objects o�ered up by an iterable. Its
�food� is an iteraable. Objects of type range are iterables. Lists, tuples, and
strings all automatically o�er their iterators when used in a for loop.

Two Useful Modi�ers Here is clunkiness of the �rst class.

>>> for k in range(len(x) - 1, -1, -1):
... print(x[k])
...
elephant
dingo
carical
bat
aardvark
>>>

This is a far better way. Use it.

>>> for k in reversed(x):
... print(k)
...
elephant
dingo
carical
bat
aardvark

So, the reversed function hands you an iterator that walks backward through
a collection.

Now consider this. It's kinda ugly.

>>> for k in range(len(x)):
... print(f"x[{k}] = {x[k]}")

©2009-2021, John M. Morrison 108

CHAPTER 4. REPETITION 4.2. FILE IO

...
x[0] = aardvark
x[1] = bat
x[2] = carical
x[3] = dingo
x[4] = elephant
>>>

Now let's see the better way.

>>> for k, item in enumerate(x):
... print(f"x[{k}] = {item}")
...
x[0] = aardvark
x[1] = bat
x[2] = carical
x[3] = dingo
x[4] = elephant

In general, you should only rarely walk through a list or tuple by traversing
its indices. These two tools will help make that occasion rare. The underlying
collection is never altered by either of them.

Programming Exercises

1. Can you use reversed and enumerate on a range object?

2. Write a loop that will produce this output

5. aardvark
4. bat
3. carical
2. dingo
1. elephant

Can you come up with two reasonable solutions?

4.2 File IO

Reading and writing text �les in Python is achieved using the built-in open
function. This function has one required argument, a �lename. The second,
optional, argument is the mode for opening the �le; its default value opens a �le
for reading. It is recommended you open a �le for reading explicitly; remember,
�explicit is better than implicit.� When we open a �le, there is an iterator in it
that can read the �le line-by-line.

©2009-2021, John M. Morrison 109

4.2. FILE IO CHAPTER 4. REPETITION

r This is read mode. It is the default mode as well.
The �le you are reading from needs to exist, and you
need to have read permission, or your program will
error out.

w This is write mode. It clobbers any existing If the �le
exists and you lack write permission, your program
will error out. �le you open. If the �le does not exist,
it is created.

a This is append mode. It causes additional text to be
appended to the end of an existing �le. If the �le
does not exist, it gets created.

b This is binary mode. It opens a �le as raw bytes and
can be combined with read or write mode.

t This is text mode. It opens a �le as text; it is the
default.

x This opens a �le for writing but throws a
FileExistsError if the �le exists. if the �le exists.

In read mode, there are several ways to access the contents of the �le. Create
this text �le.

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789
!@#$%^&*()_+
,./;'[]\<>?:"{}|+

Now we will demonstrate some features in a live session. Let us open the �le
for reading.

>>> fp = open("sampler.txt", "r")
>>> fp
<_io.TextIOWrapper name='sampler.txt' mode='r' encoding='UTF-8'>
>>>

Now we take a byte.

>>> fp.read(1)
'a'
>>> fp.tell()
1

We pass the number of bytes we want to read to read and they are returned.
In addition, the �le object has inside it a pointer to the next byte it is to read.
You can be told that byte by using tell. You can move to any byte by using
seek.

©2009-2021, John M. Morrison 110

CHAPTER 4. REPETITION 4.2. FILE IO

>>> fp.seek(10)
10
>>> fp.read(1)
'k'

To go back to the beginning of the �le, use seek(0). To read the rest of the
�le, pass no argument like so.

>>> fp.seek(0)
0
>>> fp.read()
'abcdefghijklmnopqrstuvwxy... 789\n!@#%$^&*()_+\n,./;\'[]\\<>?:"{}|+\n'

In this case, you get the entire �le in a single string. If the �le is large, you
might not want to do that. In addition to having the �le pointer, the �le object
has its own iterator. Watch this.

>>> for line in fp: print(line)
...
abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ

0123456789

!@#%$^&*()_+

,./;'[]\<>?:"{}|+

Hey, why did this double space? Remember, print puts a newline at the end
by default. But each line of the �le has a newline at the end as well. We can
suppress this annoyance as follows.

>>> for line in fp: print(line, end="")
...
abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789
!@#%$^&*()_+
,./;'[]\<>?:"{}|+

Here is one other nifty trick.

>>> fp.seek(0)
0

©2009-2021, John M. Morrison 111

4.2. FILE IO CHAPTER 4. REPETITION

>>> stuff = fp.readlines()
>>> stuff[0]
'abcdefghijklmnopqrstuvwxyz\n'
>>> stuff[1]
'ABCDEFGHIJKLMNOPQRSTUVWXYZ\n'
>>> len(stuff)
5

The readlines method returns a list of strings each containing a line of the �le
in seriatum.

Now, let us turn to writing �les. The w mode corresponds to C's and UNIX's
write mode for open and fopen. If you open an existing �le for writing it will
be clobbered. You must use append mode (a) to open a �le and to add text to
it. Both write and append mode will create the �le if it does not yet exist. Let
us now create a �le in an interactive session.

>>> out_file = open("bilge.txt", "w")
>>> out_file.write("quack")
5
>>> out_file.write("moo")
3
>>> out_file.write("baa")
3
>>> out_file.close()
>>> in_file = open("bilge.txt", "r")
>>> print(in_file.read())
quackmoobaa

What can be gleaned from this session? Firstly, the write method returns the
number of bytes written to the �le. Notice that it does not put a newline at
the end of the byte sequence you are entering. You have to do this yourself
or you will end up with a �le with one long line. Also beware that the �le is
not saved until you close it. Why is this? FileIO in Python is bu�ered so that
python is not pestering the kernel every time it wants to write a character to
a �le. It has a temporary storage place for the characters you write, and when
that storage place gets full, Python ships the bu�er to the �le. Similarly, when
you read from a �le, you are actually reading from a bu�er. Most kernels will
do �le operation a disk sector at a time. Closing the �le causes the bu�ere to
be �ushed into the �le, where it belongs, and it discontinues the use of certian
system resources.

Know when to flush You can trigger this manually with the flush method.
Observe this.

©2009-2021, John M. Morrison 112

CHAPTER 4. REPETITION 4.2. FILE IO

>>> fout = open("dragons.slay", "w")
>>> fout.write("Bart, eat my shorts")
19
>>> fout.write("NOW")
3

Now, during this session, do this

unix> cat dragons.slay

and you will see that the �le is empty! Now do this.

>>> fout.flush()

unix> cat dragons.slay
Bart, eat my shortsNOW
unix>

Most of the time you never need to �ush, because if you do this

>>> fout.close()

the bu�er is automatically �ushed.

4.2.1 A Helpful Tool: Raw Strings

Python supports a version of strings called raw strings. To make a raw string
literal, just prepend with an r. When Python encounters a raw string, all
backslashes are read literally. No special meaning is given them by the language.
This interactive session shows how it works.

>>> path = 'C:\nasty\mean\oogly'
>>> print (path)
C:
asty\mean\oogly
>>> path = r'C:\nasty\mean\oogly'
>>> print (path)
C:\nasty\mean\ugly
>>>

Notice that in the raw string, the \n did not expand to a newline; it was a
literal backslash-n. This is a great convenience when dealing with �le paths in
Windoze and for writing regular expressions. You can also make a triple-quoted
string a raw string.

©2009-2021, John M. Morrison 113

4.3. SOME FILEIO APPLICATIONS CHAPTER 4. REPETITION

Warning! You may not end a raw string with a \. This causes the close-quote
to be escaped to a literal character and causes a string-delimiter leak. Think
for a moment: there is an easy work-around for this!

4.3 Some FileIO Applications

Let us try to imitate the UNIX command cat, which puts a �le to the screen.
We begin by developing an outline for what we want to do.

The filename we wish to cat should be a command-line argument

It will be argv[1].

We will open this file for reading

read the contents

put them to the screen

finish up by closing the file.

Now, let's get started with the command-line arguments.

The filename we wish to cat should be a command-line argument

from sys import argv
filename = argv[1]
We will open this file for reading

read the contents

put them to the screen

finish up by closing the file.

Now, let's open the �le and aspirate its contents.

The filename we wish to cat should be a command-line argument

from sys import argv
filename = argv[1]
We will open this file for reading using the \texttt{with} statement

with open(filename, "r") as fp:
read the contents

s = fp.read()
put them to the screen

Now let's �nish up.

The filename we wish to cat should be a command-line argument

from sys import argv
filename = argv[1]
We will open this file for reading

©2009-2021, John M. Morrison 114

CHAPTER 4. REPETITION 4.3. SOME FILEIO APPLICATIONS

with open(filename, "r") as fp:
read the contents

s = fp.read()
put them to the screen

print(s)

You think we are done? Think again. It's time to run this raw program.

from sys import argv
filename = argv[1]
with open(filename, "r") as fp:

s = fp.read()
print(s)

Create this little test �le, simple.txt

Here is a file
with a little text in it.
We are going to use this to see how
well our at program works.

Now run our program on it.

unix> python cat.py simple.txt
Here is a file
with a little text in it.
We are going to use this to see how
well our at program works.

It looks great, eh? Now let us do this.

unix> python cat.py
Traceback (most recent call last):

File "cat.py", line 2, in <module>
filename = argv[1]

IndexError: list index out of range

Uh oh. That idiotic end user. Let us now fend o� this form of folly with a little
parry.

from sys import argv
if len(argv) < 2:

print("Usage: python cat.py filename; enter a filename")
quit()

©2009-2021, John M. Morrison 115

4.3. SOME FILEIO APPLICATIONS CHAPTER 4. REPETITION

filename = argv[1]
with open(filename, "r") as fp:

s = fp.read()
print(s)

Now let's run this.

python cat.py
Usage: python cat.py filename; enter a filename

Think we are in the clear? Check this out.

MAC:Thu Dec 06:14:23:ppp> python cat.py not.real
Traceback (most recent call last):

File "cat.py", line 6, in <module>
fp = open(filename, "r")

FileNotFoundError: [Errno 2] No such file or directory: 'not.real'

We ran this, giving a �le that fails to exist. There are two ways to handle this.
One way is to take exception.

from sys import argv
if len(argv) < 2:

print("Usage: python cat.py filename; enter a filename")
quit()

filename = argv[1]
try:

with open(filename, "r") as fp:
s = fp.read()

print(s)
except FileNotFoundError:

print("File {0} does not exist.".format(filename))
quit()

unix> python cat.py not.real
File not.real does not exist.

Another way is to use os.path.exists

from sys import argv
import os
if len(argv) < 2:

print("Usage: python cat.py filename; enter a filename")
quit()

©2009-2021, John M. Morrison 116

CHAPTER 4. REPETITION 4.3. SOME FILEIO APPLICATIONS

filename = argv[1]
if not os.path.exists(filename):

print("File {0} does not exist.".format(filename))
quit()

with open(filename, "r") as fp:
s = fp.read()

print(s)

Feel safe? Not yet. One more form of nonsense can occur.

unix> chmod 000 simple.txt

We just revoked all read, write, and execute privileges for this �le. Now watch
this.

unix> python cat.py simple.txt
Traceback (most recent call last):

File "cat.py", line 10, in <module>
fp = open(filename, "r")

PermissionError: [Errno 13] Permission denied: 'simple.txt'

We could take exception and handle this that way. Or, here is another useful
too, os.access. Let's do this.

unix> chmod 644 simple.txt

Now start Python in interactive mode.

>>> os.access("simple.txt", os.F_OK)
True
>>> os.access("simple.txt", os.R_OK)
True
>>> os.access("simple.txt", os.W_OK)
True
>>> os.access("simple.txt", os.X_OK)
False

The �rst line tests if the �le exists. It does. The second, third and fourth check
for read, write and execute permission.

from sys import argv
import os
if len(argv) < 2:

print("Usage: python cat.py filename; enter a filename")

©2009-2021, John M. Morrison 117

4.3. SOME FILEIO APPLICATIONS CHAPTER 4. REPETITION

quit()
filename = argv[1]
if not os.path.exists(filename):

print("File {0} does not exist.".format(filename))
quit()

if not os.access(filename, os.R_OK):
print("You lack permission to read file {0}. Bailing....")
quit()

with open(filename, "r") as fp:
s = fp.read()

print(s)

Now revoke all permissions and run

unix> chmod 000 simple.txt
MAC:Thu Dec 06:15:09:ppp> python cat.py simple.txt
You lack permission to read file {0}. Bailing....

Our suit of armor is complete.

Programming Exercises In these exercises, you will learn how to imitate
the behavior of various UNIX commands for �le processing. You will need to
prowl the os and os.path documentaton to solve this problems.

1. Write a program named ls.py which accepts a �lename as a command
line argument. If the �le is a regular �le, display the �le's name. If the
�le is a directory, list the directory's contents. If the �le does not exist or
cannot be read, emit an appropriate nastygram.

2. Write a function named p_string(filename) which shows the permission
string for a �le, and which takes appropriate action if the �le does not exist.
Example: if a �le has 644 permissions and is not a directory its permission
string is "-rw-r�r�". If a �le is a directory and it has 711 permissions,
its permission string is "drwx�x�x".

3. Write a program show_sizes.py that accepts a commmand-line argument
that is a �le (regular or directory) and which displays the �le name with
its size if it is a regular �le and which displays the contents and their sizes
it it is a directory.

4. Write a program copy.py that copies a donor �le to a recipient �le. Give
appropriate error warnings if something goes awry.

5. Open a �le for reading and the invoke the readlines method. What does
it do?

6. Write a program named wc.py that counts the number of characters, lines,
and words in a �le. Test it against UNIX's wc.

©2009-2021, John M. Morrison 118

CHAPTER 4. REPETITION 4.4. WHILE AND INDEFINITE LOOPING

7. Write a program named grep.py that takes as arguments a string and a
�lename and which puts all of the lines of the �le containing the speci�ed
string to stdout.

4.4 while and Inde�nite Looping

Python has a second looping construct, while. Let us begin by showing an very
simple example.

def main():
x = input("Enter a number ")
x = int(x)
while x < 100:

print("The number you entered, {}, is less than 100".format(x))
x = int(input("Enter a number "))

print("You finally entered {} and it is at least 100.".format(x))
main()

This is an example of a �nag� loop that will keep asking until the user does the
desired thing.

Inde�nite loops can be dangerous. It is very easy to have an �in�nite loop,�
which just keeps running until the OS or the user calls the process running it
to halt. Look at this little program.

x = 5
while x < 10:

print(x)
x -= 1

The value of x will keep marching farther and farther from resolution. This loop
will just keep printing a countdown to the screen. If you run this, use control-C
to stop it. This loop causes �spewing;� to wit, it causes great volumes of text
to keep streaming into stdout.

Loops can also �hang;� in this event, the program simply sits there doing
nothing. You can kill a hung or spewing program with control-C.

Here is a loop that is guaranteed to hang.

x = 1
while x > 0:

x += 1

©2009-2021, John M. Morrison 119

4.5. PROGRAMMING PROJECTS CHAPTER 4. REPETITION

Programming Exercises Wrap these solutions in functions.

1. Write a while loop that prints out the entries in a list.

2. Repeatedly roll a pair of dice until you get doubles. Print the rolls as they
occur. If a double 1 occurs, print "Snake Eyes! and if a double 6 occurs,
print "Boxcars!

3. Repeatedly toss a coin until you get �ve heads in a row. return the tosses
in a string like this: "HTHHHTTTHTTTHHHTTTTTHHHHH".

4.5 Programming Projects

Here you will use your skills to perform simulations of two stochastic systems.
One will introduce you to stopping times, which entail experiments that are
repeated until a speci�ed event occurs.

The other is an analysis of risk in the Parker Brothers' game Monopoly.
Everyone should love the orange monopoly.

Project 1: System Simulation for a Waiting Time In the �rst project,
you will perform a simulation of a stochastic (random) system. In this project,
you are going to perform a simulation in which you toss a fair coin until a head
appears. You are going to run this experiment one million times and maintain a
tally of how many times the �rst head came up on the �rst toss, second toss...,
etc. An outline of suggested functions for you to implement is shown.

1. Implement the function toss_coin, which produces an "H" or a "T" at
random.

2. Implement the function �rst_head, which tosses a fair coin until a head
appears and returns the number of that trial.

3. Implement the function perform_sim(num_trials) that returns a dictio-
nary whose keys are integers and whose values are the number of times
that result was returned by repeated trials of first_Head. This dictionary
just amouts to a tally of the trials.

4. Run this �rst_Head for one million trials. What do you see? What seems
to happen as you double the number of trials?

Project 2: The Orange Monopoly Simulation In this next project, you
are playing Monopoly and your client is on the square Just Visiting/Jail, and
is just visiting. His opponent has hotels on the New York Avenue Monopoly.
You have the actuarial duty of determining the price for an insurance policy to
indemnify your client against the cost of the visiting the hotels for one turn.

©2009-2021, John M. Morrison 120

CHAPTER 4. REPETITION 4.6. FUNCTION FLEXIBILITY

To do this project, you will need to �nd an image of a Monopoly board.
Here are the pertinent rules. The rent for New York Avenue is $1000. The rents
for St. James and Tennessee Ave are $950. You do not need to concern yourself
with the other squares, save for Go to Jail, which ends your turn and puts you
in jail.

To start a turn, you roll a fair pair of dice (6-sided) and advance that number
of squares. If you land on a property with a hotel, you must pay the applicable
rent. If you roll doubles, you roll again and the same rules apply. If you roll
doubles three times in a row, you go to straight to jail for speeding and your
turn ends. In this case, you never land on the square you rolled for and are not
obliged to pay rent theere.

So it's possible to have #$!$!@# luck and roll double threes, hit St. James,
then roll a 1 and a 2 and hit New York Avenue for a total damage of $1,950.

Here are some suggestions for how to proceed.

1. Write a function that produces a tuple with two fair die rolls in it.

2. Make a tuple that represents all reachable squares in one turn.

3. Write a function that peforms the rolls in a single turn and which returns
the total damage from the hotels in that turn.

4. Write a function doTrials(n) that accepts an integer as an argument,
and which computes the average damage from the hotels in n trials.

5. Run a ton of trials and see what the average damage is. How would you
price this policy?

6. Can you do a big trial, keep running averages in a �le, and plot the results?

Project 3: Gambler's Ruin Suppose we have two gamblers and they have
a total of $M (an integer) between them. They repeatedly play a game until one
of them goes bust; each trial of the game has win probablility p for Player One
and 1− p for Player Two. For M = 10, perform simulations of this experiment.
What do the probabilities of bust look like for Player one if his initial stake is $
k, 1 < k < 10? What is the average time to bust in each of these cases?

4.6 Function Flexibility

When you de�ne a function such as this one

def f(x, y, z):
return x + 2*y + 3*z

the arguments x, y, and z are called positional arguments. This is so because
when you call the function like this

©2009-2021, John M. Morrison 121

4.6. FUNCTION FLEXIBILITY CHAPTER 4. REPETITION

print(f(1,2,3))

the arguments are sent, in order to f. Notice that the position of each argument
is critical. Permute them and the result is not the same.

You have seen some nifty stu� that make functions �exible and which expand
their purpose, but now the time has arrived to for you to be able to use these
things yourself.

Let us begin with an example. Consider the function math.log. This func-
tion can be called as follows.

>>> math.log(10) #natural log

2.302585092994046
>>> math.log(1000, 2)
9.965784284662087 #log base 2

You see an optional second argument. How did they do this? We can make it
happen. We will create a function called lincoln that does the same thing.

import math
def lincoln(x, b = math.e):

return math.log(x)/math.log(b)
print(lincoln(1000,2))
print(math.log(1000, 2))

The second argument has a default value of math.e. Notice that at least one
argument is required.

Here is another example. We create the illusion that this function can have
as many as �ve arguments.

def product(a = 1, b = 1, c = 1, d = 1, e = 1):
return a*b*c*d*e

print("product() = ", product())
print("product(3) = ", product(3))
print("product(3, 4) =", product(3, 4))
print("product(3, 4, 5) =", product(3, 4, 5))
print("product(3, 4, 5, 6) =", product(3, 4, 5, 6))
print("product(3, 4, 5, 6, 7) =", product(3, 4, 5, 6, 7))

If you take the default values away from the �rst two arguments, then at least
two arguments are required to call this function. You should try this now.

End of List Rule All default arguments for any function must be grouped
together at the end of the argument list. Something like this is illegal.

©2009-2021, John M. Morrison 122

CHAPTER 4. REPETITION 4.6. FUNCTION FLEXIBILITY

def dumb(x, y = "cows", z):
pass

Run this program and see the error message. This is because these arguments
are really polymorphic. If you pass a value to them, they behave as positional
arguments. If you don't the default value is used. It does not take a great deal
of imagination to see why the End of List Rule is necessary.

4.6.1 A Star is Born

Now let us consider the print function. You have noticed this sort of �exibility
in its use.

print("Foo", "Bar", "Baz", sep="moo", end="cats\n")

It seems that this function accepts an unlimited number of comma-separated
arguments, and they allows you to specify behavior at the end of the argument
list using keywords. We might like to have this particular arrow in our quiver,
so let us set about getting it.

Consider the problem of �nding writing a function to �nd the sum of a a
bunch of numbers whose call looks like this.

>>> total(2,3,6,8)
19

To solve it, let us see if we can plagiarize print's mechanism. Here is what
print's header looks like.

def print(*objects, sep=' ', end='\n', file=sys.stdout, flush=False):

Its �rst argument is a star argument or stargument. A stargument must appear
after all other positional arguments.

Now let's make total. We will use a stargument.

def total(*x):
out = 0
for k in x:

out += k
return out

print(total(2, 3, 6, 8))

You might want to require at least one argument be passed to total. We can
enforce this by adding a postional argument at the beginning. We do this in
function totall.

©2009-2021, John M. Morrison 123

4.6. FUNCTION FLEXIBILITY CHAPTER 4. REPETITION

def total(*x):
out = 0
for k in x:

out += k
return out

def total1(y, *x):
out = y
for k in x:

out += k
return out

print(total(2,3,6, 8))
print(total1(2,3,6, 8))
print(total())
print(total1())

Note the opprobrious ululation after the last call. At least one number is re-
quired.

unix> python keywords.py
19
19
0
Traceback (most recent call last):

File "keywords.py", line 15, in <module>
print(total1())

TypeError: total1() missing 1 required positional argument: 'y'
unix>

Let us now make a simple function to count the number of �les in a directory
with a given extension that uses all default arguments. For defaults, we will have
the directory be the cwd and the extension be .txt.

import os
from sys import argv
def countFiles(directory=".", end="txt"):

files = os.listdir(directory)
out = 0
for item in files:

if item.endswith("." + end):
out += 1

return out
folder = "." if len(argv)== 1 else argv[1]
ext = "" if len(argv) < 3 else argv[2]
print(folder)
print("There are {0} files in {1} with extension .{2}".format(countFiles(directory=folder, end=ext), folder, ext))

©2009-2021, John M. Morrison 124

CHAPTER 4. REPETITION 4.7. GENERATORS

Programming Exercise Modify the output routine so that no mention of
extension is made if argv[2] does not exist and all �les are counted.

4.6.2 Keyword Arguments

Now let us see how to use keyword arguments. Recall that print's header looks
like this.

def print(*objects, sep=' ', end='\n', file=sys.stdout, flush=False):

Its �rst argument is a stargument. Following it are several keyword arguments.
Each has the form keyword=value. Each of the speci�ed values is the default
for that argument. If no value is passed to a keyword argument, its default
value is used.

Order in the court! You can have positional, star, and keyword arguments
in a function. You must obey these rules

1. Positional arguments come �rst.

2. One stargument can come next.

3. Keyword arguments must all occur at the end.

Here is a cheesy example of these rules at work.

def f(*x, y="cows", z = "horses"):
return "{}{}{}".format(sum(x), y ,z)

def g(a, b, *x, y="cows", z = "horses"):
return "{}{}{}{}{}".format(a, b, sum(x), y, z)

print (f(2,3,4,5,y="rhinos", z="pigs"))
print (g("moo", "baa", 2,3,4,5,y="rhinos", z="pigs"))

4.7 Generators

A generator is a stateful function that remembers its local symbol table between
calls. You will meet a new keyword yield when creating genearators, which
returns a value to the caller without destroying the stack frame containing the
function. Between calls, this object remembers where it left o� and it remembers
the values of local variables. Note that the scope of these local variables is still
con�ned to the body of the generator. Let us see this at work in a very simple
example.

©2009-2021, John M. Morrison 125

4.7. GENERATORS CHAPTER 4. REPETITION

Each time a generator is called it can either yield a value, in which case it can
be called again, or it can return a value, which termimnates its execution. We
begin with a super-simple example, and we see how a generator is an iterable.

def simple():
yield "quack"
yield "moo"
yield "baa"
yield "neigh"
yield "woof"

s = simple()
for k in s:

print(k)

Now we run it.

unix> python simple.py
quack
moo
baa
neigh
woof

Generators can iterate through �nite or in�nite sets, as we shall soon see.
Let's make one that starts counting at 1. Generators are a handy form of
iterable.

def counter(n):
k = 0
while k < n:

k += 1
yield k

for k in counter(10):
print(k)

Now run it.

unix> python counter.py
1
2
3
4
5

©2009-2021, John M. Morrison 126

CHAPTER 4. REPETITION 4.7. GENERATORS

6
7
8
9
10

Here is an imitation of range.

def strange(start=0, stop = 10, skip = 1):
while start < stop:

yield start
start += skip

for k in strange(0, 11, 2):
print(k)

for k in strange(0, 1, .1):
print("{0:.2f}".format(k))

unix> python strange.py
0
2
4
6
8
10
0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Generators can serve up in�nite sequences. For example, we will create a
generator here that serves up the nonnegative integers.

def z():
out = 0
while True:

out += 1
yield out

©2009-2021, John M. Morrison 127

4.7. GENERATORS CHAPTER 4. REPETITION

progression = z()
for k in progression:

print(k)

Now we run it. Be prepared to hit control-C to stop the spewage.

unix> python z.py
0
1
2
...

(big number)

You will see that the value of the local variable out is rememembered between
calls. This will iterate through all of the positive integers.

This beast requires some taming. You could put logic into z to tell it to
stop, but here is a more �exible way. We pass our generator to a function that
does the dirty work for us.

def z():
out = 0
while True:

out += 1
yield out

def stopper(generator, n):
well = z()
for k in well:

if k < n:
yield k

else:
return

progression = z()
for k in stopper(progression, 10):

print(k)

Now we run it.

©2009-2021, John M. Morrison 128

CHAPTER 4. REPETITION 4.7. GENERATORS

Now we run it.

unix> python z.py
1
2
3
4
5
6
7
8
9

The stopper routine can be recycled.

def z():
out = 0
while True:

out += 1
yield out

def squares():
out = 0
while True:

out += 1
yield out*out

def stopper(generator, n):
well = generator
for k in well:

if k < n:
yield k

else:
return

progression = squares()
for k in stopper(progression, 200):

print(k)

Now we run it.

unix> python z.py
1
4
9
16
25

©2009-2021, John M. Morrison 129

4.7. GENERATORS CHAPTER 4. REPETITION

36
49
64
81
100
121
144
169
196

4.7.1 Holy Iterable, Batman!

A generator is an iterable! Here is proof.

def squares():
out = 0
while True:

out += 1
yield out*out

def stopper(generator, n):
well = generator
for k in well:

if k < n:
yield k

else:
return

s = squares()
for k in range(10):

print(next(s))

Now we run it.

unix> python z.py
1
4
9
16
25
36
49
64
81
100
121

©2009-2021, John M. Morrison 130

CHAPTER 4. REPETITION 4.7. GENERATORS

144
169
196

You can also make generators on-the-�y using a mechanism akin to a com-
prehension. Here is an example.

>>> s = (x*x*x for x in range(1,10))
>>> for k in s:
... print(k)
...
1
8
27
64
125
216
343
512
729

Take note that once you do this, the generator is �used up.� Watch this; we are
iterating with it again.

>>> for k in s:
... print(k)
...
>>>

The solution? Just make another one. Here is another way to use it. We will
begin by reconstituting it.

>>> s = (x*x*x for x in range(1,10))
>>> next(s)
1
>>> next(s)
8
>>> next(s)
27
>>> next(s)
64
>>>

What happens if you go too far? Watch.

©2009-2021, John M. Morrison 131

4.7. GENERATORS CHAPTER 4. REPETITION

>>> next(s)
125
>>> next(s)
216
>>> next(s)
343
>>> next(s)
512
>>> next(s)
729
>>> next(s)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
StopIteration
>>>

This next function is handy if a generator generates an in�nite progression. We
create an example with Fibonacci numbers.

def fib():
little = 1
big = 0
while True:

little, big = big, little + big
yield little

f = fib()
for k in range(10):

print(next(f))

Now run this.

unix> python fibonacci.py
0
1
1
2
3
5
8
13
21
34

©2009-2021, John M. Morrison 132

CHAPTER 4. REPETITION 4.8. TERMINOLOGY ROUNDUP

4.8 Terminology Roundup

� de�nite loop This is a loop that walks through a collection or an iterable,
executing a block of code for each item. Python implements this with the
for construct.

� inde�nite loop This is a loop that repeats until its predicate becomes
false. Python implements this with while

� iterable This is an object that can be walked through using a for loop.
All Python collections are iterables that are walked through an item at a
time. Python strings are walked through a character at a time. Generators
and range objects are also iterables.

� keyword argument This is named argument given at the end of a func-
tion's argument list. Examples include sep and end in print.

� star argument This is an argument in a function that is preceded by a
star (*), which behaves like an array inside of a function.

� stargument Synonym of for star argument.

� Turing-Complete This describes a full-featured computer language ca-
pable of solving any computational problem, given su�cient time and
memory.

©2009-2021, John M. Morrison 133

4.8. TERMINOLOGY ROUNDUP CHAPTER 4. REPETITION

©2009-2021, John M. Morrison 134

Chapter 5

Algorithms

5.0 Introduction

Recall that an algorithm is a precise recipe for carrying out a task. We have
a wide variety of tools at our disposal for accomplishing computational tasks
in Python. We have looping, conditional logic and Python's smart objects at
our disposal that can easily automate complex procedures. The purpose of this
chapter is to allow us to �ex these new muscles.

5.1 A Rough Measure of Growth

Suppose that f and g are functions. We will say that f = O(g) as x→∞ if for
su�ciently large x, we have some constant M so that

|f(x)| ≤M |g(x)|,

for x su�ciently large.

To say this is simple English, f is at most proportional to g when x gets
big. This symbol O is called a Landau symbol, after the mathematician Edmund
Landau, who invented it along with Paul Bachmann. We will use this notation
to describe the time/space e�cency of algorithms.

5.2 Searching

Consider the task of searching a list for a particular item. If the list is unsorted
and contains n elements, we will just have to walk through the list, checking if
each element is the desired element we seek (the quarry). At most we will have

135

5.2. SEARCHING CHAPTER 5. ALGORITHMS

to do n checks. If the item is not present, we end up checking the whole list to
no avail.

We see that this procedure takes an amount of time at worst proportional to
the size of the list, so it is an O(n) or a linear-time algorithm. Note that when
the search �eld's size doubles, the time and memory it takes to do the search
also doubles.

Programming Exercise Use a loop to write contains(c, quarry), where
c is a list or tuple and quarry is an object. Have it return True if quarry is
present in c and False otherwise.

5.2.1 Binary Search

Later in this chapter, we will discuss sorting, but here will discuss a smart
scheme for searching a sorted list. This method will be quicker than the linear
search you just wrote because you will not need to inspect every element in the
list.

Suppose we have a list that is in sorted order. Here is a scheme for searching
it.

1. Look at the item halfway into the list.

2. if this item is your quarry, report True and you are done. If this item is is
before your quarry, discard the �rst half of the list; the quarry, if present,
is in the second half. If the item is after the quarry, the item is in the �rst
half of the list.

3. Repeat. If you end up discarding the entire list and never �nd the quarry,
return False

This method is called binary search.

Suppose your list contained a million elements. After each pruning of the
list, we have the following largest size of the remaining list.

1 1000000
2 500000
3 250000
4 125000
5 62500
6 31250
7 15625
8 7813
9 3907

10 1954

©2009-2021, John M. Morrison 136

CHAPTER 5. ALGORITHMS 5.2. SEARCHING

Figure 5.1: Fast-Moving Banana Slug

11 977
12 489
13 245
14 123
15 62
16 31
17 16
18 8
19 4
20 2
21 1

This procedure requires a maximum of 20 steps. Each time, the search �eld is
cut in half. So, all we are really asking is: How many times do we need to divide
a number by 2 until it is reduced to 1 or 0? This would be log2(n). So the time
for this procedure to do its job is O(log(n)). We say that such an algorithm is
a log-time algorithm.

You will notice an absence of a base in the logarithm; this is because all
logarithms are proportional to each other. The reason? Apply the change-of-
base formula for logs. We will use the notation log for the natural log function.

We all know from Ren and Stimpy that logs are big, heavy and wood. They
are also very slow-growing functions. So sorting a list makes �nding things in it
worlds faster. You can search a sorted list with a billion elements in 30 checks.
That's a whole lot better than a billion checks.

©2009-2021, John M. Morrison 137

5.3. ROOT FINDING CHAPTER 5. ALGORITHMS

Programming Exercise Implement this algorithm in Python. Load the
Scrabble dictionary into a list using readlines. Then write a procedure to
search it for a word, returning True if the word is present and False otherwise.

5.3 Root Finding

We are going to describe an algorithm for �nding a zero (x�intercept) of a
continuous function that changes sign on an interval. This uses a �divide and
conquer� mechanism similar to that of the binary search algorithm you just
wrote. We need a one useful fact, the Weierstraÿ Intermediate value theorem.

Theorem. Let [a, b] be a closed, bounded interval and f be a continuous real-
valued function de�ned on this interval. If f changes sign on the interval, then
there is at least one x ∈ [a, b] so that f(x) = 0.

There is an easy way to check if two numbers x and y are of opposite sign;
just check to see if xy < 0.

Let us begin with an example. Suppose we are trying to approximate
√

2.
We know that the function f(x) = x2 − 2 has

√
2 as a root. Also we can see

that f(1) = −1 and f(2) = 2, so f must have a root on [1, 2].

We know that
√

2 = 1.5± .5. Now we do this. Check the midpoint; f(1.5) =
.25 and f(1) = −1 so we have now bounded our root to being in [1, 1.5]. This
means

√
2 = 1.25± .25. At each step we see that we can obtain a value that is

within a tolerance of
√

2. When that tolerance is small enough, we can stop.

Programing Exercise Continue this calculation until you know
√

2 ± .001.
Can you automate the process with a Pyhon program?

Note that the error is at most (right - left)/2 where [left, right] is the
interval on which we know the function changes sign.

Programming Exercise Write a function zero(a, b, tol, f) that �nds
an approximation for a root of the function f on [a, b] with error tolerance tol.
The preconditon for calling this function is that f changes sign on [a, b].

5.4 A little number theory

Let us begin by looking at some elementary ideas of number theory. Back in
your Wormwood days, you learned about long division. You learned that if a

©2009-2021, John M. Morrison 138

CHAPTER 5. ALGORITHMS 5.4. A LITTLE NUMBER THEORY

and b are positive integers, you can write

b = aq + r,

where q is an integer called the quotient, r is the remainder, and 0 ≤ r < a. In
fact, these integers q and r are unique. If the remainder r is zero, then a divides
into b evenly. In this event, we write a|b.

Python computes these quantities easily. Let us take b = 365 and a = 7.

>>> b = 365
>>> a = 7
>>> q = b//a
>>> r = b%a
>>> a*q + r == b
True

So, the quotient is just obtained by integer division and the remainder is com-
puted with our friend mod, %.

Testing for divisibility of numbers is easy. If you have integers a and b, then
you can test for a|b with the predicate b%a == 0. For example, to test if a
number n is even, you use the predicate n%2 == 0.

Back in your Wormwood days, you likely learned about prime numbers. The
number 1 was de�ned not to be prime. An integer 2 or larger is prime if its only
positive divisors are 1 and itself. For example, 4 is not prime, because 2|4. More
generally, a number is not prime if it can be factored into two smaller integers.

The prime factoriaztion theorem states that every number n ≥ 2 can be
factored uniquely into primes. Back in the day, Miss Wormwood taught about
factor trees, which provide a nifty method for doing this. Here is how they
worked. Suppose we want to factor the number 224. It's a cinch that 224 is
divisible by 4. We begin by drawing this.

Both of the leaves on the tree can be factored into smaller integers; do so.
The wonderful machinery of number theory says that the result at the end is
the same no matter how you do this.

©2009-2021, John M. Morrison 139

5.4. A LITTLE NUMBER THEORY CHAPTER 5. ALGORITHMS

Two of the leaves on this tree now have 2s in them; they are prime. Similarly,
there is nothing to be done with the 7. We will �cheat� and factor the 8 into
three 2s.

Every leaf on the tree is prime; it cannot be factored further. We simply pluck up
the numbers inside of the leaves of the tree. We now have this prime factorization
for 224.

224 = 2 · 2 · 2 · 7 · 2 · 2 = 25 · 7.

Now we will create a function that tests positive integers for primality.

To begin, observe that the number 2 is prime because it cannot be factored
into two smaller integers. However, any even number n larger than 2 satis�es
2|n, so even numbers larger than 2 are not prime. So, we can begin writing our
isPrime function as follows.

def isPrime(n):
if n == 1:

©2009-2021, John M. Morrison 140

CHAPTER 5. ALGORITHMS 5.4. A LITTLE NUMBER THEORY

return False
if n == 2

return True
if n%2 == 0:

return False
##we are not done yet.

return "cows"

Test this function out. It will return False if n is 1 or if it is an even number
larger than 2. It will return True if n is 2. For all other cases, it will punt and
return "cows", a ridiculous value we provide to remind ourselves we are not
done yet.

We could accomplish the rest as follows. We then take a couple of known
primes for a spin.

def isPrime(n):
if n == 1:

return False
if n == 2:

return True
if n%2 == 0:

return False
k = 3
while k < n:

if n % k == 0:
return False

k += 1
return True

print(isPrime(997))
print(isPrime(10000019))

Ugh. We're movin' kinda slow at the junction.

unix> time python wasteful.py
True
True

real 0m1.980s
user 0m1.508s
sys 0m0.073s

This has to do a whole lot of checks before it resolves; the cost of the procedure
is roughly proportional to the number you ask it to check if you pass it a prime
and less otherwise.

©2009-2021, John M. Morrison 141

5.4. A LITTLE NUMBER THEORY CHAPTER 5. ALGORITHMS

Now here is an interesting little jewel of a fact that will make our function
sweetly e�cient. Suppose that you have a positive integer n and you write
n = ab where a and b are integers. Then at least one of a or b must satisfy the
condition k ∗ k ≤ n.

Let us show an example. Take the number 36 and write 36 = 9 ∗ 4. Notice
that 4 ∗ 4 = 14 ≤ 36. If you write 36 = 6 ∗ 6, then both factors have a square
that is at most 36. As you shall see all we care is that at least one factor has a
square that is at most n.

So let us improve this. For starters, because of our preliminary tests, we
can begin with k = 3. Also, we can discard all even numbers, so each time the
loop runs let us update with k += 2. This will keep us testing with only odd
numbers. Et Voila! We have a 50% improvement.

You should take your existing implementation of isPrime and integrate this
improvement.

But, like the Ginsu Knife Man says, �There is more!� A while back, we
learned this: if for a positive integer n we have no k so that k ∗ k ≤ n and
n%k = 0, then n is prime! One thing we know here is that the square root of a
large number is a whole lot less than the original number. This becomes more
acutely so as the original number gets bigger. Let us put this together. Here is
what we had.

def isPrime(n):
if n == 1:

return False
if n == 2

return True
if n%2 == 0:

return False
##we are not done yet.

return "cows"

Now we start at k = 3 and go up by 2 each time. The cows get the boot,
because if the loop ends without �nding a prime, we know that n is prime.

def isPrime(n):
if n == 1:

return False
if n == 2:

return True
if n%2 == 0:

return False
k = 3
while k < n:

©2009-2021, John M. Morrison 142

CHAPTER 5. ALGORITHMS 5.4. A LITTLE NUMBER THEORY

if n%k == 0:
return False

k += 2
return True

Next, insert our other improvement.

def isPrime(n):
if n == 1:

return False
if n == 2:

return True
if n%2 == 0:

return False
k = 3
while k*k <= n:

if n%k == 0:
return False

k += 2
return True

Now let's run it.

unix> time python faster.py
True
True

real 0m0.073s
user 0m0.042s
sys 0m0.017s

Va voom!

Programming Exercises

1. Implement a function called smallestFactor(n) that does the following.
It accepts a positive integer n. If n is 1 it just returns 1. Otherwise, it
�nds the �rst positive integer k so that k|n. Here are some handy test
cases.

smallestFactor(997) == 997
smallestFactor(323) == 17
smallestFactor(1) == 1
smallestFactor(1728) == 2
smallestFactor(1005973) == 997

©2009-2021, John M. Morrison 143

5.5. THE PERFORMANCE OF ISPRIME CHAPTER 5. ALGORITHMS

Try hard to minimize the number of times the loop runs. Borrow from
the ideas usedin isPrime.

2. Why does smallestFactor return prime numbers if n >= 2?

3. Use smallestFactor to implement a function called primeFactors(n),
which returns a list of all prime factors of the positive integer n passed it.
If n == 1, return an empty list. Can you use recursion to do this?

4. Run primeFactors on several di�erent cases. Why is the list it returns
always in numerical order?

5.5 The Performance of isPrime

We just saw that there is more than one way to test a number for primality.
Both ways worked, but, using a little knowledge of mathematics, we were able to
achieve a huge boost in performance. Now it's time to break out some Landau
symbols.

The unimproved isPrime function used the predicate k < n in its while
loop. This loop could run as many as (n - 1)//2 times. So, the cost of
executing this procedure is at most proportional to n, the size of the number we
are testing for primality. We would say this algorithm is O(n), or linear-time.

The improved algorithm used the predicate k*k < n in its while loop. It
could not possibly run more than

√
n times. This makes the improved algorithm

a O(
√
n) algorithm.

You know that when n is large,
√
n is far smaller than n. So this improved

algorithm is much faster than its unimproved counterpart.

5.6 Sorting using Iterative Techniques

Python performs sorting on lists as a service. However, it is important to
understand how sorting works. We will study several sorting algorithms, starting
with the dreadful and moving to the �eet. What we show here is just a small
sampling of what is out there.

Imagine you have a deck of cards with numbers on them. Here is a possible
way to sort them; it is called the Bozo sort. It is named after the character
Bozo, who was a clown in a show that was popular from the late 1940s into the
1960s.

1. Check to see if the deck is in order; if so, you are done.

2. If not, shu�e the deck and repeat Step 1.

©2009-2021, John M. Morrison 144

CHAPTER 5. ALGORITHMS 5.6. ITERATIVE TECHNIQUES

Let us see that this can work. Create a program called sorts.py. We can
shu�e a list using its shuffle method.

First, let us write a function to see if a list is in order; let us agree on
ascending order. Just reverse the inequalities in the predicates for descending
order. To do this, we just walk up to each pair of elements and check if they
are in order. If a pair is not, a False is returned.

def isInOrder(deck):
for k in range(len(deck) - 1):

if deck[k] > deck[k+1]:
return False

return True

Now let us write code to test our result. This code will shu�e a �deck�, which
is a list of consecutive integers, then sort with the bozo method. We will stub
the bozo method in. and put our test code in.

import random
def isInOrder(deck):

for k in range(len(deck) - 1):
if deck[k] > deck[k+1]:

return False
return True

def bozo(deck):
pass #do nothing

def main():
pass

main()

Running this code will not shu�e the deck. Now we add the code to do that.

import random
def isInOrder(deck):

for k in range(len(deck) - 1):
if deck[k] > deck[k+1]:

return False
return True

def bozo(deck):
while(not isInOrder(deck)):

random.shuffle(deck)

def main():
deck = list(range(9))
random.shuffle(deck)

©2009-2021, John M. Morrison 145

5.6. ITERATIVE TECHNIQUES CHAPTER 5. ALGORITHMS

bozo(deck)
print(deck)

main()

Here we are shu�ing a deck with 9 items in it. Now run it. Even for a handful
of elements, this works dreadfully. Remember, 9! = 362880. This sort works on
the average in O(n!) time, which is terrible.

Tue Feb 07:13:28:ppp> time python sorts.py
[0, 1, 2, 3, 4, 5, 6, 7, 8]

real 0m4.711s
user 0m4.344s
sys 0m0.080s
Tue Feb 07:13:28:ppp> time python sorts.py
[0, 1, 2, 3, 4, 5, 6, 7, 8]

real 0m7.150s
user 0m6.993s
sys 0m0.060s
Tue Feb 07:13:29:ppp> time python sorts.py
[0, 1, 2, 3, 4, 5, 6, 7, 8]

real 0m5.379s
user 0m5.185s
sys 0m0.055s

We can do better.

Let us look at a sort that works in a more reasonable amount of time, the
bubble sort. Suppose we have a list, and we walk up to each pair of elements in
succession. If the elements are in order, do nothing. If not, switch them. After
one pass, you will see that the largest element will have �bubbled� to the top.

Now we can repeat the procedure and skip checking the last element. Then
the two largest elements will be at the top. We continue until the list is sorted.

Let us begin to write this procedure in a function named bubble. We will
have two integer variables, k and end. The variable end will point at the index
dividing the sorted and unsorted portions of the list. The variable k will do the
walking up to the pairs. So here is how we get started.

def bubble(x):
end = len(x)
#more code

Each time the inner loop runs we have a loop invariant, which is a set of
statements that is true after each execution of the loop. Our loop invariant is

©2009-2021, John M. Morrison 146

CHAPTER 5. ALGORITHMS 5.6. ITERATIVE TECHNIQUES

this: items to the right of end are the largest elements in sorted order and items
to the left have no guaranteed order. Yep, it's a jungle out there.

Let us make a general pass of the loop.

def bubble(x):
end = len(x)
for k in range(end) - 1):

if x[k] > x[k+1]:
x[k],x[k+1] = x[k+1],x[k]

#more code

As is, this does one pass of the loop. At the end of each pass, end may be
reduced by 1; let's put that in.

def bubble(x):
end = len(x)
for k in range(end - 1):

if x[k] > x[k+1]:
x[k],x[k+1] = x[k+1],x[k]

end -= 1

When are we done? How about when end gets down to 1; by the process of
elimination, the �rst element must be in place. We will need to enclose our for
loop in another loop.

def bubble(x):
end = len(x)
while end > 1:

for k in range(end) - 1:
if x[k] > x[k+1]:

x[k],x[k+1] = x[k+1],x[k]
end -= 1

Let's test this.

import random
def isInOrder(deck):

for k in range(len(deck) - 1):
if deck[k] > deck[k+1]:

return False
return True

def bozo(deck):
while(not isInOrder(deck)):

random.shuffle(deck)
def bubble(x):

©2009-2021, John M. Morrison 147

5.6. ITERATIVE TECHNIQUES CHAPTER 5. ALGORITHMS

end = len(x)
while end > 1:

for k in range(end - 1):
if x[k] > x[k+1]:

x[k],x[k+1] = x[k+1],x[k]
end -= 1

def main():
deck = list(range(9))
random.shuffle(deck)
bubble(deck)
print(deck)

main()

That was so fast on 9 elements it was basically instant. Let's try this on 10,000
elements.

$ time python sorts.py

real 0m13.159s
user 0m13.011s
sys 0m0.057s

Here is the result on 5000 elements. It is about 1/4 as long

Tue Feb 07:14:08:ppp> time python sorts.py

real 0m3.509s
user 0m3.305s
sys 0m0.039s

If you did this with the bozo sort, the sun would likely nova �rst and consume
the Earth before your list would ever be sorted. Even the bubble sort seems a
little slow.

You might ask, �What is the big-O classi�cation for this sort?� Let us think
about it. The �rst time through we perform n − 1 checks. The second time
through, we perform n− 2 checks. Each time the number of checks diminishes
by 1. The total number is

(n− 1) + (n− 1) + · · · 1 =

n−1∑
k=1

k.

Yes, there is a formula for this,

n−1∑
k=1

k =
n(n− 1)

2
= O(n2).

©2009-2021, John M. Morrison 148

CHAPTER 5. ALGORITHMS 5.6. ITERATIVE TECHNIQUES

The bubble sort is an example of a quadratic sort.

Now we will look at two other sorting methods, insertion sort and selection
sort. Both of these are quadratic sorts, but the constant of proportionality is
somewhat smaller. The insertion sort works in a manner similar to that of a
player picking up cards and inserting them in his hand. As he picks up each
card, he places it in the appropriate place in his hand until all of the cards are
inserted.

It is best if we can do our sort in-place without using additional memory.
So here is an idea. If the array is empty, do nothing and return immediately.
Otherwise, make a variable called end and have it point at index 1 in the array.
The loop invariant is this: items to the left of end are sorted there is no asser-
taion about items to the right. We now do the following. Add 1 to end. Then,
keep swapping the new entry with its neighbor to the left until it is in the right
place (a �trickle down�) procedure. We keep doing this until end reaches the
right-hand end of the array.

Let us begin here. If the list is empty, we bail. If not, we mark end at 1.
Notice here that everthing to the left of end is sorted, because there is only one
entry over there.

def insertion(x):
if x == []:

return
end = 1

Now let's block in some more code.

def insertion(x):
if x == []:

return
end = 1
while end < len(x) - 1:

end += 1
#then trickle down

Now let us explain carefully. Suppose we have this array

1 3 5 9 |4 0
(end)

We increment end.

1 3 5 9 4 |0
(end)

©2009-2021, John M. Morrison 149

5.6. ITERATIVE TECHNIQUES CHAPTER 5. ALGORITHMS

We will keep swapping with the neighbor to the left until 4 is in the right place.

1 3 5 9 4 |0
1 3 5 4 9 |0
1 3 4 5 9 |0

(end)

Let us do this again. Begin by incrementing end

1 3 5 9 4 |0
1 3 4 5 9 0 |

(end)

Now do the swaps. WARNING: We do not want to attempt to check the left-
hand neighbor of 0 when it gets to the bottom! If we do so we will be comparing
with the item at the end of the list. This will make a horrid mess. We will use
short circuiting to prevent this.

def insertion(x):
if x == []:

return
end = 1
while end < len(x) - 1:

end += 1
k = end
#trickle down; notice k >= 1 condition

while k >= 1 and x[k] < x[k - 1]:
x[k], x[k - 1] = x[k - 1], x[k]
k -= 1

You can put this in sorts.py and test it. This method is quite a bit faster than
the bubble sort. Typically, unless you are very unlucky, the trickle down proce-
dure only trickles about half-way down on average. This means it is executing
far fewer instructions than the bubble sort.

Now we will implement the insertion sort. If the list is empty do nothing.
Otherwise we set end = 0.

def selection(x):
if x == []:

return
end = 0

Now we scan the list beyond end for the smallest element and swap it with
x[end]. After this we update end by incrementing it.

©2009-2021, John M. Morrison 150

CHAPTER 5. ALGORITHMS 5.7. MERGESORT

def selection(x):
if x == []:

return
end = 0
while end < len(x):

j = end
for k in range(1 + end, len(x)):

if x[j] > x[k]:
j = k

x[j],x[end] = x[end], x[j]
end += 1

All of the sorting algorithms we used here are quadratic sorts, i.e. they operate
in O(n2) time. Next, we will use recursion to perform sorts and we will realize
a signi�cant increase in performance for sorting large lists.

5.7 A Recursive Sort: Mergesort

Imagine you want to sort a humongous list. You might do this. Break the list
in two. Use a quadratic sort on each half. Each half will take 1/4 as long as
doing a quadratic sort on the entire list. Then, once you have the two sorted
lists, zipper them back together; that procedure is O(n) as we shall soon see.
We realize a signi�cant performance boost.

Any handle worth cranking once is probably worth cranking a whole lot.
What if we take each of the two smaller lists, cut them in half and . . .?

That is the idea behind the merge sort. To make the merge sort work, we
must �rst write a procedure to zipper two sorted lists together.

So suppose we have sorted lists x and y. Begin by making variables j and
k and setting them both to be 0. We then make a new list. In each iteration
we put the smaller of x[j] and x[k] on the new list, then iterate the index we
used. So some code looking like this might be in order.

def zipper(x,y):
j = 0
k = 0
out = []
while j < len(x) and k < len(y):

if x[j] < y[k]:
out.append(x[j])
j += 1

else:
out.append(y[k])
k += 1

©2009-2021, John M. Morrison 151

5.7. MERGESORT CHAPTER 5. ALGORITHMS

Once we get here, we will have arrived at the end of one or both of the two lists.
Just append their tails and return our result as follows.

def zipper(x,y):
j = 0
k = 0
out = []
while j < len(x) and k < len(y):

if x[j] < y[k]:
out.append(x[j])
j += 1

else:
out.append(y[k])
k += 1

out += x[j:]
out += x[k:]
return out

Now let us write the actual sort. Lists of length 0 or 1 are fully sorted. So we
can no proceed as follows.

def merge(x):
if len(x) <= 1:

return x

Now comes the recursive step. Cut the list in two and call the merge function
on each half and zipper them up!

def merge(x):
if len(x) <= 1:

return x
mid = len(x)//2
first = x[:mid]
second = x[mid:]
return zipper(merge(first), merge(second))

The disadvantage to this method that is is not an in-place method. You have to
create an additional copy of the list. However, you will see that is now feasible
to sort a 1,000,000 integer list on your PC.

Programming Exercises In this exercise, you will learn about the Gnome
Sort, which was named by its inventor Hamid Sarbazi-Azad as the Stupid Sort.
What is interesting is that our quadratic sorts have an inner and outer loop.
This has a single loop. Here is the idea.

©2009-2021, John M. Morrison 152

CHAPTER 5. ALGORITHMS 5.8. TERMINLOGY ROUNDUP

1. If the list has fewer than two items, you are done. Otherwise proceed as
follows.

(a) Start at the beginning of the list.

(b) Move right one.

(c) Check your value and the value to the left. If they are in order, move
right one.

(d) If they are out of order, swap them and move one to the left. If you
are at the beginning, move right one.

(e) Once you skid o� the right hand end of the list, you are done.

2. Shu�e the list [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] and run this procedure
on it, printing it after each iteration. What do you see?

3. Learn about Timsort; this is the sorting method actually used by Python
and Java. It is a variant on mergesort that seeks out runs in the data and
zips them together.

5.8 Terminlogy Roundup

� binary search This is a divide and conquer technique by which we elim-
inate half of the search �eld in each iteration.

� Bozo sort This is sorting technique in which elements are shu�ed and
checked for proper order repeatedly until they are in the proper order.

� Gnome aka Stupid Sort This is a sort due to Hamid Sarbazi-Azad that
looks like a modi�ed insertion sort

� linear-time This describes an algorithm whose computational cost is pro-
portional to the size of the problem.

� merge sort This is a recursive sort that keeps splitting the list into pieces
until they are of size 1 or zero, and which zips the results together.

� quotient This is the result of dividing two numbers.

� remainder This is the remainder left by integer division.

� prime factoriaztion theorem

� quadratic sort This describes an algorithm whose computational cost is
proportional to the size of the square of the problem.

� sequence This is a data structure that contains a collection indexed by
the nonnegative integers.

©2009-2021, John M. Morrison 153

5.8. TERMINLOGY ROUNDUP CHAPTER 5. ALGORITHMS

©2009-2021, John M. Morrison 154

Chapter 6

Introducing Java

6.0 Introduction

We will begin our study of the Java language using its REPL, jshell. This
chapter will introduce you the idea of class. A class is a blueprint for the
creation of objects. Both Python and Java support classes; this chapter will
introduce those.

You will notice some important stylistic and linguistic di�erences. One is
that all Java code must live in an class. Clearly this is optional in Python.
Variable naming rules are the same in both languages. However, there is a
style di�erence. Names for classes in both languages are capitalized and are
formatted in camel notation. Variable and method names in Java are format-
ted in camel notation, while these in Python are predominantly formatted in
snake_notation.

You will also see that worker statements in Java must end with a semicolon,
and that boss statements have no mark at the end.

Python programs only have one epoch, run time. A Python program will
run until it ends or it encounters a fatal error. Variables in Python are typeless
names.

Java programs have two epochs, compile time and run time. Java runs on a
virtual machine, which is a computer implemented in software. The �rst step is
to compile, which translates your Java code into the machine languages for the
JVM which is called Java byte code.

If you program does not make syntactic sense, compilation aborts and error
messages issue forth. You must stamp out all syntax errors before your program
will compile.

155

6.1. WELCOME TO JSHELL! CHAPTER 6. INTRODUCING JAVA

For a Java program to run, you will need to create a special main method.
To get started we will be using jshell to learn about the type system and to
inspect some simple classes we will create.

6.1 Welcome to JShell!

If you run Python with no �le, you get an interactive Python shell. Java has a
similar feature named jshell. To �re up jshell, type jshell at the command
prompt and you will see this.

unix> jshell
> jshell
| Welcome to JShell -- Version 9.0.1
| For an introduction type: /help intro

jshell>

JShell has command that allows you to see the symbol table for your session,
obtain help, and quit. We will use it quite a bit for inspecting and exploring
classes.

Here is a summary of the commands. All of them begin with a /.

� /exit This quits jshell.

� /help This gives help on commands. The ussage is

� /imports This lists all classes you have imported.

� /list This lists all snippets you have entered.

� /open This reads a class into jshell so you can inspect it.

� /types This lists all active classes in the session.

� /vars This lists all variables and their values /help /command and you
get a little man page for that command.

Here we show how to quit jshell using the /exit command.

unix> jshell
jshell
| Welcome to JShell -- Version 14.0.1
| For an introduction type: /help intro

jshell>

jshell> /exit

©2009-2021, John M. Morrison 156

CHAPTER 6. INTRODUCING JAVA 6.1. WELCOME TO JSHELL!

| Goodbye
unix>

You can also quit it by typing control-d on Mac/UNIX or control-z on Windoze.

You enter pieces of code called snippets into the shell and jshell runs them.
Let's do that and test-drive some of the commands. Begin by entering some
variable declarations.

jshell> int x = 4;
x ==> 4

jshell> String y = "spaghetti";
y ==> "spaghetti"

jshell> int z = 15;
z ==> 15

You should notice some things right o�. In the declaration int x = 4; we
speci�ed a type for the variable x. Java variables have type and this type must
be known at compile time. Java variables can only point at objects of thier
type. The compiler enforces this rule.

You have now seen examples of Java's integer type, int and its string type,
String.

Now, watch jshell evaluate an expression.

jshell> x*z
$4 ==> 60

The symbol \$4 is a valid variable in your jshell session. The jshell applica-
tion is a �hoarder;� it gives a local variable name to just about everything you
don't name.

jshell> $4
$4 ==> 60

Now we try the /vars command.

jshell> /vars
| int x = 4
| String y = "spaghetti"
| int z = 15
| int $4

Ooh, yummy, here is our visible symbol table. Now let's make a /list and
check it twice.

©2009-2021, John M. Morrison 157

6.1. WELCOME TO JSHELL! CHAPTER 6. INTRODUCING JAVA

jshell> /list
1 : int x = 4;
2 : String y = "spaghetti";
3 : int z = 15;
4 : x*z
5 : $4

Here we see all of the snippets we have created this session. Next let us try
/vars. Now let us quit this session. We will show how to inspect a class.
Create this class.

public class Example
{

public void go()
{

int x = 5;
System.out.println("x = " + x);

}
}

Next crank up jshell and open the �le and inspect a method as follows.

jshell> /open Example.java

jshell> Example e = new Example();
e ==> Example@26653222

jshell> e.go()
x = 5

Now see the /types command in action.

jshell> /types
| class Example

Observe the use of the langauge keyword new. Its use indicates that Java is
creating an object on the heap and the associated variable is storing the memory
addreess of that object. The dot notation you see in e.go() has the same e�ect
as a Python method. It is re�ective of the genetive case; you are calling e's
go() method.

While we are here, let us create the same class in Python. You will see
a mysterious argument self in Python class methods. We will explain more
about this later.

©2009-2021, John M. Morrison 158

CHAPTER 6. INTRODUCING JAVA 6.2. CODING MECHANICS

class Example:
def go(self):

x = 5
print(f"x = {x}")

Now we can import it into our Python session and inspect it.

>>> from Example import Example
>>> e = Example()
>>> e.go()
x = 5
>>>

In both cases, our Example object can do one thing, go().

6.2 How does Java Work on a Mechanical Level?

We will begin by looking at the mechanics of producing a program. We will
then sketch a crude version of what actually happens during the process and
re�ne it as we go along. Here is a simpli�ed life-cycle for a Java program. So
you can follow along, make this empty class. Foo.java.

public class Foo
{
}

1. Edit You begin the cycle by creating code in a text editor and saving it.
Each �le of Java will have a public class in it. The class is the fundamental
unit of Java code; all of your Java programs will be organized into classes.
Java classes are similar to those in Python; later we will compare them.
The name of the class must match the name of the �le; otherwise, you
will get a nastygram from the compiler. As you saw in the example at the
end of the last section, the �le containing public class Foo must be be
named Foo.java.
Deliberately trigger the naming convention error creating an empty class
Right in the �le Wrong.java. Compile and you will receive this beating.

unix> javac Wrong.java
Wrong.java:1: error: class Right is public,

should be declared in a file named Right.java
public class Right

^
1 error
unix>

©2009-2021, John M. Morrison 159

6.2. CODING MECHANICS CHAPTER 6. INTRODUCING JAVA

An optional but nearly universal convention is to capitalize class names.
You should adhere to this rule in the name of wise consistency. This
is done by all serious Java programmers; uncapitalized class names just
confuse, annoy, and vex others.

2. Compile Java is an example of a high�level language. A complex program
called a compiler converts your program into an executable form.
Compilation of Java in a command window is simple. To compile Foo.java,
proceed as follows

unix> javac Foo.java

When done, list your �les and you should see Foo.class. If your program
contains syntactical errors that make it unintelligible to the compiler, the
compilation will abort. When this happens, nothing executes and no
executable �le is generated. In contrast, in the Python language, the
program stops running when an syntactical error is encountered; in Java
the program does not run at all unless it compiles successfully. There is
no compile time in Python.
If your program does not compile, you will get one or more error messages.
These will be put to stderr, which by default, is your terminal window.
You will need to re�edit your code to stamp out these errors before it will
compile.
Java compiles programs in the machine language of the Java Virtual Ma-
chine; this machine is a virtual computer that is built in software. Its
machine language is called Java byte code. In the Foo.java example, suc-
cessful compilation yields a �le Foo.class; this �le consists of Java byte
code. Your JVM takes this byte code and converts it into machine lan-
guage for your particular platform, and your program will run. Java is
not the only language that compiles to the JVM. Others include Scala,
Clojure, a Lisp dialect, Processing, an animation language created in the
MIT media lab, and Groovy, a scripting language. There is even a JVM
implementation of Python called Jython.

3. Run For a program to run, it needs a special method called amain method.
This method goes inside your class and it looks like this. It works in a
manner somewhat similar to, but not entirely like, a Python main routine.
You should notice one thing: Java has no global variables. This main
method is the starting point for your program's execution. It is the �rst
thing to go on the call stack.

public class Foo
{

public static void main(String[] args)
{

System.out.println("foo");
}

}

©2009-2021, John M. Morrison 160

CHAPTER 6. INTRODUCING JAVA 6.3. PYTHON CLASSES

Save and compile this. If your compilation succeeds, you will be able to
run your program as follows.

unix> javac Foo.java
unix> java Foo
foo

You will run your program and see if it works as speci�ed. If not... back to
the step Edit. You can have errors at run time, too. These errors result
in an �exploding heart;� these ghastly things are nasty error messages
containing many lines of ugly incantations. You can also have logic errors
in your program; in this case, the program will reveal some unexpected
behavior you did not want.

You will often hear the terms �compile time� and �run time� used. These are
self-explanatory. Certain events happen when your program compiles, these are
said to be compile time events. Others happen at run time. These terms will
often be used to describe errors.

It is a good idea to compile any class before attempting to inspect it in
jshell. If it fails to compile, your jshell session will be polluted with error
messages.

Next, we take a brief tour of Python classes.

6.3 Python Classes

Python classes have a very simple structure. You can create a Python class with
two lines of code.

class Simple(object):
pass

A class is a blueprint for creating objects; this principle works the identically
Python and Java. Making an object from this class is . . . simple. Just do this.

>>> class Simple(object):
... pass
...
>>> s = Simple()
>>> t = Simple()
>>>

We have created two objects s and t that are instances of this class.

We have learned that objects have state, identity and behavior. Recall that
state is what an object knows, behavior is what an object does, and identity is

©2009-2021, John M. Morrison 161

6.3. PYTHON CLASSES CHAPTER 6. INTRODUCING JAVA

what an object is (a hunk of memory). Since the body of our class is empty,
Simple objects know nothing and do nothing of great use. The can, however do
some basic stu�. They can be represented as strings, and they can be checked
for equality. Here we see this.

>>> s
<__main__.Simple object at 0x12e3250>
>>> t
<__main__Simple object at 0x12e3290>
>>> s == t
False
>>>

In Python, you can attach state to objects. Watch what is happening here.

>>> s.x = "I am x."
>>> s.y = "I am y."
>>> s.x
'I am x.'
>>> t.x
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeError: 'Simple' object has no attribute 'x'
>>>

Now the object s knows its x and y, but t still knows nothing. We can make
all instances of our class know x and y as follows.

>>> class Simple:
... x = "I am x."
... y = "I am y."
...
>>> s = Simple()
>>> t = Simple()
>>> s.x
'I am x.'
>>> t.x
'I am x.'
>>> s.y
'I am y.'
>>> t.y
'I am y.'
>>>

So far, our classes have �xed state. Objects of type Simple all have the same
x and y. This is not terrible useful. Suppose we want to make a Point class to

©2009-2021, John M. Morrison 162

CHAPTER 6. INTRODUCING JAVA 6.3. PYTHON CLASSES

represent points in the plane with integer coördinates. When we create a Point,
we might want to specify its coördiantes. To do this, we will use a special method
called __init__, which runs immediately after the object is created.

Let us now consider this program.

class Point(object):
def __init__(self, x = 0, y = 0):

self.x = x
self.y = y

p = Point()
print (f"p = ({p.x}, {p.y})")
q = Point(3,4)
print (f"q = ({q.x}, {q.y})")

Now run this program and see the following.

unix> python3 Point.py
p = (0, 0)
q = (3, 4)

We see a lot of new stu� here, so let us go through it with some care.
We know that the __init__ method runs immediately after a Point object is
created. Its argument list is (self, x, y). The purpose of the x and y seem
clear: they furnish coördiantes to our Point object.

We also see this self. What is this? When you program in the Point
class, you are a Point. So self is you. In the statement self.x = x, you are
attaching the value x sent by the caller to yourself. The quantities self.x and
self.y constitute the state of an instance of this class. This is how a Point
knows its coördinates. The symbols self.x and self.y have scope inside of
the entire class body. Take note that all argument lists of methods in a Python
class must begin with self.

Now let us make a Point capable of doing something. Modify your Point.py
program as follows.

import math
class Point(object):

def __init__(self, x = 0, y = 0):
self.x = x
self.y = y

def distance_to(self, other):
return math.hypot(self.x - other.x, self.y - other.y)

p = Point()

©2009-2021, John M. Morrison 163

6.4. JAVA CLASSES CHAPTER 6. INTRODUCING JAVA

print(f"p = ({p.x}, {p.y})")
q = Point(3,4)
print(f"q = ({q.x}, {q.y})")
print(f"p.distance_to(q) = {p.distance_to(q)}")

Now run this program.

unix> python Point.py
p = (0, 0)
q = (3, 4)
p.distance_to(q) = 5.0
unix>

The class mechanism enables us to create our own new types of objects.
Python supports the class mechanism, and object-oriented programming in gen-
eral.

Java goes even further: all code in Java must appear in a class.

6.4 Java Classes

A Java program consists of one or more classes. All Java code that is created
is contained in classes. So far you have created a class called Foo containing
only a main method that prints to the screen.

In Python, you created programs that consisted of functions, one of which
was the �main routine,� which lived outside of all other functions. Your programs
had variables that point at objects and functions that remember procedures.
Java has these features but it works somewhat di�erently. Let us begin by
comparing the time�honored �Hello, World!� program in both languages. In
Python we code the following

#!/usr/bin/python

print("Hello, World!")

A Java vs. Python Comparison Python has classes but their use is purely
optional. In Java, all of your code must be enclosed in classes. Throughout you
will see that Java is more �modest� than Python. No executable code can be
naked; all code must occur within a function that is further clothed in a class,
with the exception of certain initialization of variables that still must occur
inside of a class.

Also, we should remember we have two types of statements in Python, worker
statements and boss statements. In Python, boss statements are grammatically
incomplete sentences. Worker statements are complete sentences. All boss

©2009-2021, John M. Morrison 164

CHAPTER 6. INTRODUCING JAVA 6.4. JAVA CLASSES

statements in Python end in a colon (:), and worker statements have no mark
at the end. All boss statements own a block of code consisting of one or more
lines of code; an empty block can be created by using Python's pass keyword.

Java uses the system of boss and worker statements; the di�erence is cos-
metic. In Java, boss statements have no mark at the end. Worker statements
must be ended with a semicolon (;).

In Python, delimitation is achieved with a block structure that is shown by
tabbing. In Java, delimitation is achieved by curly braces {· · ·}.

In Python, a boss statement must own a block containing at least one worker
statement. In Java, a boss statement must have a block attached to it that is
contained in curly braces. An empty block can be indicated by an empty pair of
matching curly braces. Technically, you can get away with omitting the empty
block, but it is much better to make your intent explicit.

Knowing these basic facts will make it fairly easy for you to understand
simple Java programs.

Now, make the following class in Java and save it in the �le Hello.java

public class Hello
{

public void go()
{

System.out.println("Hello, World!");
}

}

You can compile this class, but it needs a main method to run. Therefore, we
add one.

public class Hello
{

public void go()
{

System.out.println("Hello, World!");
}
public static void main(String[] args)
{

Hello greet = new Hello();
greet.go();

}
}

What's in the main? In the �rst line we see this.

©2009-2021, John M. Morrison 165

6.4. JAVA CLASSES CHAPTER 6. INTRODUCING JAVA

Hello greet = new Hello();

This mysterious tells Java, �make a new object of type Hello.� The variable
greet points at a Hello object. Observe that new is a language keyword that
is designated for creating objects. The Hello in front of greet says that greet
is a variable of type Hello. Note, in contrast to Python, variables in Java
have types. In fact, the compiler requires the type of all variables be known at
compile time.

On the next line, we call h's go() method, which puts the text Hello,
World! to stdout

unix> java Hello
Hello, World!

You can think of the Java Virtual Machine as being an object factory. The
class you make is a blueprint for the creation of objects. You may use the
new keyword to manufacture as many objects as you wish. When you use this
keyword, you tell Java what kind of object you want created, and it is brought
into existence. Here we show a second Hello object getting created by using
new. Modify your main method as follows

public static void main(String[] args)
{

Hello greet = new Hello();
greet.go()
Hello snuffle = new Hello();
snuffle.go()

}

Compile and run and you will see this.

unix> javac Hello.java
unix> java Hello
Hello, World!
Hello, World!
Hello@3cb075
Hello@e99ce5

Now there are two Hello objects in existence. Each has the capability to �go().�
This is the only capability we have given our Hello objects so far. Every Java
object has the built�in capability of representing itself as a string. The string
representation of a Hello object looks like

Hello@aBunchOfHexDigits

©2009-2021, John M. Morrison 166

CHAPTER 6. INTRODUCING JAVA 6.4. JAVA CLASSES

You can see we have created two distinct Hello objects; the string repre-
sentation of greet is Hello@3cb075 and the string representation of snuffle
is Hello@e99ce5. Each of the variables greet and snuffle is pointing at its
own Hello object. Note that you will likely get di�erent strings of hex digits
from the ones seen here. Recall that a similar state of a�airs inhered in Python;
every object is able to represent itself as a string, but the default representation
is not terribly useful.

The method go() represents a behavior of a Hello object. These objects
have one behavior, they can go(). You can also see here that objects have
identity. They �are�. The two instances, snuffle and greet we created of the
Hello class are di�erent from one another. So far, we know that objects have
identity and behavior.

This is all evocative of some things we have seen in Python. For example,
if we create a string in Python, we can invoke the string method upper() to
create a new string with all alpha characters in the string converted to upper
case. Here is an example of this happening.

>>> x = "abc123;"
>>> x.upper()
'ABC123;'
>>>

The Python string object and the Java Hello object behaved identically. When
we sent the string x the message upper(), it returned a copy of itself with all
alpha characters converted to upper-case. In the Python interactive mode, this
copy is put to the Python interactive session, which acts as stdout.

The Java Hello object greet put the text "Hello, World!" to stdout.

Now let us go through the program line-by-line and explain all that we see.
The �rst line

public class Hello

is a boss statement. Read it as �To make a Hello,� Since �To make a Hello,� is
not a complete sentence, we know the class head is a boss statement. Therefore
it gets NO semicolon.

The word public is an access speci�er. In this context, it means that the
class is visible outside of the �le. Python has no such modesty; it lacks any
system of access speci�ers. Later, you may have several classes in a �le. Only
one may be public. You may place other classes in the same �le as your public
class. This is done if the other classes exist solely to serve the public class.
Java requires the �le bear the name of the public class in the �le. The compiler
enforces this convention.

The words public and class are language keywords, so do not use them

©2009-2021, John M. Morrison 167

6.4. JAVA CLASSES CHAPTER 6. INTRODUCING JAVA

as identi�ers. The class keyword says, clearly enough, �We are making a class
here.� Now we go to the next line

{

This line has just an open curly brace on it. Java, in contrast to Python,
has no format requirement. This freedom is dangerous. We will adopt certain
formatting conventions. Use them, or develop your own and be very consistent.
Consistent formatting makes mistakes easy to see and correct. It is unwise
consistency that is the �hobgoblin of small minds;� wise consistency is a great
virtue in computing.

The single curly brace acts like tabbing in in Python: it is a delimiter. It
demarcates the beginning of the Hello class's code. The next line

public void go()

is a function header. In Python you would write

def go():

There are some di�erences. The Python method header is a boss statement so
it has a colon (:) at the end. Remember, boss statements in Java have no mark
at the end. There is an access speci�er public listed �rst. This says, �other
classes can see this function.� The jshell session behaves like a di�erent class,
so go() can be seen by jshell when we create a Hello object there. The other
new element is the keyword void. A function in Java must specify the type of
object it returns. If a function returns nothing, its return type must be marked
void. Next you see the line

{

This open curly brace says, �This is the beginning of the code for the function
go.� It serves as a delimiter marking the beginning of the function's body. On
the next line we see the ungainly command

System.out.println("Hello, World!");

The System.out.println command puts the string "Hello, World!" to stan-
dard output and then it adds a newline. The semicolon is required for this
statement because it is a worker statement. Try removing the semicolon and
recompiling. You will get a compiler error

> javac Hello.java
Hello.java:5: error: ';' expected

©2009-2021, John M. Morrison 168

CHAPTER 6. INTRODUCING JAVA 6.4. JAVA CLASSES

System.out.println("Hello, World!")
^

1 error

A semicolon must be present at the end of all worker statements in Java. It
is a mistake to put a semicolon at the end of a boss statement. In Java, the
compiler can sometimes fail to notice this and your program will have a strange
logic error.

The next line

}

signi�es the end of the go method. Finally,

}

ends the class.

In summary, all Java code is packaged into classes. What we have seen here
is that we can put functions (which we call methods) in classes. The methods
placed in classes give objects created from classes behaviors. We shall turn next
to looking at Java's type system so we can write a greater variety of methods.

Programming Exercises Add new methods to our Hello class with these
features.

1. Have a method use System.out.print() twice. How is it di�erent from
System.out.println()?

2. Have a method do this.

System.out.printf("<tr><td>%s</td><td>%s</td></tr>",
16, 256);

Experiment with this printf construct. Note its similarities to Python's
formatting % construct.

3. Enter this into jshell.

String s = String.format(("<tr><td>%s</td><td>%s</td></tr>",
16, 256);

You can, in e�ect �print to a String� and save yourself a lot of annoying
concatenation.

4. Create the Hello class using Python, giving it a go method.

©2009-2021, John M. Morrison 169

6.5. JAVA'S INTEGER TYPES CHAPTER 6. INTRODUCING JAVA

6.5 Java's Integer Types

Java does something that Python does not do; it has eight types that are termed
to be primitive types. We will meet all of these shortly. All of them are small
pieces of data; none is larger than 8 bytes.

Recall that there are two important areas of memory in programs, the stack
and the heap. The heap is a data warehouse where objects are kept. The heap
can be expanded by the operating system at runtime; memory in the heap is
fairly plentiful.

In Python, if you make the assignment x = 5, the variable x stores the
location of the value 5 on the heap. All Python objects are stored on the heap.

The stack is a �xed-sized portion of memory that manages all function and
method calls. If it runs out of room, you have a dreaded stack over�ow on your
hands and your program will careen inexorably to its death.

The stack holds all of the variables in your program. Recall that is organized
into frames, which are constructed when a function is called, and which evanesce
when a function returns.

In Python the only things stored on the stack are variables and the memory
addresses they point a. Creating a new class allows you to create new types.
Every time you create a class, you are actually extending the Java language.
Like all things that are built out of other things, there must be some �atoms�
at the bottom. Said atoms are called primitive types in Java. Java has eight
primitive types. All other types in Java are object types; this includes such things
as strings, lists, and graphical widgets. Note that Python does not have this
distinction; in Python these sorts of simple types are just immutable objects.

We will begin by discussing Java's four integer types. These are all primitive
types. Let us begin by studying these in jshell. Note that the sizes are
standard and do not vary with the system. This stands in contrast to C/C++,
if you have studied them before.

©2009-2021, John M. Morrison 170

CHAPTER 6. INTRODUCING JAVA 6.5. JAVA'S INTEGER TYPES

Type Size Explanation
long 8 bytes This is the double�wide 8 byte integer type. It

stores a value between -9223372036854775808
and 9223372036854775807. These are 64-bit
two's complement integers

int 4 bytes This is the standard two's complement 4 byte
integer type, and the most commonly used
integer type. It stores a value between -
2147483648 and 2147483647.

short 2 bytes This is the standard 2 byte integer type. It
stores a value between -32768 and 32767 in
two's complement notation.

byte 1 byte This is a one�byte integer that stores an inte-
ger between -128 and 127 in two's complement
notation.

You should note that Python 3 has one integer type and that Python 2 has
two: int and long.

Now create an integer variable named x and initialize it to 5 as follows.

jshell> int x = 5
x ==> 5

You are seeing the assignment operator = at work here. This works just as it
does in Python; you should read it as, �x gets 5� and not �x equals 5.� As is
true in Python, it is a worker statement. Consequently in a compiled program,
it must be ended with a semicolon. Observe that the jshell program is lenient
about semicolons

The expression on the right�hand side is evaluated and stored into the vari-
able on the left�hand side. Now enter x into jshell. It fetches the value of x,
which is 5.

jshell> x
x ==> 5

Now enter the /vars command. You will see the visible symbol table.

jshell> /vars
| int x = 5

To create a variable in Java, you need to specify its type and an identi�er
(variable name). This is because Java is a statically compiled language; the
types of all variables must be known at compile time. In general a variable is
created in a declaration of the form

©2009-2021, John M. Morrison 171

6.5. JAVA'S INTEGER TYPES CHAPTER 6. INTRODUCING JAVA

type variableName;

You can initialize the variable when you create it like so.

type variableName = value;

When you create local variables inside of methods you should always initialize
them, or the compiler will growl at you.

Now let us deliberately do something illegal. We will set a variable of type
byte equal to 675. Watch Java rebel.

jshell> byte b = 675
| Error:
| incompatible types: possible lossy conversion from int to byte
| byte b = 675;
| ^-^

This would attract the compiler's attention in a compiled program and cause
compilation to abort and for your program to error out. You should create a
little class with a method doing this and see for yourself.

6.5.1 Using Java Integer Types in Java Code

So far we have seen Java's four integer types: int, byte, short, and long. To
see them in code, begin by creating this �le.

public class Example
{

public void go()
{
}

}

Once you enter the code in the code window, compile and save it. It now
does nothing. Now we will create some variables in the method go and do some
experiments. Modify your code to look like this and compile.

public class Example
{

public void go()
{

int x = 5;
System.out.println("x = " + x);

}
}

©2009-2021, John M. Morrison 172

CHAPTER 6. INTRODUCING JAVA 6.5. JAVA'S INTEGER TYPES

Can you make the same output using System.out.printf? You should try
this before moving on.

Compile the program. Now open it in jshell using the /open command
Then enterthe code e = new Example() into jshell. Then use the /types
command as follows.

jshell> /open Example.java

jshell> /types
| class Example

jshell> Example e = new Example();
e ==> Example@26653222

jshell>

Notice the mysterious item Example@(some gibberish). If you noticed the
gibberish looks like hex code, you are right. All Java objects can print them-
selves, what they print by default is not very useful. Later we will learn how to
change that. Now let us send the message �go()� to our Example object e.

jshell> e.go()
x = 5

Recall from the Hello class that System.out.println puts things to standard
output with a newline at the end.

Inside the System.out.println() command, we see the strange sequence
"x = " + 5. Java has a built�in string type String, which is akin to Python's
str. In Python, you would have written

print("x = " + str(x))

Java is something of a stringophile language, like its distant cousin JavaScript.
Once Java knows that an expression is to be a string, any other objects concate-
nated to the expression are automatically converted into strings and are added
to the concatenation. That is why you see

x = 5

printed to stdout. Note that Python is very strict in this matter and requires
you to explicitly convert objects to string before they can be concatenated to a
string.

Now let us add some more code to our Example class so we can see how
these integer types work together.

©2009-2021, John M. Morrison 173

6.5. JAVA'S INTEGER TYPES CHAPTER 6. INTRODUCING JAVA

public class Example
{

public void go()
{

int x = 5;
System.out.println("x = " + x);
byte b = x;
System.out.println("b = " + b);

}
}

Now we compile our masterpiece and we get these scoldings from Java.

unix> javac Example.java
Example.java:7: error: incompatible types:

possible lossy conversion from int to byte
byte b = x;

^
1 error
unix>

Indeed, line 7 contains the o�ending code

byte b = x;

To fully understand what is happening, let's do a quick comparison with Python
and explain a few di�erences with Java.

Types: Java vs. Python Python is a strongly, dynamically typed language.
This means that objects are aware of their type and that decisions about type
are made at run time. Variables in Python are merely names; they have no
type.

In contrast, Java is a strongly, statically typed language. In the symbol
table, Java keeps the each variable's name, the object the variable points at and
the variable's type. Types are assigned to variables at compile time. In Python
a variable may point at an object of any type. In Java, variables have type and
may only point at objects of their own type.

Now let's return to the example. The value being pointed at by x is 5.
This is a legitimate value for a variable of type byte. However, x is an integer
variable and knows it is an integer. The variable b is a byte and it is aware of
its byteness. When you perform the assignment

b = x;

©2009-2021, John M. Morrison 174

CHAPTER 6. INTRODUCING JAVA 6.5. JAVA'S INTEGER TYPES

Java sees that x is an integer. An integer is a bigger variable type than a byte.
The variable b says, �How dare you try to stu� that 4�byte integer into my
one�byte capacity!� Java responds chivalrously to this plea and the compiler
calls the proceedings to a halt.

In this case, you can cast a variable just as you did in Python. Modify the
program as follows to cast the integer x to a byte.

public class Example
{

public void go()
{

int x = 5;
System.out.println("x = " + x);
byte b = (byte) x;
System.out.println("b = " + b);

}
}

Your program will now run happily.

jshell> /open Example.java
jshell> Example e = new Example();
e ==> Example@26653222
jshell> e.go();
x = 5
b = 5
jshell>

Now let's play with �re. Change the value you assign x to 675.

public class Example
{

public void go()
{

int x = 675;
System.out.println("x = " + x);
byte b = (byte) x;
System.out.println("b = " + b);

}
}

This compiles very happily. It runs, too!

©2009-2021, John M. Morrison 175

6.5. JAVA'S INTEGER TYPES CHAPTER 6. INTRODUCING JAVA

jshell> Example e = new Example();
e ==> Example@26653222

jshell> e.go()
x = 675
b = -93

jshell>

Whoa! When casting, you can see that the doctrine of caveat emptor applies.
If we depended upon the value of b for anything critical, we can see we might
be headed for a nasty logic error in our code. When you cast, you are telling
Java, �I know what I am doing.� With that right, comes the responsibility for
dealing with the consequences.

Challenge How did the -93 come about? Think about doughnutting!

Notice that you are casting from a larger type to a smaller type. This is a
type of downcasting, and it can indeed cause errors that will leave you downcast.
Since we discussed downcasting, let's look at the idea of upcasting that should
easily spring to mind. For this purpose, we have created a new program that
upcasts a byte to an integer

public class UpCast
{

public void go()
{

byte b = 122;
System.out.println("b = " + b);
int x = b;
System.out.println("x = " + x);

}
}

This compiles and runs without comment.

jshell> /open UpCast.java

jshell> UpCast u = new UpCast();
u ==> UpCast@26653222

jshell> u.go()
b = 122
x = 122

©2009-2021, John M. Morrison 176

CHAPTER 6. INTRODUCING JAVA 6.5. JAVA'S INTEGER TYPES

The four integer types are just four integers with di�erent sizes. Be careful
if casting down, as you can encounter problems. Upcasting occurs without
comment. Think of this situation like a home relocation. Moving into a smaller
house can be di�cult. Moving into a larger one (theoretically) presents no
problem with accommodating your stu�.

Important! If you use the arithmetic operators +, -, * or / on the short
integral types byte and short, they are automatically upcast to integers as are
their results. The compound assignment operators such as += which work as
they do in Python. One nice feature of these is that you can use the them on
these shorter types and not get the �possibly lossy conversion� error. See this
session here.

jshell> byte b = 1;
b ==> 1
jshell> byte b = 1;
b ==> 1

jshell> b = b + 5
| Error:
| incompatible types: possible lossy conversion from int to byte
| b = b + 5
| ^---^
jshell> byte b = 1;
b ==> 1

jshell> b = b + 5
| Error:
| incompatible types: possible lossy conversion from int to byte
| b = b + 5
| ^---^

jshell> b += 5
$2 ==> 6

jshell> b += 100
$3 ==> 106

jshell> b
b ==> 106

jshell> b += 21
$5 ==> 127

jshell> b += 1

©2009-2021, John M. Morrison 177

6.6. FOUR MORE PRIMITIVE TYPESCHAPTER 6. INTRODUCING JAVA

$6 ==> -128

Oops, maybe it's time to discuss the problem of type over�ow and �dough-
nutting.� Since the byte type is the smallest integer type, we will demonstrate
these phenomena on this type. Observe that the binary operators +, -, *� and
% work in java just as they do in Python. However, / in Java is integer division
and works like Python's //.

Open jshell and run these commands. By saying int b = 2147483647,
we guarantee that Java will regard b as a regular integer.

jshell> int b = 2147483647;
b ==> 2147483647

jshell> b += 1;
$5 ==> -2147483648

jshell> b
b ==> -2147483648

jshell>

The last command b += 1 triggered an unexpected result. This phenomenon
called type over�ow. As you saw in the table at the beginning of the section, a
byte can only hold values between -2147483648 and 2147483647. Adding 1 to
2147483647 yields -2147483648; this phenomenon is called doughnutting. It is
an artifact of the workings of two's complement notation. You can see that this
occurs in C/C++ as well.

This is caused by the fact that integers in Java are stored in two's comple-
ment notation.

6.6 Four More Primitive Types

The table below shows the rest of Java's primitive types. We see there are eight
primitive types, four of which are integer types.

©2009-2021, John M. Morrison 178

CHAPTER 6. INTRODUCING JAVA6.6. FOUR MORE PRIMITIVE TYPES

Type Size Explanation
boolean 1 byte This is just like Python's bool type. It

holds a true or false. Notice that the
boolean constants true and false are not
capitalized as they are in Python.

float 4 bytes This is an IEEE 754 �oating point number
It stores a value between -3.4028235E38
and 3.4028235E38.

double 8 bytes This is an IEEE 754 double pre-
cision number. It stores a value
between -1.7976931348623157E308 and
1.7976931348623157E308. This is the same
as Python's float type. It is the type we
will use for representing �oating�point dec-
imal numbers.

char 2 byte This is a two�byte Unicode character. In
contrast to Python, Java has a separate
character type.

6.6.1 The boolean Type

Let us now explore booleans. Java has three boolean operations which we will
show in a table

Operator Role Explanation
&& and This is the boolean operator ∧. It is a binary

in�x operator and the usage is P && Q, where
P and Q are boolean expressions. If P evaluates
to false, the expression Q is ignored.

| | or This is the boolean operator ∨. It is a binary
in�x operator and the usage is P | | Q, where
P and Q are boolean expressions. If P evaluates
to true, the expression Q is ignored.

! not This negates a boolean expression. It is a
unary pre�x operator. Be careful to use paren-
theses to enforce your intent!

Hand�in�hand with booleans go the relational operators. These work just
as they do in Python on primitive types. The operator == checks for equality,
!= checks for inequality and the operators <, >, <= and >= act as expected on
the various primitive types. Numbers (integer types and �oating point types)
have their usual orderings. Characters are ordered by their ASCII values. It is
an error to use inequality comparison operators on boolean expressions.

Now let us do a little interactive session to see all this at work. You are
encouraged to experiment on your own as well and to try to break things so you

©2009-2021, John M. Morrison 179

6.6. FOUR MORE PRIMITIVE TYPESCHAPTER 6. INTRODUCING JAVA

better understand them.

jshell> 5 < 7
$7 ==> true

jshell> 5 + 6 == 11 // == tests for equality

$8 ==> true

jshell> !(4 < 5) // ! is not

$9 ==> false

jshell> (2 < 3) && (1 + 2 == 5) // and at work

$10 ==> false

jshell> (2 < 3) || (1 + 2 == 5) // or at work

$11 ==> true

jshell> 100 %7 == 4 // % is mod

$12 ==> false

6.6.2 Floating�Point Types

When dealing with �oating�point numbers we will only use the double type.
Do not test �oating�point numbers for equality. Since they are stored inexactly
in memory, comparing them exactly is a dangerous hit�or�miss proposition.
Instead, you can check and see if two �oating�point numbers are within some
tolerance of one another. Here is a little lesson for the impudent to ponder. Be
chastened!

jshell> double q = .3
q ==> 0.3

jshell> double r = .1 + .1 + .1
r ==> 0.30000000000000004

jshell> q == r
$25 ==> false

All integer types will upcast to the double type when you combine them
with doubles in an expression. You can also downcast doubles to integer types;
you should experiment and see what kinds of truncation occur. You should
experiment with this in jshell. Remember, downcasting can be hazardous and
. . . leave you downcast. Pay especial attention to negative numbers. If you are
a number theory geek, you will have a negative reaction.

©2009-2021, John M. Morrison 180

CHAPTER 6. INTRODUCING JAVA6.7. MORE JAVA CLASS EXAMPLES

6.6.3 The char type

In Python, characters are just one�character strings. Java works di�erently and
is more like C/C++ in this regard. It has a separate type for characters, char.

Recall that Western characters are really just bytes. Java uses the unicode
scheme for encoding characters. All unicode characters are two bytes. The
ASCII characters are prepended with a zero byte to make them into unicode
characters. You can learn more about unicode at http://www.unicode.org.

Integers can be cast to characters, and the unicode value of that character
will appear.

Here is a sample interactive session. Notice that the integer 945 in unicode
translates into the Greek letter α.

> (char) 65
'A'
> (char) 97
'a'
> (char)945
'α'
> (char)946
'β'

Similarly, you can cast an integer to a character to determine its ASCII (or
unicode) value.

The relational operators may be used on characters. Just remember that
characters are ordered by their Unicode values. The numerical value for the 8
bit characters are the same in Unicode. Remember, Unicode characters are two
bytes; all of the 8 bit characters begin with the byte 00000000.

6.7 More Java Class Examples

Now let us develop more examples of Java classes. Since we have the primitive
types in hand, we have some grist for producing useful and realistic examples.
Let us recall the basics. All Java code must be enclosed in a class. So far, we
have seen that classes contain methods, which behave somewhat like Python
functions.

Open an editor session and place this code in a �le named MyMethods.java.

public class MyMethods
{

public double square(double x)

©2009-2021, John M. Morrison 181

http://www.unicode.org

6.7. MORE JAVA CLASS EXAMPLESCHAPTER 6. INTRODUCING JAVA

{
return x*x;

}
}

Compile this program. Once it compiles, open it and jshell and create an
instance of it.

jsyell> MyMethods m = new MyMethods();

Recall that new tells Java, �make a new MyMethods object.� Furthermore,
we have assigned this to the variable m. Now type m.getClass() and see m's
class.

jshell> m.getClass()
class MyMethods

Every Java object is born with a getClass() method. It behaves much like
Python's type() function. For any object, it tells you the class that created the
object. In this case, m is an instance of the MyMethods class, so m.getClass()
returns class MyMethods.

We endowed our class with a square method; here we call it.

jshell> m.square(5)
25.0

The name of the method leaves us no surprise as to its result. Now let us look
inside the method and learn its anatomy.

public double square(double x)
{

return x*x;
}

In Python, you would make this function inside of a class by doing the following.

class MyMethods:
def square(self, x):

return x*x

in both the top line is called the function header. Notice that in Python, you
must use the self variable in the argument list for any methods you create.
Python functions begin with the def statement; this tells Python we are de�ning
a function. Java methods begin with an access speci�er and then a return type.

©2009-2021, John M. Morrison 182

CHAPTER 6. INTRODUCING JAVA6.7. MORE JAVA CLASS EXAMPLES

The access speci�er controls visibility of the method. The access speci�er public
says that the square method is visible outside of the class MyMethods. The
return type says that the square method will return a datum of type double.

In both Python and Java, the next thing you see is the function's name,
which we have made square. The rules for naming methods in Java are the
same as those for naming variables. To review, an identi�er name may start
with an alpha character or an underscore. The remaining characters may be
numerals, alpha characters or underscores.

Inside the parentheses, we see di�erent things in Java and Python. In
Python, we see a lone x. In Java, we see double x. Since Java is statically
typed, it requires all arguments to specify the type of the argument as well as
the argument's name. This restriction is enforced at compile time. In contrast,
Python makes these and all decisions at run time.

In general every Java method's header has the following form.

returnType functionName(type1 arg1, type2 arg2, ... , typen argn)

The list

[type1, type2, ... typen]

of a Java method is called the method's signature, or �sig� for short. Notice that
the argument names are not a part of the signature of a method. Remember,
such names are really just dummy placeholders. Methods in Java may have zero
or more arguments, just as functions and methods do in Python.

Try entering m.square('a') into jshell.

jshell> m.square('a')
Error: No 'square' method in 'MyMethods' with arguments: (char)

Compilation would fail for this program, and , jshell objects by saying that
a character is an illegal argument for your method square. Java methods have
type restrictions in their arguments. Users who attempt to pass data of illegal
type to these methods are rewarded with compiler errors. This sort of protection
is a two�edged sword. Add this method to your MyMethods class.

public double dublin(double x)
{

return x*2;
}

Now let us do a little experiment.

©2009-2021, John M. Morrison 183

6.7. MORE JAVA CLASS EXAMPLESCHAPTER 6. INTRODUCING JAVA

jshell> /open MyMethods.java
jshell> MyMethods m = new MyMethods();
jshell> m.dublin(5)
$1 ==> 10.0
jshell> m.dublin("string")
Error: No 'dublin' method in 'MyMethods'
with arguments: (java.lang.String)

What have we seen? The dublin method belonging to the MyMethods class
will accept integer types, which upcast to doubles, or doubles, but it rejects a
string. (More about Java's string type later)

We will now write the analogous function in Python; notice what happens.
Place this Python code in a �le named method.py.

def dublin(x):
return x*2

x = 5
print (f"dublin({x}) = {dublin(x)}")
x = "string"
print (f"dublin({x}) = {dublin(x)}")

Now let us run it at the command line..

unix> python method.py
dublin(5) = 10
dublin(string) = stringstring
unix>

Python makes decisions about objects at run time. The call dublin(5) is �ne
because it makes sense to take the number 5 and multiply it by the number 2.
The call dublin("string") is �ne for two reasons. First, multiplication of a
string by an integer yields repetition, so the return statement in the function
dublin makes sense to Python at run time. Secondly, variables in Python have
no type, so there is no type restriction in dublin's argument list. You will notice
that static typing makes the business of methods more restrictive. However,
compiler errors are better than run time errors, which can conceal ugly errors
in your program's logic and which can cause surprisingly unappealing behavior
from your function.

Just as in Python, you may have functions that produce no output and
whose action is all side�e�ect. To do this, just use the void return type, as we
did in the Hello class.

Programming Exercises

©2009-2021, John M. Morrison 184

CHAPTER 6. INTRODUCING JAVA6.7. MORE JAVA CLASS EXAMPLES

1. Add a method double cube(double x) to the class MyMethods.java.
Can you use the square method to do part of the computation?

2. Modify the square method as follows.

public double square(double x)
{

double y = x*x;
return y;

}

Create a main method for this class and try placing this command in it.

System.out.println(y);

What happens? Why is this like Python?

change

©2009-2021, John M. Morrison 185

6.7. MORE JAVA CLASS EXAMPLESCHAPTER 6. INTRODUCING JAVA

©2009-2021, John M. Morrison 186

Chapter 7

Classes and Objects

7.0 Java Object Types

Let us recall a few ideas from our Python experience. There are two areas of
memory important to programs, the stack and the heap. The stack manages all
function calls. Each function call puts a stack frame on the stack which contains
the function's local variables and a return address that allows it to go back to its
caller right where the caller left o� when it returns. Any time a function returns
its stack frame is exposeed to be overwritten; its contents become inaccessible.
We saw that this is how local variables are managed.

We have seen that Java has eight primitive types: the four integer types, the
�oating�point types double and float, the boolean type and the char type.
These variables point directly at their datum. As a result, the values of local
variables are stored directly on the stack and are never seen by the heap.

Another important di�erence is that Java does not have global variables. All
variables must be declared and initialized inside of a class.

Strings in Java are an object type. Object types in Java work in a manner
similar to Python objects. Varibles of object type store a memory address; this
is an address on the heap. The heap, as is is in Python, is the data warehouse
of a Java program.

Only memory addresses (which are basically integers) and primitive types
are ever stored by the stack.

You will see that Java strings have many capabilities. You can slice them
as you can Python strings, they know their lengths, and you have access to all
characters. You will learn how to use the Java API guide to learn more about
any class's capabilities, including those of String.

187

7.1. JAVA STRINGS CHAPTER 7. CLASSES AND OBJECTS

7.1 Java Strings

Java handles strings in a manner similar to that of Python. Strings in Java
are immutable. Java has an enormous standard library containing thousands of
classes. The string type is a part of this vast library, an it is implemented in a
class called String. We will explore it in a fair amount of detail here.

Because strings are so endemic in computing, the creators of Java gave Java's
string type some features atypical of Java classes, which we shall point out as
we progress.

Let us begin by working interactively. Here we see how to read individual
characters in a string by their indices. Notice that the square-brackets operator
does not work here.

jshell> String x = "abcdefghijklmnopqrstuvwxyz"
x ==> "abcdefghijklmnopqrstuvwxyz"

jshell> x.charAt(0)
$2 ==> 'a'

jshell> x[0]
Error:
array required, but java.lang.String found
x[0]
^--^

jshell> x.charAt(25)
$3 ==> 'z'

jshell> x.length()
$4 ==> 26

Now let us deconstruct all of this. Strings in Java enjoy an exalted position.
The line

String x = "abcdefghijklmnopqrstuvwxyz"

makes a tacit call to new and it creates a new String object in memory. Only
a few other Java class enjoys the privilege of making tacit calls to new; these
are the wrapper classes. Let us take a brief detour to see one of them, Integer,
which is the wrapper type for the primitive type int. You can create an Integer
either by saying

Integer n = 5;

or by saying

©2009-2021, John M. Morrison 188

CHAPTER 7. CLASSES AND OBJECTS 7.1. JAVA STRINGS

Integer n = new Integer(5);

This tacit call to new is enabled by a feature called autoboxing. We will meet
the wrapper classes in full after we �nish discussing the string class.

Coming back to our main thread, you can create a string using new as well.

String x = new String("abcdefghijklmnopqrstuvwxyz");

Here we made an explicit call to new. This is not done very often in practice, as
it is excessively verbose, and it can create duplicate copies of immutable objects.

Access to the individual characters within a string is granted via the charAt
string method. The expression

x.charAt(25)

can be read as �x's character at index 25.� Just as in Python, the dot (.)
indicates the genitive case. The nastygram you got before,

| Error:
| array required, but java.lang.String found
| x[0]
| ^--

arises because the square�bracket operator, which exists in Python, is only used
to extract array entries in Java. Arrays are a Java data structure, which we will
learn about in the next chapter. Finally, we see that a string knows its length;
to get it we invoke the length() method.

String has another atypical feature not found in other Java classes. The
operators + and += are implemented for Strings. The + operator concatenates
two strings, just as it does in Python. The += operator works for strings just as
it does in Python.

jshell> String x = "abc"
x ==> "abc"

jshell> x += "def"
$2 ==> "abcdef"

jshell> x
x ==> "abcdef"

Note, however, that the string "abc" is not changed. It is orphaned and the
String variable x now points at "abcdef".

The mechanism of orphaning objects in Java works much as it does in
Python. Both Python and Java are garbage-collected languages.

©2009-2021, John M. Morrison 189

7.1. JAVA STRINGS CHAPTER 7. CLASSES AND OBJECTS

7.1.1 But is there More?

You might be asking now, �Can I learn more about the Java String class?� Fortu-
nately, the answer is �yes;� it is to found in the Java API (Applications Program-
ming Interface) guide. This is a freely available online comprehensive encyclo-
pedia of all of the classes in the Java Standard Library. Go to this site, https:
//docs.oracle.com/javase/15/docs/api/overview-summary.html and you
will see this. Note that you can go to the Java install site and obtain the entire
documentation set for your computer.

When you go to the Java documentation, here is what you see.

Classes in Java have two levels of organization. One is modules. We are
going to explore the module java.base.

Scroll down a little more and you will see the Modules area; it is tabbed.
Click on the link for java.base.

©2009-2021, John M. Morrison 190

https://docs.oracle.com/javase/15/docs/api/overview-summary.html
https://docs.oracle.com/javase/15/docs/api/overview-summary.html

CHAPTER 7. CLASSES AND OBJECTS 7.1. JAVA STRINGS

When you open this link, you will see the packages inside of it. Here are
some we will use in this book.

java.lang This is the core of the Java lan-
guage.

java.io This is where Java's �leIO facili-
ties live.

java.nio This is where Java's newer �leIO
facilities live.

java.math This is the home of BigInteger,
a class for arbitrary-precision in-
teger arithmetic.

java.util This is where Java's data struc-
tures live, along with some other
useful stu�.

Now click on java.lang This page has several segments. Here they are.

� Interfaces

� Classses

� Enums

� Exceptions

� Errors

©2009-2021, John M. Morrison 191

7.1. JAVA STRINGS CHAPTER 7. CLASSES AND OBJECTS

� Annotation Types

Scroll down the Classes segment. In it you will �nd a link for the class
String. Click on it. This is the top of the page.

At the very top, the module and the package are identi�ed for you. You
can also see the fully quali�ed name of the String class, java.lang.String.
Further down, you see this.

The String class represents character strings. All string literals in
Java programs, such as "abc", are implemented as instances of this
class.

Strings are constant; their values cannot be changed after they are
created.

In the beginning you will see much that you will not understand. For exam-
ple, there is this.

©2009-2021, John M. Morrison 192

CHAPTER 7. CLASSES AND OBJECTS 7.1. JAVA STRINGS

public final class String
extends Object
implements Serializable, Comparable<String>, CharSequence

We will learn about that stu� later. For now, you will learn how to pick out
what you need to know. Now scroll down to the Method Summary area. The
top of it looks like this.

There are three columns in this table. The �rst column contains the return
type of the method and any modi�er (later...). The second shows the name of
the method and its argument list. The third describes the method brie�y.

To learn more, click on charAt. You will see the method detail, which looks
like this.

public char charAt(int index)

Returns the char value at the speci�ed index. An index ranges from 0 to
length() - 1. The �rst char value of the sequence is at index 0, the next at
index 1, and so on, as for array indexing. If the char value speci�ed by the index
is a surrogate, the surrogate value is returned.

©2009-2021, John M. Morrison 193

7.1. JAVA STRINGS CHAPTER 7. CLASSES AND OBJECTS

Speci�ed by:
charAt in interface CharSequence

Parameters:
index - the index of the char value.

Returns:
the char value at the speci�ed index of this string. The �rst char value is at
index 0.

Throws:
IndexOutOfBoundsException - if the index argument is negative or not less
than the length of this string.

Right after the heading it says

public char charAt(int index)

This is the method header that appears in the actual String class. It then goes
on to say the following.

Returns the char value at the speci�ed index. An index ranges from
0 to length() - 1. The �rst char value of the sequence is at index
0, the next at index 1, and so on, as for array indexing.

The following paragraph

If the char value speci�ed by the index is a surrogate, the surrogate
value is returned.

looks pretty mysterious, so we will ignore it for now. The Parameters: head-
ing describes the argument list. Returns: heading describes the return value.
There are no surprises here.

What is interesting is the Throws: heading. This describes run time errors
that can be caused by misuse of this method. These errors are not found by the
compiler. If you trigger one, your program dies gracelessly and you get great
list of nastiness put to your screen. You have observed similar tantrums thrown
by Python when you give it an index that is out of bounds in a string, list or
tuple.

We shall use this web page in the next sections so keep it open. First it will
be necessary to understand a fundamental di�erence between Java object types
and Java primitive types.

Programming Exercises Write a class called Exercises11 and place the
following methods in it.

©2009-2021, John M. Morrison 194

CHAPTER 7. CLASSES AND OBJECTS 7.2. PRIMITIVE VS. OBJECT

1. Write the method

public boolean isASubstringOf(String quarry, String field)
{
}

It should return true when quarry is a contiguous substring of field.
(Think Python in construct.)

2. Suppose you have declared the string cat as follows.

String cat = "abcdefghijklmonopqrstuvwxyz";

Find at least two ways in the API guide to obtain the string "xyz". You
may use no string literals (stu� inside of "..."), just methods applied to
the object cat. There are at least three ways. Can you �nd them all?

3. The Python repetition operator *, which takes as operands a string and
an integer, and which repeats the string the integer number of times does
not work in Java. Write a method

String repeat(String s, int n)

that replicates the action of the Python repetition operator. And yes,
there is recursion in Java.

7.2 Primitive vs. Object: A Case of equalsRights

We will study the equality of string objects. A big surprise lies ahead so pay
close attention. Create this interactive session in Python. All is reassuringly
familiar.

>>> good = "yankees"
>>> evil = "redsox"
>>> copy = "yankees"
>>> good == copy
True
>>> good == evil
False

No surprises greet us here. Now let us try the same stu� in Java.

jshell> String good = "yankees"
good ==> "yankees"

jshell> String evil = "redsox"
evil ==> "redsox"

String copy = new String("yankees")

©2009-2021, John M. Morrison 195

7.2. PRIMITIVE VS. OBJECT CHAPTER 7. CLASSES AND OBJECTS

copy ==> "yankees"

jshell> good == evil
$4 ==> false

jshell> good == good
$5 ==> true

jshell> good == copy
$7 ==> false

Beelzebub! Some evil conspiracy appears to be afoot! Despite the fact that
both good and copy point to a common value of "yankees", the equality test
returns a false. Now we need to take a look under the hood and see what is
happening.

First of all, let's repeat this experiment using integers.

jshell> int Good = 5;
Good ==> 5

jshell> int Evil = 4;
Evil ==> 4

jshell> int Copy = 5;
Copy ==> 5

jshell> Good == Evil
$12 ==> false

jshell> Good == Good
$13 ==> true

jshell> Good == Copy
$14 ==> true

This seems to be at odds with our result with strings. This phenomenon occurs
because primitive and class types work di�erently.

Without exception, when you use == on two variables, you are asking if
they store the same value. The value stored by a variable of object type is the
memory address of its object. The value stored by a primitive type is the actual
value it is storing; a primitive type variable points directly at its datum.

So if you are using == on variables of object type, you are comparing memory
addresses. In our case, Strings do not directly store their object; they store its
memory address. This is true of all object types in Java. What a java object

©2009-2021, John M. Morrison 196

CHAPTER 7. CLASSES AND OBJECTS 7.2. PRIMITIVE VS. OBJECT

knows is a how to �nd where where the string is stored in memory. For objects,
the == operator is a test for equality of identity. It checks if two objects are
in fact one and the same. This behavior is identical to that of the Python is
keyword, which checks for equality of identity.

In Python, objects never point directly at their datum. Python types such
as bool, float and int are actually immutable objects. This phenomenon is a
major di�erence between Python and Java. Python has no primitive types.

We saw good == good evaluate to true because good points to the same
actual object in memory as itself. We saw good == copy evaluate to false,
because good and copy point to separate copies of the string "yankees" stored
in memory. Therefore the test for equality evaluates to false.

What do we do about the equality of strings? Fortunately, the equals
method comes to the rescue.

jshell> good.equals(good)
$15 ==> true

jshell> good.equals(evil)
$16 ==> false

jshell> good.equals(copy)
$17 ==> true

Ah, paradise restored. . . Just remember to use the equals method to check for
equality of Java objects. This method for strings has a close friend equalsIgnoreCase
that will do a case-insensitive check for equality of two strings. These comments
also apply to the inequality operator !=. This operator checks for inequality of
identity. To check and see if two strings have unequal values use ! in conjunction
with equals. Here is an example

jshell > !(good.equals(copy))
$ 18 ==> false
>
jshell> !(good.equals(evil))
$ 19 ==> true

Finally, notice that Python compares strings lexicographically according to
Unicode value by using inequality comparison operators. These do not work in
Java. It makes no sense to compare memory addresses. However, the string
class has the method

int compareTo(String anotherString)

We show it at work here.

©2009-2021, John M. Morrison 197

7.2. PRIMITIVE VS. OBJECT CHAPTER 7. CLASSES AND OBJECTS

jshell> String little = "aardvark";
little ==> "aardvark"

jshell> String big = "zebra";
big ==> "zebra"

jshell> little <= big
| Error:
| bad operand types for binary operator '<='
| first type: java.lang.String
| second type: java.lang.String
| little <= big
| ^-----------^

jshell> little.compareTo(big) < 0
$3 ==> true

jshell> little.compareTo(big) == 0
$4 ==> false

jshell> little.compareTo(big) > 0
$5 ==> false

You may be surprised compareTo returns an integer. However, alphabetical
string examples can be done as in the example presented here. This method's
sibling method, compareToIgnoreCase that does case�insensitive comparisons
and works pretty much the same way.

7.2.1 Aliasing

Consider the following interactive session.

jshell> String smith = "granny";
smith ==> "granny"

jshell> String jones = smith;
jones ==> "granny"

jshell> smith == jones
$3 ==> true

Here we performed an assignment, jones = smith. What happens in an as-
signment is that the right�hand side is evaluated and then stored in the left.
Remember, the string smith stores a memory address describing the location

©2009-2021, John M. Morrison 198

CHAPTER 7. CLASSES AND OBJECTS 7.3. MORE STRING METHODS

where the string "granny" is actually stored in memory. So, this memory ad-
dress is given to jones; both jones and smith hold the same memory address
and therefore both point at the one copy of "granny" that we created in memory.

This situation is called aliasing. Since strings are immutable, aliasing can
cause no harm. We saw in the Python book that aliasing can create surprises
if the objects involved are mutable.

First we will need to be introduced a property of objects we have omitted
heretofore in our discussion: state. The state of a string is given by the character
sequence it contains. How these are stored is not now known to us, and we really
do not need to know or care. We shall tour the rest of the string class in the
Java API guide, then turn to the matter of state. Just know that a String's
state is speci�ed by the character sequence it contains.

7.3 More String Methods

Python's slicing facilities are implemented in Java using substring. Here is an
example of substring at work.

jshell> x = "abcdefghijklmnopqrstuvwxyz"
jshell> x.substring(5)
"fghijklmnopqrstuvwxyz"
jshell> x.substring(3,5)
"de"
jshell> x.substring(0,5)
"abcde"
jshell> x
"abcdefghijklmnopqrstuvwxyz"

Notice that the original string is not modi�ed by any of these calls; copies are
the advertised items are returned by these calls. The endsWith method seems
pretty self�explanatory.

jshell> x.endsWith("xyz")
true
jshell> x.endsWith("XYZ")
false

The indexOf method allows you to search a string for a character or a
substring. In all cases, it returns a -1 if the string or character you are seeking
is not present.

jshell> x.indexOf('a')
0

©2009-2021, John M. Morrison 199

7.3. MORE STRING METHODS CHAPTER 7. CLASSES AND OBJECTS

jshell> x.indexOf('z')
25
jshell> x.indexOf('A')
-1
jshell> x.indexOf("bc")
1

You can pass an optional second argument to the indexOf method to start
searching at a speci�ed index. For example, since the only instance of the
character 'a' in the string x is at index 0, we have t

jshell> x.indexOf('a', 1)
-1

You are encouraged to further explore the String API. It contains many
useful methods that make strings a useful andx powerful programming tool.
The programming exercises here will give you an opportunity to do this.

Programming Exercises Fill in the methods in this class. Copy it and
ocmpile it; it will compile in this state. When you are done, it should print all
trues. Do not worry about the use of the static keyword. It makes everything
work and it will be explained later. Use the String API page to help you.

public class Exercises
{

public static void main(String[] args)
{

System.out.println(between("catamaran", 'a').equals("tamar"));
System.out.println(between("catamaran", 'c').equals(""));
System.out.println(between("catamaran", 'q').equals(""));
System.out.println(laxEquals(" boot", "boot"));
System.out.println(laxEquals("boot ", "boot"));
System.out.println(laxEquals(" boot ", "boot"));
System.out.println(laxEquals(" \t\n boot \n\t ", "boot"));
System.out.println(getExtension("wd2.tex").equals("tex"));
System.out.println(getExtension("hello.py").equals("py"));
System.out.println(getExtension("Hello.java").equals("java"));
System.out.println(getExtension("tossMeNow").equals(""));
System.out.println(getExtension(".").equals(""));
System.out.println(isUpperCaseOnly("EAT NOW 123"));
System.out.println(!isUpperCaseOnly("eat NOW 123"));
System.out.println(isUpperCaseOnly(""));

}
/*

©2009-2021, John M. Morrison 200

CHAPTER 7. CLASSES AND OBJECTS 7.3. MORE STRING METHODS

* This returns an empty string if q is not present in

* s or if it only appears once. Otherwise, it returns the

* substring between the first and last instances of q in s.

*/

public static String between(String s, char q)
{

return "";
}
/*

* This returns true if the only difference between s1 and s2

* is leading or trailing whitespace.

*/

public static boolean laxEquals(String s1, String s2)
{

return false
}
/*

* this returns an empty string if the fileName is empty

* or has no extension. Otherwise, it returns the extension

* without the dot.

*/

public static String getExtension(String fileName)
{

return "";
}
/*

* this returns true if the String contains only uppercase

* or non-alpha characters.

*/

public static boolean isUpperCaseOnly(String s)
{

return false;
}

}

and put these methods in it.

1. Write the method public Stirng bewteen(String s, char q) that re-
turns an empty string if q occurs once or not at all inside of s; otherwise
it reteurns the substring in between the �rst and last instances of q in s.
Examples

©2009-2021, John M. Morrison 201

7.4. THE WRAPPER CLASSES CHAPTER 7. CLASSES AND OBJECTS

7.4 The Wrapper Classes

Every primitive type in Java has a corresponding wrapper class. Such a class
�wraps� the primitive object. These classes also supply various useful methods
associated with each primitive type. Here is a table showing the wrapper classes.

Wrapper Classes
Primitive Wrapper
byte Byte
short Short
int Integer
long Long
boolean Boolean
�oat Float
double Double
char Character

All of these classes have certain common features. You should explore the
API guide for each wrapper. They have many helpful features that will save
you from reinventing a host of wheels.

One thing you will notice in the wrapper classes is the presence of methods
marked static. We will discuss this later in more detail, but for now, just know
that static methods can be called directly using the class name. If you have a
class Foo and a static method named cling, you call it by using Foo.cling().
What you don't need to do is this.

Foo f = new Foo();
f.cling();

You can operate in this way, but calling a static method via the class name
is the preferred way of calling a static method, and it saves the Java Virtual
Machine work.

� Immutability Instances of these classes are immutable. You may not
change the datum. You may only orphan the object by pointing at a new
one with a di�erent datum. This should remind you of Python, because
this is how Python treats these types types such at int, bool, and float.
It's just like good old Python.

� A toString() method, which returns a string representation of the da-
tum.

� A static toString(primitiveType p) Method This method will con-
vert the primitive passed it into a string. For example, Integer.toString(45)
returns the string "45".

©2009-2021, John M. Morrison 202

CHAPTER 7. CLASSES AND OBJECTS 7.4. THE WRAPPER CLASSES

� A static parsePrimitive(String s) Method This method converts a
String into a value of the primitive type. For example,

Integer.parseInt("455")}

converts the string "455" into the integer 455. For numerical types, a
NumberFormatException is thrown if an malformed numerical string is
passed them. The Character wrapper does not have this feature. You
should take note of how this method works in a Boolean.

� Membership in java.lang All of these classes belong to the package
java.lang; you do not need to import anything to use these classes.

Programming Exercises

1. Write an expression to see if a character is an upper-case letter.

2. Write an expression to see if a character is a digit.

7.4.1 Autoboxing and Autounboxing

These features make using the wrapper classes simple. Autoboxing automati-
cally promotes a primitive to a wrapper class type where appropriate. Here is
an example. The command

Integer i = 5;

really amounts to

Integer i = new Integer(5);

This call to new �boxes� the primitive 5 into an object of type Integer. The
command Integer i = 5; automatically boxes the primitive 5 inside an object
of type Integer. This results in a pleasing syntactical economy.

Autounboxing allows the following sensible�looking code.

Integer i = 5;
int x = i;

Here, the datum is automatically �unboxed� from the wrapper Integer type
and it is handed to the primitive type variable x.

This is the smart way to compare a primitive with a boxed primitive. Direct
comparison can be dangerous and result in errors.

©2009-2021, John M. Morrison 203

7.5. TWO CAVEATS CHAPTER 7. CLASSES AND OBJECTS

jshell> Integer i = 5;
jshell> int y = i;
jshell> int x = 5;
jshell> i == y
true
jshell>

Autoboxing and autounboxing eliminate a lot of verbosity from Java; we no
longer need to make most valueOf and equals calls.

7.5 Two Caveats

Do not box primitive types gratuitously. If you can keep variables primitive
without a sacri�ce of clarity or functionality, do so. Here is an example of a
big mistake caused by seemingly innocuous choice. Although we have not met
loops yet, you can easily �gure out what is happening here. You are doing a
million boxings and unboxings.

for(Integer i = 0; i < 1000000; i++)
{

//code

}

This will be a signi�cant performance hit. This is much better.

for(int i = 0; i < 1000000; i++)
{

//code

}

It is best to prefer the use of primitive types, and to use the wrapper types
when you need their helpful methods. We mention them because you will need
to use them in conjunction with collections.

Using == on autoboxed primitives is almost always wrong You must
use the equals method in this case.

7.6 Classes Know Things: State

So far, we have seen that objects have identity and that they have behavior,
which is re�ected by a class's methods.

©2009-2021, John M. Morrison 204

CHAPTER 7. CLASSES AND OBJECTS7.6. CLASSES KNOW THINGS: STATE

We then saw that a string �knows� the character sequence it contains. We
do not know how that sequence is stored, and we do not need to know that.
The character sequence held by a string is re�ective of its state. The state of an
object is what an object �knows.� Observe that the outcome of a Java method
on an object can, and often does, depend upon its state. This works just as it
does in Python.

To give you a look behind the scenes, we shall now produce a simple class
which will provides a blueprint for making objects having state, identity and
behavior. To do this, it will necessary to introduce some new ideas in Java, the
constructor and method overloading.

Place the following code in a �le, compile and save it with the name Point.java.
We are going to create a simple class for representing points in the plane with
integer coördinates.

public class Point
{
}

What does such a point need to know? It needs to know its x and y coördi-
nates. Here is how to make it aware of these.

public class Point
{

private int x;
private int y;

}

You will see a new keyword: private. This says that the variables x and y are
not visible outside of the class. These variables are called instance variables or
state variables. We shall see that they specify the state of a Point.

Why this excessive modesty? Have you ever bought some electronic trin-
ket, turned it upside�down and seen �No user serviceable parts inside� embla-
zoned on the bottom? The product�liability lawyers of the trinket's manufac-
turer �gure that an ignorant user might bring harm to himself whilst �ddling
with the entrails of his device. Said �ddling could result in a monster lawsuit
that leaves the principles of the manufacturer living in penury.

Likewise, we want to protect the integrity of our class; we will not allow the
user of our class to monkey with the internal elements of our program. We will
permit the client programmer access to these elements by creating methods that
give access. This is a hard-and-fast rule of Java programming: Always declare
your state variables private.

©2009-2021, John M. Morrison 205

7.6. CLASSES KNOW THINGS: STATECHAPTER 7. CLASSES AND OBJECTS

Additionally, if we decide later that it is better to implement the class in a
newer and better way, we can do this and we can keep the interface the same.
This allows us to do an �engine upgrade� but have the operation of the car be
the same. It will just have a little more pep when you step on the gas.

Now compile your class. Let us make an instance of this class and deliber-
ately get in trouble.

jshell> Point p = new Point();
p ==> Point@26653222

jshell> p.x
| Error:
| x has private access in Point
| p.x
| ^-^

We have debarred ourselves from having any access to the state variables of an
instance of the Point class. This makes our class pretty useless. How do we get
out of this pickle?

7.6.1 Quick! Call the OBGYN! And get a load of this!

Clearly a Point needs help initializing its coördinates. For this purpose we use
a special method called a constructor ; this is how Java achieves the e�ect of
Python's __init__ method. A constructor has no return type; in fact it is the
only method in a class which can lack a return type. When the constructor is
�nished, good programming practice dictates that all state variables should be
initialized. Constructors are OBGYNs: they oversee the birth of objects.

Now for some grammatical ground rules. The constructor for a class must
have the same name as the class. In fact, only constructors in a class may have
the same name as the class. We now write a constructor for our Point class.

public class Point
{

private int x;
private int y;
public Point(int x, int y)
{

this.x = x;
this.y = y;

}
}

When you are programming in a class, you are that object. The keyword this

©2009-2021, John M. Morrison 206

CHAPTER 7. CLASSES AND OBJECTS7.6. CLASSES KNOW THINGS: STATE

refers to �me.� The dot construct is the genetive case, so this.x is �my x.� It
should remind you of Python's self.

Now compile your class. To make a point at (3,4), call the constructor by
using new. The new keyword calls the class's constructor and oversees the birth
of an object.

jshell> Point p = new Point(3,4);
p ==> Point@26653222

jshell> Point q = new Point();
| Error:
| constructor Point in class Point cannot be applied to given types;
| required: int,int
| found: no arguments
| reason: actual and formal argument lists differ in length
| Point q = new Point();
| ^---------^

The Point p is storing the point (3,4). Remember, the variable p itself only
stored a memory address. The point (3,4) is stored at that address.

One other thing we see is that once we create a constructor the default
constructor, which has an empty signature, no longer exists.

7.6.2 Now Let's do the Same Thing in Python

Python has special methods called hooks or dunder methods that do special
jobs. These methods get this name from the fact that they are surrounded by
double-underscores. We begin by meeting the the Python __init__ dunder
method that method behaves much like a Java constructor; it is called every
time a new Python object of type Point is created.

class Point(object):
def __init__(self, x = 0, y = 0):

self.x = x
self.y = y

p = Point()
print (f"p = ({p.x}, {p.y})")
q = Point(3,4)
print (f"q = ({q.x}, {q.y})")

Now go back to the String class in the API guide. Scroll down to the
constructor summary; this has a blue header on it and it is just above the

©2009-2021, John M. Morrison 207

7.6. CLASSES KNOW THINGS: STATECHAPTER 7. CLASSES AND OBJECTS

method summary. You will see that the string class has many constructors.
How is this possible? We faked in in Python by using default arguments. Can
we do this for our point class in Java?

Happily, the answer is �yes�.

7.6.3 Method and Constructor Overloading

The signature of a Java method is an ordered list of the types of its arguments.
Java supports method overloading : you may have several methods bearing the
same name, provided they have di�erent signatures. This is why you see several
versions of indexOf in the String class. Java resolves the ambiguity caused by
overloading at compile time by looking at the types of arguments given in the
signature. It looks for the method with the right signature and it then calls it.

Notice that the static typing of Java allows it to support method overload-
ing. Python achieves a similar e�ect using the facilities of default and keyword
arguments. Here is an example of Python default arguments at work.

def f(x = 0, y = 0, z = 0):
return x + y + z

print "f() = ", f()
print "f(3) = ", f(3)
print "f(3, 4) = ", f(3, 4)
print "f(3, 4, 5) = ", f(3, 4, 5)

unix> python overload.py
f() = 0
f(3) = 3
f(3, 4) = 7
f(3, 4, 5) = 12
unix>

You can use this principle on constructors, too. Let us now go back to our
Point class. We will make the default constructor (sensibly enough) initialize
our point to the origin.

public class Point
{

private int x;
private int y;
public Point(int x, int y)
{

this.x = x;
this.y = y;

©2009-2021, John M. Morrison 208

CHAPTER 7. CLASSES AND OBJECTS7.6. CLASSES KNOW THINGS: STATE

}
public Point()
{

this.x = 0;
this.y = 0;

}
}

Compile this class. Then type in this interactive session.

jshell> Point p = new Point(3,4);
p ==> Point@26653222

jshell> Point q = new Point();
q ==> Point@68c4039c

Voila! The default constructor is now working.

7.6.4 Get a load of this again!

The eleventh commandment reads, �Thou shalt not maintain duplicate code.�
This sounds Draconian, but it is for reasons of convenience and sanity. If you
want to modify your program, you want to do the modi�cations in ONE place.
Having duplicate code forces you to ferret out every copy of a duplicated piece
of code you wish to modify. You should strive to avoid this.

One way to avoid it is to write separate methods to perform tasks you do
frequently. Here, however, we are looking at our constructor. You see duplicate
code in the constructors. To eliminate it, you may use the this keyword to
call one constructor from another. We shall apply this here.

public class Point
{

private int x;
private int y;
public Point(int x, int y)
{

this.x = x;
this.y = y;

}
public Point()
{

this(0,0);
}

}

©2009-2021, John M. Morrison 209

7.6. CLASSES KNOW THINGS: STATECHAPTER 7. CLASSES AND OBJECTS

Note that our Python class the same functionality with the aid of default
arguments.

class Point(object):
def __init__(self, x = 0, y = 0):

self.x = x
self.y = y

7.6.5 Now Let Us Make this Class DO Something

So far, our Point class is devoid of features. We can create points, but we
cannot see what their coördinates are. Now we shall provide accessor methods
that give access to the cöordinates. While we are in here we will also write a
special method called toString, which will allow our points to print nicely to
the screen.

First we create the accessor methods. Here is how they should work.

jshell> Point p = new Point(3,4);
p ==> Point@26653222

jshell> Point q = new Point();
q ==> Point@68c4039c

jshell> p.getX()
$4 ==> 3

jshell> p.getY()
$5 ==> 4

jshell> q.getX()
$6 ==> 0

jshell> q.getY()
$7 ==> 0

Making them is easy. Just add these methods to your Point class.

public int getX()
{

return x;
}
public int getY()
{

©2009-2021, John M. Morrison 210

CHAPTER 7. CLASSES AND OBJECTS7.6. CLASSES KNOW THINGS: STATE

return y;
}

These accessor or �getter� methods allow the user of your class to see the
coördinates of your Point but the user cannot use the getter methods to change
the state of the Point. So far, our point class is immutable. There is no way to
change its state variables, only a way to read their values.

To get your points to print nicely, create a toString method. Its header
must be

public String toString()

In this method we will return a string representation for a point. Place this
method inside of your Point class.

public String toString()
{

return String.format("(%s, %s)", x, y);
}

Compile and run. The toString() method of an object's class is called au-
tomatically whenever you print an object. Every Java object is born with a
toString() method. We saw that this built�in method for our point class was
basically useless. By implementing the toString method in our class, we are
customizing it for our purposes. Here we see our nice representation of a Point.

jshell> Point p = new Point(3,4)
(3, 4)
jshell> System.out.println(p)
(3, 4)
jshell>

You will see that many classes in the standard library customize this method.

To get the same functionality in Python, we use the str dunder method.
You can skip down to the programming exercises and do this now.

Now let us write a method that allows us to compute the distance between
two points. To do this we will need to calculate a square-root. Fortunately,
Java has a scienti�c calculator. Go to the API guide and look up the class
Math. To use a Math function, just prepend its name with Math.; for example
Math.sqrt(5) computes

√
5. All of the methods of this class are static. Many

of the names of these functions are the same as they are in Python's math library
and in and C/C++'s cmath and math.h libraries.

Now add this method to your class. You will see that it is just carrying out
the distance formula between your point (x,y) and the point q.

©2009-2021, John M. Morrison 211

7.6. CLASSES KNOW THINGS: STATECHAPTER 7. CLASSES AND OBJECTS

public double distanceTo(Point q)
{

return Math.sqrt((x - q.x)*(x - q.x) + (y - q.y)*(y - q.y));
}

Compile and run.

jshell> Point origin = new Point()
(0, 0)
jshell> Point p = new Point(5,12);
jshell> origin.distanceTo(p)
13.0
jshell> p.distanceTo(origin)
13.0
jshell>

Programming Exercises Here is a chance to try out some new territory in
Python. We have already met the init dunder.

1. The Python dunder __str__ tells Python to represent a Python object as
a string. Its method header is

def __str__(self):

Make a method for the Python Point class that represents a Point as a
string.

2. The Python hook __eq__ can check for equality of objects. You can cause
to points to be compared using == with this hook. Its header is

def __eq__(self, other):

Implement this for our Python Point class.

3. Look up the hypot() method in the Math class. How can you use it in
our Point class? Make that method. Use snake notation for the name.

7.6.6 Who am I?

In object-oriented programming are two roles: that of the class developer and
that of the client programmer. You assume both roles at once in Java, as all
code in Java lives inside of classes. You are the class developer of the class
you are writing, and the client programmer of the classes you are using. Any
nontrivial Java program involves at least two classes, the class itself and often
the class String or System.out. In practice, as you produce Java classes, you
will often use several di�erent classes that you have produced or from the Java
Standard Library.

©2009-2021, John M. Morrison 212

CHAPTER 7. CLASSES AND OBJECTS7.6. CLASSES KNOW THINGS: STATE

In both Python and java, while we are creating the Point class, we should
think of ourselves as being Points. A Points knows its coördinates. Since
you are a point when programming in the class Point, you have access to your
private variables. You also have access to the private variables of any instance
of class Point. This is why in the distanceTo method, we could use q.x and
q.y.

In the last interactive session we made two points with the calls

Point origin = new Point();
Point p = new Point(5,12)

This resulted in the creation of two points. The call

p.distanceTo(origin)

returned 13.0. What is says is �Call p's distanceTo method using the argument
origin.� In this case, you should think of �you� as p. The point origin is
playing the role of the point q in the method header. Likewise, the call

origin.distanceTo(p)

is calling p's distance to origin. In the �rst case, �I� is origin, in the second,
�I� is p.

7.6.7 Mutator Methods

So far, all of our class methods have only looked at, but have not changed, the
state of a point object. Now we will make our points mutable. To this end,
create two �setter� methods and place them in your Point class.

public void setX(int a)
{

x = a;
}
public void setY(int b)
{

y = b;
}

Now compile and type in the following.

jshell> p = new Point()
(0, 0)

©2009-2021, John M. Morrison 213

7.6. CLASSES KNOW THINGS: STATECHAPTER 7. CLASSES AND OBJECTS

jshell> p.setX(5)
jshell> p
(5, 0)
jshell> p.setY(12)
jshell> p
(5, 12)

Our point class is now mutable: We are now giving client programmers permis-
sion to reset each of the coördinates. These new methods are called �mutator�
methods, because they change the state of a Point object. Instances of our
Point class are mutable, much as are Python lists. Mutability can be conve-
nient, but it can be dangerous, too. Watch us get an ugly little surprise from
aliasing.

To this end, let us continue the interactive session we started above.

jshell> q = p;
jshell> q
(5, 12)
jshell> q.setX(0)
jshell> p
(0, 12)
jshell> q
(0, 12)

Both p and q point at the same object in memory, which is initially storing
the point (5,12). Now we say, �q, set the x�coördinate of the point you are
pointing at to 0. Well, p happens to be pointing at precisely the same object.
In this case p and q are aliases of one another. If you call a mutator method
from either variable, it changes the value pointed at by the other!

If we wanted p and q to be independent copies of one another, a di�erent
procedure is required. Let us now create a method called clone, which will
return an independent copy of a point.

public Point clone()
{

return new Point(x,y);
}

Compile and �re up a new jshell session. Now we will test�drive our new
clone method. We will make a point p, an alias for the point alias, and a copy
of the point copy.

jshell> Point p = new Point(3,4)
(3, 4)

©2009-2021, John M. Morrison 214

CHAPTER 7. CLASSES AND OBJECTS7.6. CLASSES KNOW THINGS: STATE

jshell> Point alias = p
(3, 4)
jshell> Point copy = p.clone();
jshell> p
(3, 4)

Continuing, let us check all possible equalities.

jshell> p == alias
true
jshell> copy == alias
false
jshell> p == copy
false

We can see that p and q are in fact aliases the same object, but that alias is
not synonymous with either p or q.

jshell> p
(3, 4)
jshell> alias
(3, 4)
jshell> copy
(3, 4)

All three point at a point stored in memory that is (3,4). Now let us call the
mutator setX on p; we shall then inspect all three.

jshell> p.setX(0)
jshell> p
(0, 4)
jshell> alias
(0, 4)
jshell> copy
(3, 4)

The object pointed to by both p and q was changed to (0,4). The copy,
however, was untouched.

Look at the body of the clone method. It says

return new Point(x,y);

This tells Java to make an entirely new point with coördinates x and y. The
call to new causes the constructor to spring into action and stamp out a fresh,
new Point.

©2009-2021, John M. Morrison 215

7.7. JAVA SCOPE CHAPTER 7. CLASSES AND OBJECTS

7.7 Scope of Java Variables

In this section, we shall describe the lifetime and visibility of Java variables.
The rules di�er somewhat from Python, and you will need to be aware of these
di�erences to avoid unpleasant surprises.

So fare, we have met two kinds of variables in object-oriented programming,
state variables and local variables. Local variables are variables created inside
of any method or function. State variables are visible anywhere in a class; in
Python they are visible via the self reference. It is best in Python to initialize
all state inside of the init dunder method.

In Java, where they are declared in a class is immaterial, but you should
declare them at the top of your class. This makes them easy to �nd and manage.
You could move them to the end of the class with no e�ect.

The rest of our discussion pertains to local variables. All local variables in
Java have a block ; this is delimited by the closest pair of matching curly braces
containing the variable's declaration. The �rst rule is that no local variable is
visible outside of its block. The second rule is that a local variable is not visible
until it is created. You will notice that these rules are stricter than those of
Python. As in Python, variables in Java are not visible prior to their creation;
this rule is exactly the same.

Here is an important di�erence. Variables created inside of Python functions
are visible from their creation to the end of the function, even if they are declared
inside of a block in that function. Here is a quick example in a �le named
laxPyScope.py.

def artificialExample(x):
k = 0
while k < len(x):

lastSeen = x[k]
k += 1

return lastSeen
x = "parfait"
print "artificialExample(" + x + ") = ", artificialExample(x)

It is easy to see that the function artificialExample simply returns the last
letter in a nonempty string. We run it here.

$ python laxPyScope.py
artificialExample(parfait) = t
$

Observe that the variable lastSeen was created inside a block belonging to a
while loop. In Java's scoping rules, this variable would no longer be visible (it

©2009-2021, John M. Morrison 216

CHAPTER 7. CLASSES AND OBJECTS 7.7. JAVA SCOPE

would be destroyed) as soon as the loop's block ends. This happens because,
when a block closes, all varables inside of it are popped o� the stack.

There are some immediate implications of this rule. Any variable declared
inside of a method in a class can only be seen inside of that method. That works
out the same as in Python. Let us code up exactly the same thing in Java in a
class StrictJavaScope. In this little demonstration, you will see Java's while
loop at work.

public class StrictJavaScope
{

public char artificialExample(String x)
{

int k = 0;
while(k < x.length())
{

char lastSeen = x.charAt(k);
k += 1;

}
return lastSeen;

}
}

Now compile and brace yourself for compiler grumblings.

javac StrictJavaScope.java
StrictJavaScope.java:11: error: cannot find symbol

return lastSeen;
^

symbol: variable lastSeen
location: class StrictJavaScope

1 error

Your symbol lastSeen died when the while loop ended. Even worse, it got
declared each time the loop was entered and died on each completion of the
loop.

How do we �x this? We should declare the lastSeen variable before the
loop. Then its block is the entire function body, and it will still exist when we
need it. Here is the class with repairs e�ected.

public class StrictJavaScope
{

public char artificialExample(String x)
{

int k = 0;

©2009-2021, John M. Morrison 217

7.7. JAVA SCOPE CHAPTER 7. CLASSES AND OBJECTS

char lastSeen = ' ';
while(k < x.length())
{

lastSeen = x.charAt(k);
k += 1;

}
return lastSeen;

}
}

Peace now reigns in the valley.

jshell> s = new StrictJavaScope();
jshell> s.artificialExample("parfait")
't'
jshell>

while We are at it The use of the while loop is entirely natural to us and
it looks a lot like Python. There are some di�erences and similarities. The
di�erences are largely cosmetic and syntactical. The semantics are the same,
save of this issue of scope we just discussed.

� similarity The while statement is a boss statement. No mark occurs in
Java at the end of a boss statement.

� di�erence Notice that there is NO colon or semicolon at the end of the
while statement. Go ahead, place a semicolon at the end of the while
statement in the example class. It compiles. Run it. Now �gure out what
you did, Henry VIII.

� di�erence Notice that predicate for the while statement is enclosed in
parentheses. This is required in Java; in Python it is optional.

� similarity The while statement owns a block of code. This block can be
empty; just put an empty pair of curly braces after the loop header.

The scoping for methods and state variables is similar. State variables have
class scope and they are visible from anywhere inside of the class. They may
be modi�ed by any of the methods of the class. Any method modifying a
state variable is a mutator method for the class. Be careful when using mutator
methods, as we have discussed some of their perils when we talked about aliasing.
A good general rule is that if a class creates small objects, give it no mutator
methods. For our Point class, we could just create new Points, rather than
resetting coördinates. Then you do not have to think about aliasing. In fact, it
allows you to share objects among variables freely and it can save space. It also
eliminates the need for copying objects.

©2009-2021, John M. Morrison 218

CHAPTER 7. CLASSES AND OBJECTS 7.8. OO WELTANSCHAUUNG

Later, we will deal with larger objects, like graphics windows and displays.
We do not want to be unnecessarily calling constructors for these large objects
and we will see that these objects in the standard library have a lot of mutator
methods.

All methods are visible inside of the class. To get to methods outside of the
class, you create an instance of the class using new and call the method via the
instance. Even if your state variables are (foolishly) public, you must refer to
them via an instance of the class. Let us discuss a brief example to make this
clear.

Suppose you have a class Foo with a method called doStuff() and public a
public state variable x. Then to get at doStuff or x we must �rst create a new
Foo by calling a constructor. In this example we will use the default.

Foo f = new Foo();

Then you can call doStuff by making the call

f.doStuff();

Here you are calling doStuff via the instance f of the class Foo. To make f's x
be 5, we enter the code

f.x = 5;

Notice that the �naked� method name and the naked variable name are not
visible outside of the class. In practice, since all of our state variables will be
marked private, no evidence of state variables is generally visible outside of
any class.

7.8 The Object-Oriented Weltanschauung

Much emphasis has been placed here on classes and objects. In this section
we will have a discussion of programming using objects. We will begin by
discussing the procedural programming methods we developed in Chapters 0-7
of the Python book.

7.8.1 Procedural Programming

When we �rst started to program in Python, we wrote very simple programs
that consisted only of a main routine. These programs carried out small tasks
and were short so there was little risk of confusion or of getting lost in the code.

©2009-2021, John M. Morrison 219

7.8. OO WELTANSCHAUUNG CHAPTER 7. CLASSES AND OBJECTS

As we got more sophisticated, we began using functions as a means to break
down, or modularize, our program into manageable pieces. We would then code
each part and integrate the functions into a program that became a coherent
whole. Good design of programs is �top down.� You should nail down what
you are trying to accomplish with your program. Then you should break the
program down into components. Each component could then be broken into
smaller components. When the components are of a manageable size, you then
code them up as functions.

To make this concrete, let us examine the case of writing a program that
accepts a string and which looks through an English word list, and which shows
all anagrams of the string you gave as input which appear in the word list.

To do this, you could write one monolithic procedure. However, the proce-
dure would get pretty long and it would be trying to accomplish many things
at once. Instead we might look at this and see we want to do the following

� Obtain the word from the user.

� Lower-case the word and permute the letters so they are in alphabetical
order

� Open a word list �le.

� for each word in the list:

� Lower-case each word in the wordlist and put it in alphabetical order.

� If you get a match, put the word on an output list

� Return the list of words we obtained to the user.

Not all the tasks here are of the same di�culty. The �rst one, obtain the
word from the user, is quite easy to do. We, however have to make a design
decision and decide how to get the word from the user. This is a matter of
deciding the program's user interface.

Python is an object-oriented language like Java with a library of classes.
Many of the Python classes can save you great gobs of work; the same is true in
Java. Always look for a solution to your problem in the standard library before
trying to solve it yourself! If you create classes intelligently, you will see that
you will be able to reuse a lot of code you create.

Returning to our problem, you would revisit each sub-problem you have
found. If the sub-problem is simple enough to write a function for it, code it.
Otherwise, break it down further.

©2009-2021, John M. Morrison 220

CHAPTER 7. CLASSES AND OBJECTS 7.8. OO WELTANSCHAUUNG

This is an example of top�down design for a procedural program. We keep
simplifying procedures until they become tractable enough to code in a single
function. We program with verbs.

The creation of functions gives us a layer of abstraction. Once we test our
functions, we use them and we do not concern ourselves with their internal
details (unless a function goes buggy on us), we use them for their behavior.
Once a function is created and its behavior is known, we no longer concern
ourselves with its local variables and the details of its implementation.

This is an example of encapsulation; we are thinking of a function in terms
of its behavior and not in terms of its inner workings.

7.8.2 Object�Oriented Programming

In object�oriented programming, we program with nouns. A class is a sophisti-
cated creature. It creates objects, which are computational creatures that have
state, identity and behavior. We shall see here that encapsulation plays a large
role in object-oriented programming. Good encapsulation dictates that we hide
things from client programmers they do not need to see. This is one reason we
make our state variables private. We may even choose to make certain methods
private, if the do think they are of real use other than that of a service role the
other methods of the class.

You still do top-down design, but you begin by thinking about what kind of
objects the task at hand entails. This prompts you to think about the classes
you can use from the standard libraries and those you need to write yourself.
You must think about the ways in which they interact.

For each class, you have to think about what state it needs to maintain, and
what methods it should have so it can do its job properly. We arrive here in
much more complex world than that of procedural programming.

When you used the String class, you did not need to know how the char-
acters of a String are stored. You do not need to know how the substring()
method works: you merely know the behavior it embodies and you use it. What
you can see in the API guide is the interface of a class; this is a class's public
portion. You are a client programmer for the entire standard library.

What you do not see is the class's implementation. You do not know how
the String class works internally. You could make a good guess. It looks as if
a list of characters that make up the string is stored somewhere. That probably
re�ects the state of a String object.

A string, however, is a fairly simple object. The contents of a window in a
graphical user interface (GUI) in Java is stored in an object that is an instance
of the class Stage. How do you store such a thing? Is it di�erent on di�erent
platforms? All of a sudden we feel the icy breath of the possibly unknown....

©2009-2021, John M. Morrison 221

7.8. OO WELTANSCHAUUNG CHAPTER 7. CLASSES AND OBJECTS

However, there is nothing to fear! In Java the Stage class has behaviors that
allow you to work with a frame in a GUI and you do not have to know how the
internal details of the Stage work. This is the beauty of encapsulation. Those
details are thankfully hidden from us!

For an everyday example let us think about driving a car. You stick in the
key, turn it, and the ignition �res the engine. You then put the car in gear
and drive. Your car has an interface. There is the shifter, steering wheel, gas
pedal, the music and climate controls, the brakes and the parking brake. There
are other interface items such as door locks, seat adjusters, and the dome light
switch.

These constitute the �public� face of your car. You work with this familiar
interface when driving. It is similar across cars. Even if your car runs on diesel,
the interface you use to drive is not very di�erent from that of a gasoline�fueled
car.

You know your car has �private parts� to which you do not have direct access
when driving. Your gas pedal acts as a mutator method does; when you depress
it, it causes more gas to �ow to the fuel injection system and causes the RPM
of the engine to increase. The RPM of the engine is a state variable for your
car. Your tachometer (if your car has one) is a getter method for the RPM of
your engine. You a�ect the private parts (the implementation) of your car only
indirectly. Your actions occur through the interface.

Let's not encapsulate things for a moment. Imagine if you had to think
about everything your car does to run. When you stick your key in the ignition,
if you drive a newer car, an electronic system analyzes your key fob to see if your
key is genuine. That then triggers a switch that allows the ignition to start the
car. Then power �ows to the starter motor....... As you are tooling down the
highway, it is a safe bet you are not thinking about the intricacies of your car's
fuel injection system and the reactions occurring in its catalytic converter. You
get the idea. Encapsulation in classes simpli�es things to a manageable essence
and allows us to think about the problem (driving here) at hand. You use the
car's interface to control it on the road. This frees your mind to think about
your actual driving.

So, a Java program is one or more classes working together. We create
instance of these classes and call methods via these instances to get things
done. In the balance of this book, you will gain skill using the standard library
classes. You will learn how to create new classes and to create extensions of
existing ones. This will give you a rich palette from which to create programs.

Exercises

1. Think about your bicycle. What constitutes its interface?

2. What is the interface to your computer? How do you interact with it and

©2009-2021, John M. Morrison 222

CHAPTER 7. CLASSES AND OBJECTS 7.8. OO WELTANSCHAUUNG

control it? What are some of its �private parts�?

3. How about a takeout pizza joint? How do you interact with it? What are
some of its public and private parts?

©2009-2021, John M. Morrison 223

7.8. OO WELTANSCHAUUNG CHAPTER 7. CLASSES AND OBJECTS

©2009-2021, John M. Morrison 224

Chapter 8

Python −→ Java

8.0 Introduction

We are going to frame the concepts we learned in Python in Java. During
this chapter, we will do a comparison of the design and mechanics of the two
languages.

8.1 Java Data Structures

Recall that a data structure is a container in which we store a collection of
related objects under a single name. Di�erent data structures have di�erent
organizations and di�erent rules for accessing and manipulating their contents.
In Python, we met the data structures list, tuple, and dict. Python lists
are mutable heterogeneous sequences; they can contain objects of any type as
entries. Python tuples are like lists, but they are immutable; list methods that
change list state cannot be used on tuples. Python dictionaries allow us to store
key-value pairs. Python data structures grow according to our needs and they
shrink when we delete items from them.

Java has two data types comparable to Python lists. We begin by learning
about the array ; it is a homogeneous mutable sequence type of �xed size. When
you create an array you specify its size and the type of entries it contains. If you
run out of room and wish to add more entries to an array, you must create a
new, bigger array, copy your array into its new home, and then abandon the old
array. Before abandoning the old array, you will have do certain housekeeping
chores so that all abandoned objects get garbage-collected. Arrays can be of
primitive or object type. An array itself is an object. The syntax for declaring
an array of type type is

225

8.1. JAVA DATA STRUCTURES CHAPTER 8. PYTHON −→ JAVA

type[] identifier;

Open a new jshell session. We will use our �rst import statement here.
The import statement works much as it does in Python. Importing the class
java.util.Arrays will give us a convenient way to print the contents of an
array; the built-in string representation of an array is useless.

Let us begin by declaring a variable of integer array type.

jshell> import java.util.Arrays;
jshell> int[] x;
x ==> null

Now let's try to assign something to an entry.

jshell> x[0] = 1
| java.lang.NullPointerException thrown
| at (#2:1)

We are greeted by a surly error message. Here is one sure reason why.

jshell> Arrays.toString(x)
"null"

Right now, the array variable is pointing at Java's �graveyard state� null. If
you attempt to use a method on a object pointing at null, you will get a run
time error called a NullPointerException. We need to give the array some
actual memory to point to; this is where we indicate the array's size.

We call the special array constructor to attach an actual array to the array
pointer x. After we attach the array, notice how we obtain the array's length.

jshell> x = new int[10];
jshell> Arrays.toString(x)
"[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]"
jshell> x.length
10

Observe also that Java politely placed a zero in each entry in this integer array.
This will happen for any primitive numerical type. If you make an array of
booleans, it will be populated with the value false. In a character array, watch
what happens.

jshell> char[] y = new char[10];
jshell> Arrays.toString(y)

©2009-2021, John M. Morrison 226

CHAPTER 8. PYTHON −→ JAVA 8.1. JAVA DATA STRUCTURES

"[, , , , , , , , ,]"
jshell> (int) y[0]
0

The array is �lled with the null character which has ASCII value 0. It is not
a printable character. An array of object type is �lled with nulls. Typically,
you will need to loop through the array to attach an object or primitive to each
entry.

Arrays have indices, just as lists do in Python. Remember, you should think
of the indices as living between the array entries. Arrays know their length,
too; just use .length. Notice that this is not a method and it is an error to use
parentheses at the end of it.

8.1.1 java.util.Arrays

The convenience class java.util.Arrays is a �service class� that has useful
methods for working with arrays. We will demonstrate some of its methods
here. If you are working on arrays, look to it �rst as as a means of doing routine
chores with arrays. Its methods are fast, e�cient and tested. It is a nice exercise
to re-create some of them, but don't needlessly reinvent the wheel.

Go to the API page; you will see some useful items there. Here is a summary
of the most important ones for us. We will use Type to stand for a primitive or
object type. Hence Type[] means an array of type Type. You call all of these
methods by using Arrays.method(arg(s)).

©2009-2021, John M. Morrison 227

8.1. JAVA DATA STRUCTURES CHAPTER 8. PYTHON −→ JAVA

Header Action
Type[] copyOf(Type[]
original, int newLength)

This copies your array and returns the
copy. If the newLength is shorter than your
array, your array is truncated. Otherwise,
it is lengthened and the extra entries are
padded with the default value of Type.

Type[]
copyOfRange(Type[]
original, int from,
int to)

This returns a copy of a slice of your orig-
inal array, between indices from and to.
Using illegal entries generates a run time
error.

boolean equals(Type[] array1,
Type[] array2)

This returns true if the two arrays have
the same length and contain the same val-
ues in the same order. It works just like
Python's == on lists.

void fill(Type[] array,
Type value)

This will replace all of the entries in the
array array with the value value.

void fill(Type[] array,
int from, int to, Type
value)

This will replace the entries between in-
dices from and to with the value value.

String toString(Type[]
array

This pretty-prints your array as a string.
You have seen this used.

8.1.2 Fixed Size? C'mon!

We now introduce a new class and a new piece of Java syntax. An ArrayList
is a variable-size array. There are two ways to work with ArrayLists and we
will show them both.

Let us create an ArrayList and put some items in it. To work with an
ArrayList you will need to import the class java.util.ArrayList. The import
statement in the interactive session below shows how to make the class visible.
java.util.ArrayList is the fully�quali�ed name of this class. The import
statement puts us on a ��rst-name� basis with the class.

How do I know what to import? Look the class ArrayList up in the API
guide. Near the top of the page, you will see this.

java.util
ArrayList<E>

This tells you that the ArrayList class lives in the package java.util.
Therefore you should place this at the top of your code.

import java.util.ArrayList;

©2009-2021, John M. Morrison 228

CHAPTER 8. PYTHON −→ JAVA 8.1. JAVA DATA STRUCTURES

Do not put the <E> in the import statement.

We will use the ArrayList's add method to place new items on the list we
create.

jshell> import java.util.ArrayList;
jshell> ArrayList pool = new ArrayList();
jshell> pool.add("noodle")
| Warning:
| unchecked call to add(E) as a member of the raw type java.util.ArrayList
| pool.add("noodle")
| ^----------------^
$5 ==> true

jshell> pool.add("chlorine")
| Warning:
| unchecked call to add(E) as a member of the raw type java.util.ArrayList
| pool.add("chlorine")
| ^------------------^
$6 ==> true

jshell> pool.add("algicide")
| Warning:
| unchecked call to add(E) as a member of the raw type java.util.ArrayList
| pool.add("algicide")
| ^------------------^
$7 ==> true

jshell> pool
pool ==> [noodle, chlorine, algicide]

jshell> pool.get(0)
$9 ==> "noodle"

All looks pretty good here, save for the surly warnings. But then there is an
irritating snag.

jshell> pool.get(0).charAt(0)
| Error:
| cannot find symbol
| symbol: method charAt(int)
| pool.get(0).charAt(0)
| ^----------------^

©2009-2021, John M. Morrison 229

8.1. JAVA DATA STRUCTURES CHAPTER 8. PYTHON −→ JAVA

8.1.3 What is this Object?

To explain what just happened to us properly, we will take a look into the near
future that lurks in Chapter 5. Every object of object type in Java, logically
enough, is an Object. Go into the API guide and look up the class Object.

Every Java class has a place in the Java class hierarchy, including the ones
you create. What is di�erent from human family trees is that a Java class has
one parent class. A Java class can have any number of children. This hierarchy is
independent of the hierarchical structure imposed on the Java Standard Library
by packages or modules.

The Java class hierarchy is an Australian (upside�down) tree, just like your
�le system. In LINUX, your �le system has a root directory called /. In the
Java class hierarchy, the class Object is the root class.

Heretofore, we have created seemingly stand�alone classes. Our classes, in
fact have not really been �stand�alone.� Automatically, Java enrolls them into
the class hierarchy and makes them children of the Object class. This is why
every object has toString() and equals() methods, even if you never created
them.

The only stand�alone types are the primitive types. They are entirely outside
of the Java class hierarchy. However, we have seen that these too, have Object
analogs in the form of the eight wrapper classes.

What is entailed in this parent�child relationship? The child inherits the
public portion of the parent class. In a human inheritance, the heirs can decide
what to do with the property they receive. They can use the property for its
original purpose or redirect it to a new purpose. In Java, the same rule applies.
When we made a toString()method for our Point class, we decided to redirect
our inheritance. Every Java object is born with a toString() method. Unfor-
tunately the base toString() method gives us a default string representation
of our object that looks like this.

ClassName@ABunchOfHexDigits

We decided this is not terribly useful so we overrode the base toString()
method and replaced it with our own. To override a method in a parent class,
just re�implement the method, with exactly the same signature, in the child
class. We also overrode the clone() method in the parent class. If you intend
to copy objects, do not trust the clone() you inherit from Object.

This table describes the methods in the Object class and the relevance of
each of them to us now.

©2009-2021, John M. Morrison 230

CHAPTER 8. PYTHON −→ JAVA 8.1. JAVA DATA STRUCTURES

Object Method Description
clone() This method creates and returns a copy of an ob-

ject. You should override this if you intend to use
independent copies of instance of your class. Do not
implement this if your class creates immutabled ob-
jects.

finalize() This method is automatically called when the
garbage collector arrives to reclaim the object's
memory. We will rarely if ever use it. Its explicit
use is now deprecated.

getClass() This method tells you the class that an object was
created from.

notify() This method is used in threaded programs. We will
deal with this much later

The three wait methods and the notifyAll methods all apply in threaded
programming. Threads allow our programs to spawn sub-processes that run
independently of our main program. Since these are a part of Object, this tells
you that threading is built right into the core of the Java language. We will
develop threading much later.

8.1.4 Back to the Matter at Hand

Everything is returned from an ArrayList is an Object. Strings have a charAt()
method, but an Object does not. As a result you must perform a cast to use
things you get from an ArrayList. Here is the (ugly) syntax. Ugh. It's as ugly
as Scheme or Lisp.

jshell> ((String)pool).get(0).charAt(0)
'n'
jshell>

This is the way things were until Java 5. Now we have generics that allow
us to specify the type of object to go in an ArrayList. Generics make a lot
of the ugliness go away. The small price you pay is you must specify a type of
object you are placing in the ArrayList. The type you specify is placed in the
type parameter that goes inside the angle brackets < >. You may use any
object type as a type parameter; you may not do this for primitive types.

ArrayList<String> farm = new ArrayList<String>();
jshell> farm.add("cow")
true
jshell> farm.get(0).charAt(0)
'c'
jshell>

©2009-2021, John M. Morrison 231

8.1. JAVA DATA STRUCTURES CHAPTER 8. PYTHON −→ JAVA

Here is something new to Java 7. Generics now have a feature called type
inference that, among other things, makes creating array lists simpler. We now
show the Java 7 way to do what we just did above.

ArrayList<String> farm = new ArrayList<>();
jshell> farm.add("cow")
true
jshell> farm.get(0).charAt(0)
'c'
jshell>

Notice you do not have to specify the type parameter on the right hand side.
Java infers it for you.

Warning: Deception Reigns King Here! All here has a pleasing cosmetic
appearance. However, it's time to take a peek behind the scenes and see the
real way that generics work.

What happens behind the scenes is that the compiler enforces the type
restriction. It also automatically inserts the needed casts for the get() method.
Java then erases all evidence of generics prior to run time.

1. You make an ArrayList of some type, say String by using the ArrayList<String>
syntax.

2. You put things on the list with add and friends and gain access to them
with the get() method.

3. The compiler will add the necessary casts to String type when you refer
to the entries of the ArrayList using get(), removing this annoyance
from your code.

4. The compiler then performs type erasure; it eliminates all mention of the
type parameter from the code, so to the run time environment, ArrayLists
look like old�style ArrayLists at run time.

This is a smart decision for two reasons. One reason is that it prevents
legacy code from breaking. That code will get compiler growlings and warnings
about �raw types� but it will continue to work.

Secondly, if you declare ArrayLists of various type, each type of ArrayList
does not generate new byte code. If you are familiar with C++, you may have
heard that C++'s version of generics, templates, causes �code bloat;� each new
type declared using a C++ template creates new object code in your executable
�le. Because of type erasure, Java does not do this.

Let us now make a sample class that takes full advantage of generics. First,
let us make a version without generics and see something go wrong.

©2009-2021, John M. Morrison 232

CHAPTER 8. PYTHON −→ JAVA 8.1. JAVA DATA STRUCTURES

import java.util.ArrayList;
public class StringList
{

private ArrayList theList;
public StringList()
{

theList = new ArrayList();
}
public boolean add(String newItem)
{

return theList.add(newItem);
}
public String get(int k)
{

return theList.get(k);
}

}

Compile this program and you will get a nastygram like this.

javac StringList.java
StringList.java:15: error: incompatible types:

Object cannot be converted to String
return theList.get(k);

^
Note: StringList.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.
1 error

The error is that we are advertising that get returns a String; the ArrayList's
get() only returns an Object. Now let us add the type parameter <String> to
the code. Your code compiles. Let us now inspect our class interactively. We
can now cast aside our worries about casts.

jshell> StringList greats = new StringList();
jshell> greats.add("Babe Ruth")
true
jshell> greats.add("Mickey Mantle")
true
jshell> greats.add("Lou Gehrig")
true
jshell> greats.get(0)
"Babe Ruth"
jshell> greats.get(0).charAt(0)
'B'
jshell>

©2009-2021, John M. Morrison 233

8.2. CONDITIONAL EXECUTION CHAPTER 8. PYTHON −→ JAVA

You can see that greats.get(0) in fact returns a String, not just an Object,
since it accepts the charAt() message.

Programming Exercises These exercises will help familiarize you with the
ArrayList API page. This class o�ers an abundance of useful services. Try
these in a jshell session.

1. Make a new ArrayList of strings named roster.

2. Add several lower-case words to the ArrayList; view its contents as you
add them.

3. How do you compute the number of elements of an ArrayList?

4. How can you determine if a given string is in your ArrayList?

5. Enter this import statement: import java.util.Collections.

6. Type this command Collections.sort(roster); Tell what happens.

7. Type this command Collections.shuffle(roster); Tell what happens.

8. Add some upper-case words. Add some strings with numbers and symbols.
How do they behave when you use Collections.sort()? What de�nitive
conclusion can you surmise?

9. Another generic class in Java is HashSet<E>. Create a HashSet<String>.
Add the same string twice. What got returned? What happened? Add
more items. What do you notice? Look this class up in the API guide
and do some spelunking.

8.2 Conditional Execution

Java, like Python or any other self-respecting computer language, supports con-
ditional execution. Python has if, elif and else statements. These are all
boss statements. All of this is the works the same way in Java, but the appear-
ance is a little di�erent. Here is a comparison method called ticketTaker in
Python and Java. First we show the Python version.

def ticketTaker(age):
if age < 13:

print("You may only see G movies.")
elif age < 17:

print("You may only see PG or G movies.")
elif age < 18:

print("You may only see R, PG, or G-rated movies.")
else:

print("You may see any movie.")

©2009-2021, John M. Morrison 234

CHAPTER 8. PYTHON −→ JAVA 8.2. CONDITIONAL EXECUTION

The Java version is quite similar. The keywords change a bit. Notice that
the predicates are enclosed in parentheses. This is required. Observe in this
example that you can put a one�line statement after an if, else if or else
without using curly braces. If you want one more than one line or an empty
block attached to any of these, you must use curly braces. It is best to always
use curly braces for bodies of boss statement in Java; this eliminates a lot of
frustrating error messages from the compiler and a lot of irksome logic errors in
your code.

public void ticketTaker(int age)
{

if (age < 13)
{

System.out.println("You may only see G movies.");
}
else if (age < 17)
{

System.out.println("You may only see PG or G- movies.");
}
else if (age < 18)
{

System.out.println("You may only see R, PG or G movies.");
}
else
{

System.out.println("You may see any movie.");
}

}

Both languages support a ternary statement. We shall illustrate it in an absolute
value function for both languages. First here is the Python version.

def abs(x):
return x if x >= 0 else -x

Now we show Java's ternary operator at work.

public int abs(int x)
{

return x >= 0 ? x : -x;
}

Use parentheses to keep the order of operations from producing undesired results
where necessary.

©2009-2021, John M. Morrison 235

8.2. CONDITIONAL EXECUTION CHAPTER 8. PYTHON −→ JAVA

Java supports an additional mechanism, the switch statement for condi-
tional execution. We show an example of this statement and then explain its
action.

public class Stand
{

public String fruit(char c)
{

String out = "";
switch(c)
{

case 'a': case 'A':
out = "apple";
break;

case 'b': case 'B':
out = "blueberry";
break;

case 'c': case 'C':
out = "cherry";
break;

default:
out = "No fruit with this letter";

}
return out;

}
}

Let us now instantiate the Stand class and test its fruit method.

jshell> s = new Stand()
Stand@6504bc
jshell> s.fruit('A')
"apple"
jshell> s.fruit('b')
"blueberry"
jshell> s.fruit('z')
"No fruit with this letter"
jshell>

The switch�case statement only allows you to switch on a variable of integral
type, i.e. an integer or character type. Java 7 or later additionally allows you
to switch on a String.

©2009-2021, John M. Morrison 236

CHAPTER 8. PYTHON −→ JAVA 8.3. BIG INTEGERS

8.2.1 The New switch Statement

Starting in Java14 (fall 2020), you can use the new switch statement. It is
simpler, has a clean appearance, and it dispenes with the breaks. It is good to
know about the old one since it will be all over OPC.

public class Stand public String fruit(char c) String out = ""; switch(c)
case 'a', 'A': -> out = "apple"; case 'b', 'B': -> out = "blueberry"; case 'c', 'C':
-> out = "cherry"; default -> out = "No fruit with this letter"; return out;

The switch construct cannot be used on variables of �oating-point type.
Clearly this is a consequence of the fact that �oating-point numbers are not
stored exactly and that equality comparisons between them are not at all rec-
ommended. Do not use it on a boolean variable; for these, we use the if
machinery.

In the old switch, at the end of each row of one or more cases, you place
zero or more lines of code followed by a break statement. Remove various break
statements and note the behavior of the function. You will see that they play
an important role. If you do not like switch�case, you can live without it
with little or no deleterious e�ect. This new switch statement is much more
appealing than the old one.

8.3 Big Integers

We shall introduce a new class, BigInteger, which does extended�precision
integer arithmetic. Go into the Java API guide and bring up the page for
BigInteger. Just under the main heading

java.math
Class BigInteger

you well see this class's family tree. Its parent is java.lang.Number and its
grandparent is java.lang.Object. The fully�quali�ed name of the class is
java.math.BigInteger. To use the class, you will need to put the import
statement

import java.math.BigInteger;

at the top of your program. You can always look at the bottom of the family
tree to see what import statement is needed.

Remember that you never need to import any class that is in java.lang,
such as java.lang.String. These are automatically imported for you. Python
seamlessly integrates super-long integers into the language. This is not so in

©2009-2021, John M. Morrison 237

8.3. BIG INTEGERS CHAPTER 8. PYTHON −→ JAVA

Java. Java class developers cannot override the basic operators like +, -, * and
/.

Begin by looking the Constructor summary. The most useful constructor to
us seems to be

BigInteger(String val)

Now we shall experiment with this in an interactive session.

jshell> import java.math.BigInteger;
jshell> p = new BigInteger("1");
jshell> p
1
jshell>

We now have the number 1 stored as a BigInteger. Continuing our session, we
attempt to compute 1 + 1.

jshell> p + p
Error: Bad type in addition
jshell>

In a program this would be a compiler error. Now go into the method summary
and look for add.

jshell> p.add(p)
2
jshell> p
1
jshell>

The add method computes 1 + 1 in BigInteger world and comes up with
2. Notice that the value of p did not change. This is no surprise, because
BigIntegers are immutable.

To �nd out if a class makes immutable objects, look in the preface on its
page in the API guide. First you see the header on this page, then the family
tree. Then there is a horizontal rule, and you see the text

public class BigInteger
extends Number
implements Comparable<BigInteger>

The phrase �extends Number� just means that the Number class is the parent
of BigInteger. We will learn what �implements� means when we deal with
interfaces; we do not need it now.

©2009-2021, John M. Morrison 238

CHAPTER 8. PYTHON −→ JAVA 8.3. BIG INTEGERS

Next you see the preamble, which brie�y describes the class. Here it says
�Immutable arbitrary�precision integers.� So, as with strings, you must orphan
what a variable points at to get the variable to point at anything new. Now let
us see exponentiation, multiplication, subtraction and division at work.

jshell> import java.math.BigInteger;
jshell> a = new BigInteger("1341121");
jshell> BigInteger b = a.pow(5);
jshell> a
1341121
jshell> b
4338502129107268229778644529601
jshell> BigInteger c = b.multiply(new BigInteger("100"))
433850212910726822977864452960100
jshell> BigInteger d = a.subtract(new BigInteger("1121"));
jshell> d
1340000
jshell> d.divide(new BigInteger("1000"))
1340
jshell>

It would be convenient to have a way to convert a regular integer to a big integer.
There is a method

static BigInteger valueOf(long val)

To call this (static) method, the usage is

BigInteger.valueof(whateverIntegerYouWantConverted)

The BigInteger.valueOf() method is called a static factory method ; it is a
�factory� that converts regular integers into their bigger brethren.

We now show an example or two. Be reminded of the need to use the equals
method when working with variables pointing at objects, so you do not get a
surprise.

jshell> import java.math.BigInteger;
jshell> p = BigInteger.valueOf(3)
3
jshell> q = new BigInteger("3")
3
jshell> p == q
false
jshell> p.equals(q)
true
jshell>

©2009-2021, John M. Morrison 239

8.4. RECURSION IN JAVA CHAPTER 8. PYTHON −→ JAVA

8.4 Recursion in Java

Java supports recursion, and subject to the new syntax you have learned, it
works nearly the same way as it did in Python. All of the pitfalls and bene�ts
you learned about in Python apply in Java. Let us write a factorial function
using the BigInteger class Recall the structure of the factorial function in
Python.

def factorial(n):
return 1 if n <= 0 else n*factorial(n - 1)

Everything was so simple and snappy.

Now we have to convert this to Java using the operations provided by
BigInteger. We do have some tools at hand. BigInteger.valueOf() con-
verts regular integers into their bigger brethren. We also have to deal with the
.multiply syntax to multiply. Finally, we must remember, we are returning a
BigInteger. Bearing all those consideration in mind, you should get something
like this. If the ternary operators is not quite to your taste, use an if statement
instead. We have broken the big line here solely for typographical convenience.

import java.math.BigInteger;

public class Recursion
{

public BigInteger factorial(int n)
{

return n > 0 ?
factorial(n - 1).multiply(BigInteger.valueOf(n)):
BigInteger.valueOf(1);

}
}

Now let us test our function.

jshell> r = new Recursion();
jshell> r.factorial(6)
720
jshell> r.factorial(100)
933262154439441526816992388562667004907159682
643816214685929638952175999932299156089414639
761565182862536979208272237582511852109168640
00000000000000000000000
jshell> r.factorial(1000)
40238726007709 ... (scads of digits) ...00000
jshell>

©2009-2021, John M. Morrison 240

CHAPTER 8. PYTHON −→ JAVA 8.5. LOOPING IN JAVA

Recursion can be used as a repetition mechanism. We add a second method
repeat to our class to character or string is passed it any speci�ed integer
number of times to imitate Python's string * int repeat mechanism. This
will serve as a nice example of method overloading. First let us work with
the String case. Let us call the String s and the integer n. If n <= 0, we
should return an empty string. Otherwise, let us glue a copy of s to the string
repeat(s, n - 1)

public String repeat(String s, int n)
{

String out = "";
if(n > 0)
{

out += s + repeat(s, n - 1);
}
return out;

}

Now we get the character case with very little work.

public String repeat(char ch, int n)
{

return repeat("" + ch, n)
}

Now our repeat method will repeat a character or a string. We do not need
to worry about the character or string we need to repeat. Method overloading
makes sure the right method is called.

8.5 Looping in Java

We have already seen the while loop in Java. It works in a manner entirely
similar to Python's while loop. For your convenience, here is a quick comparison

while predicate:
bodyOfLoop

while(predicate)
{

bodyOfloop
}

It looks pretty much the same. All of the same warnings (beware of hanging
and spewing) apply for both languages. Note that the predicate of a while
loop is enclosed in parentheses.

©2009-2021, John M. Morrison 241

8.5. LOOPING IN JAVA CHAPTER 8. PYTHON −→ JAVA

Java also o�ers a second version of the while loop, the do-while loop. Such
a loop looks like this.

do
{

bodyOfloop
}
while(predicate);

The body of the loop executes unconditionally the �rst time, then the predicate
is checked. What is important to realize is that the predicate is checked after
each execution of the body of the loop. When the predicate evaluates to false,
the loop's execution ends. Almost always, you should prefer the while loop
over the do-while loop. When using this loop, take note of the semicolon; you
will get a nastygram from Mr. Compiler if you omit it.

Java has two versions of the for loop. One behaves somewhat like a variant
of the while loop and comes to us from C/C++. The other is a de�nite loop
for iterating through a collection.

First let us look at the C/C++ for loop; its syntax is

for(initializer; test; between)
{

loopBody
}

This loop works as follows. The initializer runs once at when the loop is �rst
encountered. The initializer may contain variable declarations or initializations.
Any variable declared here has scope only in the loop.

The test is a predicate. Before each repetition of the loop, the test is run.
If the test fails (evaluates to false), the loop is done and control passes beyond
the end of the loop. If the test passes, the code represented by loopBody is
executed. The between code now executes. The test predicate is evaluated, if
it is true, the loopBody executes. This process continues until the test fails,
at which time the loop ends and control passes to the line of code immediately
beyond the loop. This loop is basically a modi�ed while loop.

Java also has a for loop for collections that works similarly to Python's for
loop. Observe that the loop variable k is an iterator, just as it is in Python's for
loop. It has a look-but-don't-touch relationship with the entries of the array,
just as Python does. It grants access but does not allow mutation. This works
for both class and primitive types.

import java.util.ArrayList;
jshell> ArrayList<String> cats = new ArrayList<String> ();

©2009-2021, John M. Morrison 242

CHAPTER 8. PYTHON −→ JAVA 8.6. STARGUMENTS FOR JAVA

jshell> cats.add("siamese")
true
jshell> cats.add("javanese")
true
jshell> cats.add("manx")
true
jshell> for(String k : cats){System.out.println(k);}
siamese
javanese
manx
jshell> for(String k : cats){k = "";}//Look, but don't touch!

jshell> for(String k : cats){System.out.println(k);}
siamese
javanese
manx

8.6 Starguments for Java

Recall that Python has starguments; these must go after positional arguments.
Here is a quick example

def product(*factors)
out = 1
for k in factors:

out *= k
return out

Python treats ths starred argument (stargument) like a list. Java has a similar
feature.

We have seen several methods with a mysterious ellipsis (...) in their argu-
ment lists. Such arguments are called variable-length arguments, or varargs, for
short. Two familiar examples come to mind. The method System.out.printf
has signature [String, Object...] and Arrays.asList has the header

static <T> List<T> Arrays.asList(T...)

Use of these is similar. The call

System.out.printf("The square of %s is %s.\n", 5, 5*5);

puts

The square of 5 is 25.

©2009-2021, John M. Morrison 243

8.6. STARGUMENTS FOR JAVA CHAPTER 8. PYTHON −→ JAVA

to stdout. As you are familiar with this, you need one object to be printed for
each format speci�er in the format string. The ellipsis is indicative of a variable
size list of arguments of the indicated type. Similarly if you make the call

List<String> foo = Arrays.asList("cow", "horse", "pig");

creates an object of type List<String> and populates it with the listed ele-
ments. Again, we see a variable number of items in the list. Varargs can be of
any primitive or object type.

Now let us discuss writing methods with varargs in them. We begin by
showing an example.

public class VarargsExample
{

public static void main(String[] args)
{

System.out.println(product(3,4,7,8));
}
public static int product(int... numbers)
{

int out = 1;
for(int k: numbers)
{

out *= k;
}
return out;

}
}

Here are some things to note. Run this; it prints out 672, the product of the
four numbers passed product.

1. The parameter numbers is treated as if were an array.

2. You can access the entries of the array using [] and you can use the
collections for loop on the array.

3. This construct can be used on both object and primitive types.

There is a catch. You can only have one vararg in a method and it must
occur at the end of your method's signature. Think about why this must be
required! As another example, we can write a variant of String's join method.

import java.util.Arrays;
public class VarargsExample

©2009-2021, John M. Morrison 244

CHAPTER 8. PYTHON −→ JAVA 8.6. STARGUMENTS FOR JAVA

{
public static void main(String[] args)
{

System.out.println(product(3,4,7,8));
System.out.println(myJoin("|", "a", "b", "c", "d"));

}
public static int product(int... numbers)
{

int out = 1;
for(int k: numbers)
{

out *= k;
}
return out;

}
// this is the same as mortar.join(bricks)

public static String myJoin(String mortar, String... bricks)
{

int n = bricks.length;
if(n == 0)
{

return "";
}
StringBuffer sb = new StringBuffer();
for(int k = 0; k < n; k++)
{

sb.append(bricks[k] + mortar);
}
sb.append(bricks[n - 1]);
return sb.toString();

}
}

Run this and see a|b|c|d printed.

Finally, notice that you can pass an array to a varargs argument and it will
behave as expected. Let us demonstrate this on product

import java.util.Arrays;
public class VarargsExample
{

public static void main(String[] args)
{

System.out.println(product(3,4,7,8));
System.out.println(myJoin("|", "a", "b", "c", "d"));
int [] nums = {6,7,8,9};

©2009-2021, John M. Morrison 245

8.6. STARGUMENTS FOR JAVA CHAPTER 8. PYTHON −→ JAVA

System.out.printf("product(%s) = %s\n",
Arrays.toString(nums), product(nums));

}
public static int product(int... numbers)
{

int out = 1;
for(int k: numbers)
{

out *= k;
}
return out;

}
public static String myJoin(String mortar, String... bricks)
{

int n = bricks.length;
if(n == 0)
{

return "";
}
StringBuffer sb = new StringBuffer();
for(int k = 0; k < n; k++)
{

sb.append(bricks[k] + mortar);
}
sb.append(bricks[n - 1]);
return sb.toString();

}
}

Can I require a minimum number of arguments in a vararg function?
With a little trickery, yes. Suppose you want to make a function that requires
at least two integers, and which returns an array containing the products of
adjacent neighbors. You can do this.

public int[] multipliedNeighbors(int a, int b, int... rest)
{

int[] out = new int[rest.length + 1]
out[0] = a*b;
if(rest.length == 0)

return out;
out[1] = b*rest[0]
for(int k = 2; k < rest.length; k++}
out[k] = rest[k-1]*rest[k]);
return out;

}

©2009-2021, John M. Morrison 246

CHAPTER 8. PYTHON −→ JAVA 8.7. STATIC AND FINAL

Programming Exercises

1. Write a varargs function that accepts strings and which returns the �rst
string in the list alphabetically, ignoring case.

2. Write a varargs function that accepts doubles and which returns the mean
of the numbers in the list.

3. Write a varargs function subset(String[] foo, int... indices) which
returns an array of strings at the indicated indices. If an index is out of
bounds, throw an IndexOutOfBoundsException. Example:

String[] foo = {"a", "b", "c", "d"}
subset(foo, 2,1,3,1) -> {"c", "b", "d", "b"}.

8.7 static and final

You have noticed that the static keyword appears sometimes in the API guide.
In Java, static means �shared.� Static portions of your class are shared by all
instances of the class. They must, therefore, be independent of any instance of
the class, or instance-invariant.

When you �rst instantiate a class in a program, the Java class loader �rst
sets up housekeeping. It loads the byte code for the class into RAM.

Before the constructor is called, any static items go in a special part of
memory that is visible to all instances of the class. Think of this portion of
memory as being a bulletin board visible to all instances of the class. You may
make static items public or private, as you see �t. Static items that are public
are visible outside and inside of the class.

When a variable or method is static, it can, and should, be called by the
class's name. For instance, BigInteger.valueOf() is a static method that
converts any long into a BigInteger. Recall we called this method a static
factory method; it is static and behaves as a �factory� that accepts longs
and converts the to BigIntegers. Static factory methods are often a superior
alternative to a long list of constructors. See [2], pp. 5 �.

Two other familiar examples are the Math and Arrays classes. In the Math
class, recall you �nd a square-root by using Math.sqrt(), in Arrays, the static
method toString(T[]) creates a string representation of the array passed it.
All of Math's and Arrays methods are static. Neither has a public constructor.
Both are called convenience or service classes that exist as containers for
related methods.

You can also have variables that are declared static. In the Math library,
there are Math.PI and Math.E. These variables are static. They are also final;

©2009-2021, John M. Morrison 247

8.7. STATIC AND FINAL CHAPTER 8. PYTHON −→ JAVA

they are are variables that cannot be reassigned. In general, any variable you
mark final cannot be reassigned after it is initialized.

Constness vs. final Variables anywhere in Java can be marked final; this
means you cannot reassign the variable once it is initialized. However, you can
call mutator methods on that datum and change the state of the object a final
variable points to. In this case you do not have constness; the object being
pointed at by a final variable can have its state changed.

Since Math.PI and Math.E are primitives, they are, in fact, constants.Since
immutable objects and primitives lack mutator methods, these are rendered
constant by declaring them final.

If you create static variables, you should also have a static block in your
class. Code inside this block is run when the class is �rst loaded. Use it to
intialize static data members. In fact, it is a desirable postcondition of your
static block running that all static state variables are explicitly initialized.
Remember �Explicit is better than implicit�, quoth the Zen of Python. Now let
us put final and static to work.

The Minter class shown here gives each new instance an ID number, starting
with 1. The static variable nextID acts as a �well� from which ID numbers are
drawn. The IDNumber instance variable is marked final, so the ID number
cannot be changed throughout any given Minter's lifetime.

public class Minter
{

private static int nextID;
final private int ID;
static
{

nextID = 1;
}
public Minter()
{

ID = nextID;
nextID++;

}
public String toString()
{

return "Minter, ID = " + ID;
}

}

©2009-2021, John M. Morrison 248

CHAPTER 8. PYTHON −→ JAVA 8.7. STATIC AND FINAL

8.7.1 Etiquette for Static Members

Since the Java class loader creates the static data for a class before any instance
of the class is created, there is a separation between static and non�static por-
tions of a class.

Non�static methods and state variables may access static portions of a class.
This works because the static portion of the class is created before any instance
of the class is created, so everything needed is in place. Outside of your class,
other classes may see and use the static portions of your class that are marked
public. These client programmers do not need to instantiate your class. They
can gain access to any static class member, be it a method or a state variable
by using the

ClassName.staticMember

construct.

Now consider the reverse case. Things in a class that are static must be
instance-invariant. This means you cannot access the state variables or non-
static methods of an object directly from a static method.

However, you can create an instance of your class and call non-static methods
on the instance. What you cannot do is have direct access to non-static data or
methods in a class.

The key to understanding why is to know that static data is shared by all
instances of the class. Hence, to be well-de�ned, static data must be instance�
invariant. Since your class methods can, and more often than not, do depend
on the state variables in your class, they in general are not instance�invariant.
Static methods and variables belong to the class as a whole, not any one instance.
This restriction will be enforced by the compiler. Even if a method does not
depend upon a class's state, unless you declare it static, it is not static and
static methods may not call it.

To use any class method in the non-static portion of your class, you must
�rst instantiate the class and call the methods via that instance. We will see an
example this at work in the following subsection

For a simple example, place this method in the Minter class we just studied.

public static void main(String[] args)
{

Minter m = new Minter();
System.out.println(m);

}

Run the class and you will see it is now executable.

©2009-2021, John M. Morrison 249

8.7. STATIC AND FINAL CHAPTER 8. PYTHON −→ JAVA

$ java Minter
Minter, IDNumber = 1

Observe that we made a tacit call to a method of the class Minter. To use
the class, we had to create an instance m of Minter �rst. When we called
System.out.println, we made a tacit call to m.toString(). You cannot
make naked (no-instance) methods calls to non-static methods in main. You
can, however, see the private parts of instances of the class.

Really, it is best to think of main as being outside the class and just use
instance of your or other classes and use their (public) interface.

Finally, notice that main has an argument list with one argument, String[]
args. This argument is an array of Strings. This is how command�line argu-
ments are implemented in Java. We now show a class that demonstrates this
feature.

public class CommandLineDemo
{

public static void main(String[] args)
{

int num = args.length;
System.out.println("You entered " + num + " arguments.");
int count = 0;

for (String k: args)
{

System.out.println("args[" + count + "] = " + k);
count ++;

}
}

}

Now we shall run our program with some command�line arguments. You need
to type in the java command yourself rather than just hitting F2.

> java CommandLineDemo one two three
You entered 3 arguments.
args[0] = one
args[1] = two
args[2] = three
>

Even if you do not intend for your class to be executable, the main method is an
excellent place for putting test code for your class. Making your class executable
can save typing into the interactions pane. It is also necessary if you ever want
to distribute your application in an Java archive, which is an executable �le.

©2009-2021, John M. Morrison 250

Chapter 9

BigFraction

9.0 Case Study: An Extended-Precision Fraction

Class

We have achieved several goals so far, the most important of which are under-
standing what make up a Java and Python classes and understanding the core
both languages so as to be Turing-complete.

To tie everything together, we will do a case study of creating two classes
class BigFraction.java and BigFraction.py, which will impleement extended-
precison rational arithmetic in both languagess. This class will have a profes-
sional appearance and will have full documentation.

9.0.1 A Brief Orientation

Before we begin let us remind ourselves of some basic mathematical facts and
provide a rationale for what we are about to do. We are all familiar with the
natural (counting) numbers

N = {1, 2, 3, 4,}.

We can also start counting at zero because we are C family language geeks with

N0 = {0, 1, 2, 3,}.

The set of all integers (with signs) is often denoted by Z. Why the letter Z?
This comes from the German word zahlen, meaning �to count.�

The BigInteger class in Java and the int type in Python create computa-
tional environments for computing in Z without danger of over�ow, unless you
really go bananas.

251

9.1. STARTING BIGFRACTION.PY CHAPTER 9. BIGFRACTION

The rational numbers consist of all numbers that can be represented as a
ratio of integers; the symbol used for them is Q. The `Q' is for �quotient.� So,

Q = {m/n : m ∈ Z, n ∈ N, n 6= 0}.

The BigFraction classes will create an environment for computing in Q
similar to that which BigInteger provides for Z.

9.1 Starting BigFraction.py

We begin by creating a class BigFraction in a �le BigFraction.py.

class BigFraction:
pass

What does a fraction need to know? It needs to know its numerator and de-
nominator.

class BigFraction:
def __init__(self, num, denom):

this.num = num
this.denom = denom

The other thing we should do is to give our class a string representatin.

class BigFraction:
def __init__(self, num, denom):

this.num = num
this.denom = denom

def __str__(self):
return f"{self.num}/{self.denom}"

def __repr__(self):
return f"BigFraction({self.num}, {self.denom})"

Now let's test our new class in the interactive shell.

>>> from BigFraction import BigFraction
>>> b = BigFraction(1,2)
>>> b
BigFraction(1, 2)
>>> print(b)
1/2
>>> b = BigFraction(5,10)

©2009-2021, John M. Morrison 252

CHAPTER 9. BIGFRACTION 9.1. STARTING BIGFRACTION.PY

>>> b
BigFraction(5, 10)
>>> print(b)
5/10
>>> b = BigFraction(-2,-4)
>>> print(b)
-2/-4

Uh oh. We can foresee problems here. Fractions should be stored in a fully
reduced form. And, let's get the negative upstairs; this will turn out to be very
bene�cial down the road. So, we will put our fractions in a canonical form: fully
reduced and any negative in the numerator.

Also, let us raise an error if the client programmer attempts to create a
fraction with a zero denomintor.

9.1.1 Reducing Fractions

Ah, we are now back in the Miss Wormwood days of elementary school. She
showed you a fraction such as

32

12

and you are supposed to reduce it. Well, both the top and bottom are even, so

32

12
=

16

6
.

Hey we can do that again, and the result is

16

6
=

8

3
.

Since 8 and 3 have no common factors, we are done.

This, however, is not going to cut the computational mustard. What if you
have a fraction with 1000 digits on the top and bottom? Are you going to hunt
for the common factors one by one and keep reducing? That would be a joyless
slog to code as well as being baronially wasteful. We need a better way.

Suppose that a and b are integers that are not both zero. We de�ne the
greatest common divisor of a and b to be the largest positive integer dividing
both evenly. Such a thing exsts, because 1 is a divisor of every integer. We will
denote this function by gcd(a, b). The two quantities a/ gcd(a, b) and b/ gcd(a, b)
are both integers. Also, they have no other common factor than 1. Now you see
the raison d'etre for our interest in the greatest common divisor. If we have
a fraction and we compute the greatest common divisor of its numerator and
denominator, the result is a fully-reduced fraction.

©2009-2021, John M. Morrison 253

9.1. STARTING BIGFRACTION.PY CHAPTER 9. BIGFRACTION

Being avid Pythonista, we might take this approach. Suppose we have a
and b. We could start at 2 and see if 2 is a common divisor of a and b. If it is,
we can keep track of that fact in a variable. We then go to 3 and repeat this
procedure. We stop when we get to the smaller of a and b. This is a pretty
hackish approach, but let's give it a whirl.

Programming Exercise Implement this function in Python. For what size
of numbers does this really begin to bog down?

Where's the catch? Again, consider the case of a couple of integers, each
having hundreds of digits. This method could take an eternity. It's time for a
little math! We are going to state and prove a simple little theorem that is the
key to a fast gcd calculation.

First, let's talk a little bit about divisibility. We will use the notation a | b
to indicate that a divides b evenly; equivalently b%a = 0. This means that there
is some integer q so that aq = b.

Suppose that d is a common divisor of a and b You can choose integers s
and t so that ds = a and dt = b. Now suppose x and y are any integers. Then

ax+ by = ads+ bty = d(as+ by);

since as + by is an integer, we have d|as + by. The denouement: Any common
divisor of a and b will also be a divisor of ax+ by for any integers x and y.

Let's call such things as ax+ by integer combinations of a and b. What we
have show is that if d is a common divisor of a and b, it is a divisor of any
integer combination of a and b.

Theorem. Suppose that a, b, q, and r are integers and that b = aq+ r. Then
gcd(b, a) = gcd(a, r).

Proof. Suppose that d is a common divisor of a and r. Since b = aq + r, we
have represented b as an integer combination of a and r. Therefore d | b. We
conclude that d is a common divisor of a and b. We have just shown that every
common divisor of a and r is a common divisor of a and b.

Now suppose d is common divisor of a and b. Since b = aq + r, r = b− aq.
The integer r is an integer combination of a and b; therefore d | r. We have
just shown that d is a common divisor of a and r. We have shown that every
common divisor of a and b is a common divisor of a and r.

This tells us that a and b have exactly the same common divisors as a and
r. We conclude gcd(b, a) = gcd(a, r).

©2009-2021, John M. Morrison 254

CHAPTER 9. BIGFRACTION 9.1. STARTING BIGFRACTION.PY

9.1.2 Speeding things up

One thing we know is that for any integer b and and non-zero integer a,

b = a ∗ (b//a) + b%a.

Here is another useful fact, gcd(a, 0) = |a|, provided that a 6= 0. Let's compute
gcd(1048576, 7776). We will use Python as our calculator. You should try this
on another pair of big numbers.

>>> a = 7776
>>> b = 1048576
>>> remainder = 1048576 % 7776
>>> remainder
6592
>>> b, a = a, remainder
>>> b
7776
>>> a
6592
>>> remainder = b%a
>>> b, a = a, remainder
>>> a
1184
>>> b
6592
>>> remainder = b%a
>>> b, a = a, remainder
>>> b
1184
>>> a
672
>>> remainder = b%a
>>> b, a = a, remainder
>>> b
672
>>> a
512
>>> remainder = b%a
>>> b, a = a, remainder
>>> b
512
>>> a
160
>>> remainder = b%a
>>> b, a = a, remainder

©2009-2021, John M. Morrison 255

9.1. STARTING BIGFRACTION.PY CHAPTER 9. BIGFRACTION

>>> b
160
>>> a
32
>>> remainder = b%a
>>> b, a = a, remainder
>>> a
0
>>> b
32

Thhis gives us a chain of equalities.

gcd(1048576, 7776) = gcd(7776, 6592) = · · · = gcd(32, 0).

Since gcd(32, 0) = 32, we are done. It seems we have a loop here

while a > 0:
b, a = a, b%a

Changing signs does not change the gcd; to wit gcd(±a,±b) = gcd(a, b), so we
can strip o� any negative signs. Also, let's raise an error if some reckless client
tries to compute gcd(0, 0). Now for the coup d'grace.

def gcd(a,b):
if a == 0 and b == 0:

raise ValueError
if a < 0:

a = -a
if b < 0:

b = -b
while a > 0:

b, a = a, b%a
return b

Place this in a �le named number_theory.py. Import it and test it. Ooh, it's
quick.

>>> from number_theory import gcd
>>> gcd(1048576, 7776)
32
>>> gcd(323980490348, 32980398423123456)
4

This algorithm is called Euclid's Algorithm. The slowest it can work is the case
of two adjacent �bonacci numbers. Since these grow exponentially, the number
of iterations is at worst proportional to log(n), where n is the larger of the two
numbers.

©2009-2021, John M. Morrison 256

CHAPTER 9. BIGFRACTION 9.1. STARTING BIGFRACTION.PY

9.1.3 Finishing __init__

Now let us write this method. We will take the addional step of kicking any
negative upstars. We will rase an error if a zero denominator gets passed in.

def __init__(self, num, denom)
if denom == 0:

raise ValueError
if denom < 0:

num = -num
denom = -denom

d = gcd(num, denom)
self.num = num//d
self.denom = denom//d

This method has the desirable property of storing a fraction in the canonical
form we speci�ed. The fraction is stored fully reduced. Any negative is in the
denominator. You will see that this design decision will pay dividendds down
the road. The care we took here will bene�t us very soon. Let us lay out the
whole class that we have so far.

from number_theory import gcd
class BigFraction:

def __init__(self, num, denom):
if denom == 0:

raise ValueError
if denom < 0:

num = -num
denom = -denom

d = gcd(num, denom)
self.num = num//d
self.denom = denom//d

def __str__(self):
return f"{self.num}/{self.denom}"

def __repr__(self):
return f"BigFraction({self.num}, {self.denom})"

>>> from BigFraction import BigFraction
>>> b = BigFraction(7776, 1048576)
>>> b
BigFraction(243, 32768)
>>> print(b)
243/32768

©2009-2021, John M. Morrison 257

9.2. STARTING BIGFRACTION.JAVA CHAPTER 9. BIGFRACTION

9.2 Starting BigFraction.java

In this section, we will build a big fraction class with the same capabilities as
the Python class. Note that we will be using BigIntegers as numerator and
denominator. So, let's get started. We will rough in some items.

import java.math.BigInteger;
public class BigFraction
{

private BigInteger num;
private BigInteger denom;
public BigFraction(BigInteger num, BigInteger denom)
{
}
public String toString()
{

return String.format("%s/%s", num, denom);
}

}

Looking at the BigInteger docs, we notice several things. One is that BigIntegerss
are immutable. We can ensure this by making our state variables final.

import java.math.BigInteger;
public class BigFraction
{

private final BigInteger num;
private final BigInteger denom;
public BigFraction(BigInteger num, BigInteger denom)
{
}
public String toString()
{

return String.format("%s/%s", num, denom);
}

}

Another is that BigInteger has a gcd method. We can avail ourselves of that.
We also have to do the correct things to negate a BigInteger and to checks its
positivity or negativity.

Changing sign is easy; just use the negate() method. To check sign, it is
handy to compare with the static constant BigInteger.ZERO. Dividing is done
with the divide method.

Let us go to work on the constructor. We show the lines of Python and use
them as a guide, translating into Java as we progress.

©2009-2021, John M. Morrison 258

CHAPTER 9. BIGFRACTION 9.2. STARTING BIGFRACTION.JAVA

public BigFraction(BigInteger num, BigInteger denom)
{

//if denom == 0:

//raise ValueError

if(denom.equals(BigInteger.ZERO))
{

throw new IllegalArgumentException();
}
//if denom < 0:

//num = -num

//denom = -denom

if(denom.compareTo(BigInteger.ZERO) < 0)
{

num = num.negate();
denom = denom.negate();

}
//d = gcd(num, denom)

BigInteger d = num.gcd(denom);
//self.num = num//d

//self.denom = denom//d

this.num = num.divide(d);
this.denom = denom.divide(d);

}

Observe that we can only initialize state once because the state variables are
final. We worked with the constructor's parameters as local variables until the
very end.

Now let's assemble our e�ort.

import java.math.BigInteger;
public class BigFraction
{

private final BigInteger num;
private final BigInteger denom;
public BigFraction(BigInteger num, BigInteger denom)
{

if(denom.equals(BigInteger.ZERO))
{

throw new IllegalArgumentException();
}
if(denom.compareTo(BigInteger.ZERO) < 0)
{

num = num.negate();
denom = denom.negate();

}

©2009-2021, John M. Morrison 259

9.2. STARTING BIGFRACTION.JAVA CHAPTER 9. BIGFRACTION

BigInteger d = num.gcd(denom);
this.num = num.divide(d);
this.denom = denom.divide(d);

}
@Override
public String toString()
{

return String.format("%s/%s", num, denom);
}

}

We are thinking that there might be a constructor that will take a integer and
convert it into a BigInteger, but there isn't. However, if we look in the docs,
we wil see this.

public static BigInteger valueOf(long val)
Returns a BigInteger whose value is equal to that of the speci�ed long.
API Note:
This static factory method is provided in preference to a (long) constructor be-
cause it allows for reuse of frequently used BigIntegers.
Parameters:
val - value of the BigInteger to return.
Returns:
a BigInteger with the speci�ed value.

We will crib from this strategy and make our own static factory method
BigFraction.valueOf(long num, long denom). This will save us work down
the road.

import java.math.BigInteger;
public class BigFraction
{

private final BigInteger num;
private final BigInteger denom;
public BigFraction(BigInteger num, BigInteger denom)
{

if(denom.equals(BigInteger.ZERO))
{

throw new IllegalArgumentException();
}
if(denom.compareTo(BigInteger.ZERO) < 0)
{

num = num.negate();
denom = denom.negate();

}
BigInteger d = num.gcd(denom);

©2009-2021, John M. Morrison 260

CHAPTER 9. BIGFRACTION 9.3. ARITHMETIC

this.num = num.divide(d);
this.denom = denom.divide(d);

}
@Override
public String toString()
{

return String.format("%s/%s", num, denom);
}
public static BigFraction valueOf(long num, long denom)
{

return new BigFraction(BigInteger.valueOf(num),
BigInteger.valueOf(denom));

}
}

Et voila! It works!

jshell> /open BigFraction.java

jshell> BigFraction b = BigFraction.valueOf(7776, 1048576);
b ==> 243/32768

Our two classes are at the same level of progress.

9.3 Look out Miss Wormwood! Arithmetic!

The aim of this section is to endoow our big fractions with the ability to do
arithmetic. Let us focus on these �ve operations: +, -, *, / and exponentiation.

9.3.1 Addition

Recall that
a

b
+
c

d
=
ad+ bc

bd
.

Let's start on the Python side. To rede�ne addition, there is the dunder
method __add__. So in our class we make the header as follows

def __add__(self, other):

Both self and other will be BigFractions so each has a numerator and a
denominator. We use the addition formula for fractions and compute the nu-
merator for the sum as follows.

©2009-2021, John M. Morrison 261

9.3. ARITHMETIC CHAPTER 9. BIGFRACTION

top = self.num*other.denom + self.denom*other.num

Now let's get the denominator

bottom = self.denom*other.denom

Now let's put the whole thing together and ship out a BigFraction.

def __add__(self, other):
top = self.num*other.denom + self.denom*other.num
bottom = self.denom*other.denom
return BigFraction(top, bottom)

Now we test our work.

>>> from BigFraction import BigFraction
>>> a = BigFraction(1,3)
>>> b = BigFraction(1,2)
>>> a + b
BigFraction(5, 6)
>>> print(a + b)
5/6

Now it's Java's turn. You cannot rede�ne operators in Java, so we will do
as they did in BigInteger and create an add method. The lines of Python are
show here.

public BigFraction add(BigFraction that)
{

//top = self.num*other.denom + self.denom*other.num
//bottom = self.denom*other.denom
//return BigFraction(top, bottom)

}

We now translate them.

public BigFraction add(BigFraction that)
{

//top = self.num*other.denom + self.denom*other.num
BigInteger top = num.multiply(that.denom).add(

denom.multiply(that.num));
//bottom = self.denom*other.denom
BigInteger bottom = denom.multiply(that.denom);

©2009-2021, John M. Morrison 262

CHAPTER 9. BIGFRACTION 9.3. ARITHMETIC

//return BigFraction(top, bottom)
return new BigFraction(top, bottom);

}

Now test it. You can delete the python comments from your add method.

jshell> /open BigFraction.java

jshell> BigFraction a = BigFraction.valueOf(1,2);
a ==> 1/2

jshell> BigFraction b = BigFraction.valueOf(1,3);
b ==> 1/3

jshell> a.add(b)
$5 ==> 5/6

9.3.2 Subtraction

This is �sh in a barrel since

a

b
− c

d
=
ad− bc
bd

.

We just change the addition in the middle to a subtraction. Here is Python

def __sub__(self, other):
top = self.num*other.denom - self.denom*other.num
bottom = self.denom*other.denom
return BigFraction(top, bottom)

And here is Java.

public BigFraction subtract(BigFraction that)
{

BigInteger top = num.multiply(that.denom).subtract(
denom.multiply(that.num));

BigInteger bottom = denom.multiply(that.denom);
return new BigFraction(top, bottom);

}

9.3.3 Multiplication

We all know that
a

b
· c
d

=
ac

bd
.

©2009-2021, John M. Morrison 263

9.3. ARITHMETIC CHAPTER 9. BIGFRACTION

We therefore proceed as follows in Python.

def __mul__(self, other):
top = self.num*other.num
bottom = self.denom*other.denom
return BigFraction(top, bottom)

Now for Java.

public BigFraction multiply(BigFraction that)
{

BigInteger top = num.multiply(that.num);
BigInteger bottom = denom.multiply(that.denom);
return new BigFraction(top, bottom);

}

9.3.4 Division

This is just �invert and multiply.�

def __truediv__(self, other):
top = self.num*other.denom
bottom = self.denom*other.num
return BigFraction(top, bottom)

public BigFraction divide(BigFraction that)
{

BigInteger top = num.multiply(that.denom);
BigInteger bottom = denom.multiply(that.num);
return new BigFraction(top, bottom);

}

Let's test-drive the Python.

>>> b = BigFraction(1,4);
>>> c = BigFraction(1,5);
>>> b + c
BigFraction(9, 20)
>>> b - c
BigFraction(1, 20)
>>> b*c
BigFraction(1, 20)
>>> b/c

©2009-2021, John M. Morrison 264

CHAPTER 9. BIGFRACTION 9.3. ARITHMETIC

BigFraction(5, 4)
>>>

And now the Java.

jshell> /open BigFraction.java

jshell> BigFraction b = BigFraction.valueOf(1,4);
b ==> 1/4

jshell> BigFraction c = BigFraction.valueOf(1,5);
c ==> 1/5

jshell> b.add(c)
$5 ==> 9/20

jshell> b.subtract(c)
$6 ==> 1/20

jshell> b.divide(c)
$7 ==> 5/4

jshell> b.multiply(c)
$8 ==> 1/20

9.3.5 Pow!

Holy exponent, Batman! It's time to compute powers! Note the argument is an
integer.

def __pow__(self, n):
if n == 0:

return BigFraction(1,1)
if n > 0:

return BigFraction(self.num**n, self.denom**n)
n = -n

return BigFraction(self.denom**n, self.num**n)

public BigFraction pow(int n)
{

if n == 0:
{

return BigFraction.valueOf(1,1);
}

©2009-2021, John M. Morrison 265

9.4. ADDING STATIC CONSTANTS CHAPTER 9. BIGFRACTION

if n > 0:
{

return BigFraction(num.pow(n), denom.pow(n));
}
n = -n;
return BigFraction(denom.pow(n), num.pow(n));

}

Programming Exercises Add these methods to our existing BigFraction
class. These will make our BigFractions more resemble BigIntegers.

1. Write a method public BigInteger bigIntValue() that divides the de-
nominator into the numerator and which truncates towards zero.

2. Write the method public BigFraction abs() which returns the absolute
value of this BigFraction.

3. Write a method public BigFraction negate() which returns a copy of
this BigFraction with its sign changed.

4. Write the method public BigFraction max(BigFraction) which returns
the larger of this BigFraction and that.

5. Write the method public BigFraction min(BigFraction) which returns
the smaller of this BigFraction and that.

6. Write the method public int signum() which returns +1 if this BigFraction
is positive, -1 if it is negative and 0 if it is zero.

7. Write the method public int compareTo(BigFraction that) which re-
turns +1 if this BigFraction is larger than that, -1 if that is larger than
this BigFraction and 0 if this BigFraction equals that.

8. Add a static method public BigFraction harmonic(int n) which computes
the nth harmonic number. Throw an IllegalArgumentException if the
client passes an n that is negative.

9. When should division throw an IllegalArgumentException? Add this
feature to the class.

10. (Quite Challenging) Write the method public double doubleValue()
which returns a �oating point value for this BigFraction. It should re-
turn Double.NEGATIVE_INFINITY or Double.POSITIVE_INFINITY where
appropriate. Test this very carefully; it is not easy to get it right.

9.4 Adding Static Constants

In Java, we have a notion of constness; this consists of a final variable pointing
at an immutable object. Let's give our BigFraction class static constants ZERO,

©2009-2021, John M. Morrison 266

CHAPTER 9. BIGFRACTION 9.5. DOCUMENTING YOUR CODE

ONE, and HALF. We will create them at the top of the class and initialize them
in a static block.

To do this just insert this right at the top of your class

public static final BigFraction ZERO;
public static final BigFraction HALF;
public static final BigFraction ONE;
static
{

ZERO = BigFraction.valueOf(0,1);
HALF = BigFraction.valueOf(1,2);
ONE = BigFraction.valueOf(1,1);

}

9.5 Documenting Your Code

These two classes could be quite useful to others. Now we need to give our users
documentation so they can learn how to use our classes e�ectively.

We will document our Java code using the javadoc system. This system is
easy to use and it creates a professional-looking API page that is similar in a
appearance to the ones you see for the standard libraries.

Javadoc comments are delimited by the starting token /** and the ending
token */. C/C++ style comments delimited by // and /* */ do
not appear on Javadoc pages. You may use HTML markup in your javadoc
where needed.

Use Javadoc to document your interface, the public portion of your class. Do
not javadoc private methods or state variables. We will produce a full javadoc
page for our BigFraction class.

We will use docstings to document our Python class. These will be displayed
in response to the help command or with the command

unix> python -m pydoc YourModule.py

9.5.1 Documenting BigFraction.py

Begin by describing the class right after the class header like so.

from number_theory import gcd
class BigFraction:

"""This is a class for performing extended-precision rational

©2009-2021, John M. Morrison 267

9.5. DOCUMENTING YOUR CODE CHAPTER 9. BIGFRACTION

arithmetic. It includes a full suite of operators for arithmetic

and it produces a sortable objects, ordered by their numerical

values.

All BigFractions are stored in a canonical form: they are fully

reduced and any negative is stored in the numerator.

"""

Now for the __init__ method.

def __init__(self, num, denom):
"""This accepts two integer argments, a numerator

and a denominator. A zero denominator will trigger a ValueError."""

if denom == 0:
raise ValueError

if denom < 0:
num = -num
denom = -denom

d = gcd(num, denom)
self.num = num//d
self.denom = denom//d

If you type the command python -m pydoc BigFraction, in a command
window you will see this. Users can also see this documentaton in an interactive
session using the help command.

NAME
BigFraction

CLASSES
builtins.object

BigFraction

class BigFraction(builtins.object)
| BigFraction(num, denom)
|
| This is a class for performing extended-precision rational
| arithmetic. It includes a full suite of operators for arithmetic
| and it produces a sortable objects, ordered by their numerical
| values.
|
| All BigFractions are stored in a canonical form: they are fully
| reduced and any negative is stored in the numerator.
|
| Methods defined here:

©2009-2021, John M. Morrison 268

CHAPTER 9. BIGFRACTION 9.5. DOCUMENTING YOUR CODE

|
| __add__(self, other)
|
| __init__(self, num, denom)
| This accepts two integer argments, a numerator
| and a denominator. A zero denominator will trigger a ValueError.

To exit, type q. Now we document the rest of the class

from number_theory import gcd
class BigFraction:

"""This is a class for performing extended-precision rational

arithmetic. It includes a full suite of operators for arithmetic

and it produces a sortable objects, ordered by their numerical

values.

All BigFractions are stored in a canonical form: they are fully

reduced and any negative is stored in the numerator.

This class has three static constants

ZERO, the BigFraction representing 0

ONE, the BigFraction representing 1

HALF, the BigFraction representing 1/2

"""

ZERO = None
ONE = None
HALF = None
def __init__(self, num, denom):

"""This accepts two integer argments, a numerator

and a denominator. A zero denominator will trigger a ValueError."""

if denom == 0:
raise ValueError

if denom < 0:
num = -num
denom = -denom

d = gcd(num, denom)
self.num = num//d
self.denom = denom//d

def __str__(self):
"""This returns a string represenation for this

BigFraction of the form numerator/denominator."""

return f"{self.num}/{self.denom}"
def __repr__(self):

"""This returns a string representation of the form

BigFraction(numerator, denominator) suitable for the Python

©2009-2021, John M. Morrison 269

9.5. DOCUMENTING YOUR CODE CHAPTER 9. BIGFRACTION

REPL"""

return f"BigFraction({self.num}, {self.denom})"
def __add__(self, other):

"""This defines + and returns the sum of two BigFractions."""

top = self.num*other.denom + self.denom*other.num
bottom = self.denom*other.denom
return BigFraction(top, bottom)

def __sub__(self, other):
"""This defines - and returns the difference of two BigFractions."""

top = self.num*other.denom - self.denom*other.num
bottom = self.denom*other.denom
return BigFraction(top, bottom)

def __mul__(self, other):
"""This defines * and returns the product of two BigFractions."""

top = self.num*other.num
bottom = self.denom*other.denom
return BigFraction(top, bottom)

def __truediv__(self, other):
"""This defines / and returns the quotient of two BigFractions."""

top = self.num*other.denom
bottom = self.denom*other.num
return BigFraction(top, bottom)

def __pow__(self, n):
"""This defines ** and returns this BigFraction raised to the

nth power. This works for both positive and negative integers."""

if n == 0:
return BigFraction(1,1)

if n > 0:
return BigFraction(self.num**n, self.denom**n)

n = -n
return BigFraction(self.denom**n, self.num**n)

@staticmethod
def init_static():

"""initializes the static constants ZERO, HALF, and ONE."""

BigFraction.ZERO = BigFraction(0,1)
"""The Big Fraction 0/1"""

BigFraction.ONE = BigFraction(1,1)
"""The Big Fraction 1/1"""

BigFraction.HALF = BigFraction(1,2)
"""The Big Fraction 1/2"""

BigFraction.init_static()

©2009-2021, John M. Morrison 270

CHAPTER 9. BIGFRACTION 9.5. DOCUMENTING YOUR CODE

9.5.2 Documenting BigFraction.java

The kind of class we have created represents a real extension of the Java language
that could be useful to others. Now we need to give our class an API page so it
has a professional appearance and so it can easily be used by others.

Javadoc comments are delimited by the starting token /** and the ending
token */. C/C++ style comments delimited by // and /* */ do
not appear on Javadoc pages.

You may use HTML markup in your javadoc where needed.

Use Javadoc to document your interface, the public portion of your class.
Do not javadoc private methods or state variables.

We will produce a full javadoc page for our BigFraction class. Let us begin
with the constructors.

/**

* This constructor stores a <code>BigFraction</code> in

* reduced form, with any negative factor appearing in

* the numerator.

* @param num the numerator of this <code>BigFraction</code>

* @param denom the denomnator of this <code>BigFraction</code>

* @throws IllegalArgumentException if a zero

* denominator is passed in

*/

public BigFraction(BigInteger num, BigInteger denom)
{

if(denom.equals(BigInteger.ZERO))
throw new IllegalArgumentException();

BigInteger d = num.gcd(denom);
if(denom.compareTo(BigInteger.ZERO) < 0)
{

num = num.negate();
denom = denom.negate();

}
this.num = num.divide(d);
this.denom = denom.divide(d);

}
/**

* This default constructor produces BigFraction 0/1.

*/

public BigFraction()
{

this(BigInteger.ZERO,BigInteger.ONE);
}

©2009-2021, John M. Morrison 271

9.5. DOCUMENTING YOUR CODE CHAPTER 9. BIGFRACTION

We see the special markup @param; this is the description given for each
parameter. The markup @throws warns the client that an exception can be
thrown by a method. You should always tell exactly what triggers the throwing
of an exception, as the penalty for an exception is program death.

9.5.3 Triggering Javadoc

First we give instructions for DrJava. Bring up the Preferences by hitting
control-; or by selecting the Preferences item from the bottom of the Edit menu.
Under Web browser put the path to your web browser. An example of a valid
path is

/usr/lib/firefox/firefox.sh

If you use Windoze, your path should begin with \tt C:\. If you use a Mac,
it will be in your Applications folder. You can browse for it by hitting the ...
button just to the right of the Web Browser text �eld.

The javadoc will be saved in a directory called doc that is created in same
directory as your class's code. Allow the javadoc to be saved in that folder, or
�les will �spray� all over your directory and make a big mess.

You can also javadoc at the command line with

unix> javadoc -d someDirectory BigFraction.java

The javadoc output will be placed in the directory someDirectory that
you specify. Make sure you use the -d option to avoid spraying. To see your
objet d'art, select File Open... in your browser and then navigate to the �le
index.html in your doc directory and open it.

Note that yoiur program must compile before any javadoc will be generated.

I don't see my javadoc! Make sure you are using the javadoc comment
tokens like so.

/**

* stuff

*/

and not regular multiline comment token that look like this.

/*

* stuff

*/

©2009-2021, John M. Morrison 272

CHAPTER 9. BIGFRACTION 9.5. DOCUMENTING YOUR CODE

9.5.4 Documenting toString() and equals()

You will see a new markup device @return and overrides which tells you what
these methods override. You will notice if you look in the javadoc you generated,
that an overrides tag is already in the method detail.

/**

* @return a string representing this BigFraction of the form

* numerator/denominator.

*/

@Override
public String toString()
{

return "" + num + "/" + denom;
}

Note the use of the @Override construct just after our javadoc markup. This
is called an annotation, and the compiler checks that you have used the right
signature to actual override the method. If you don't it will be �agged as a
compiler error. Always use this annotation if you are implementing the methods
public boolean equals(Object o) or public String toString().

Now we deal similarly with the equals method.

/**

* @param o an Object we are comparing this BigFraction to

* @return true iff this BigFraction and that are equal numerically.

* A value of <tt>false</tt> will be returned if the Object o is not

* a BigFraction.

*/

@Override
public boolean equals(Object o)
{

if(! (o instanceof BigFraction))
return false;

BigFraction that = (BigFraction) o;
return num.equals(that.num) && denom.equals(that.denom);

}

9.5.5 Putting in a Preamble and Documenting the Static

Constants

We show where to preamble goes, after the imports and before the head for the
class. Place a succinct description of your class here to let your clients know
what it does.

©2009-2021, John M. Morrison 273

9.5. DOCUMENTING YOUR CODE CHAPTER 9. BIGFRACTION

import java.math.BigInteger
/**

* This is a class of immutable arbitrary-precision

* rational numbers. BigFraction provides

* extended-precision fractional arithmetic

* operations, including + with the <code>add</code> method,

* - with the <code>subtract</code>

* method, * with the <code>multiply</code> method,

* and / with the <code>divide</code> method.

* It computes integer powers

* of fractions using the <code>pow</code> method.

*/

public class BigFraction
{

//code

}

Documenting the static constants is very straightforward.

/**

* This is the BigFraction constant 0, which is 0/1.

*/

public static final BigFraction ZERO;
/**

* This is the BigFraction constant 1, which is 1/1.

*/

public static final BigFraction ONE;

9.5.6 Documenting Arithmetic

Next we javadoc all of the arithmetic operations we have provided the client.
Notice how we add an exception if the client attempts to divide by zero.

/**

* This add BigFractions.

* @param that a BigFraction we are adding to this BigFraction

* @return <code>this</code> + <code>that</code>

*/

public BigFraction add(BigFraction that)
{

BigInteger term1 = num.multiply(that.denom);
BigInteger term2 = denom.multiply(that.num);
BigInteger bottom = denom.multiply(that.denom);
return new BigFraction(term1.add(term2), bottom);

©2009-2021, John M. Morrison 274

CHAPTER 9. BIGFRACTION 9.5. DOCUMENTING YOUR CODE

}
/**

* This subtracts BigFractions.

* @param that a BigFraction we are adding to this BigFraction

* @return <code>this</code> - <code>that</code>

*/

public BigFraction subtract(BigFraction that)
{

BigInteger term1 = num.multiply(that.denom);
BigInteger term2 = denom.multiply(that.num);
BigInteger bottom = denom.multiply(that.denom);
return new BigFraction(term1.subtract(term2), bottom);

}
/**

* This multiplies BigFractions.

* @param that a BigFraction we are adding to this BigFraction

* @return <code>this</code> * <code>that</code>

*/

public BigFraction multiply(BigFraction that)
{

BigInteger top = num.multiply(that.num);
BigInteger bottom = denom.multiply(that.denom);
return new BigFraction(top, bottom);

}
/**

* This divides BigFractions.

* @param that a BigFraction we are adding to this BigFraction

* @return <code>this</code>/<code>that</code>

* @throws <code>IllegalArgumentException</code> if division by

* 0 is attempted.

*/

public BigFraction divide(BigFraction that)
{

if(that.equals(BigFraction.ZERO))
throw new IllegalArgumentException();

BigInteger top = num.multiply(that.denom);
BigInteger bottom = denom.multiply(that.num);
return new BigFraction(top, bottom);

}
/**

* This computes an integer power of BigFraction.

* @param n an integer power

* @return <code>this</code>^{<code>n</code>}

*/

public BigFraction pow(int n)
{

©2009-2021, John M. Morrison 275

9.5. DOCUMENTING YOUR CODE CHAPTER 9. BIGFRACTION

if(n > 0)
return new BigFraction(num.pow(n), denom.pow(n));

if(n == 0)
return new BigFraction(1,1);

else
{

n = -n; //strip sign

return new BigFraction(denom.pow(n), num.pow(n));
}

}

Finally, we will take care of our two valueOf methods.

/**

* @param n a long we wish to promote to a BigFraction.

* @return A BigFraction object wrapping n

*/

public static BigFraction valueOf(long n)
{

return new BigFraction(n, 1);
}
/**

* @param num a BigInteger we wish to promote to a BigFraction.

* @return A BigFraction object wrapping num

*/

public static BigFraction valueOf(BigInteger num)
{

return new BigFraction(num, BigInteger.ONE);
}

9.5.7 The Complete Code

Here it is! We have dropped in javadoc for our stateic factory method as well.

import java.math.BigInteger;
/**

* This is a class of immutable arbitrary-precision

* rational numbers. BigFraction provides

* extended-precision fractional arithmetic

* operations, including + with the <code>add</code> method,

* - with the <code>subtract</code>

* method, * with the <code>multiply</code> method,

* and / with the <code>divide</code> method.

* It computes integer powers

* of fractions using the <code>pow</code> method.

©2009-2021, John M. Morrison 276

CHAPTER 9. BIGFRACTION 9.5. DOCUMENTING YOUR CODE

*/

public class BigFraction
{

/**

* This is the BigFraction constant 0, which is 0/1.

*/

public static final BigFraction ZERO;
/**

* This is the BigFraction constant 1, which is 1/1.

*/

public static final BigFraction ONE;

static
{

ZERO = new BigFraction();
ONE = new BigFraction(1,1);

}
private final BigInteger num;
private final BigInteger denom;
/**

* This constructor stores a <code>BigFraction</code> in

* reduced form, with any negative factor appearing in

* the numerator.

* @param num the numerator of the <code>BigFraction</code>

* @param denom the denominator of the <code>BigFraction</code>

* @throws <code>IllegalArgumentException</code> if the creation

* of a zero-denominator <code>BigFraction</code> is attempted.

*/

public BigFraction(BigInteger num, BigInteger denom)
{

if(denom.equals(BigInteger.ZERO))
throw new IllegalArgumentException();

BigInteger d = num.gcd(denom);
if(denom.compareTo(BigInteger.ZERO) < 0)
{

num = num.negate();
denom = denom.negate();

}
num = num.divide(d);
denom = denom.divide(d);

}
/**

* This default constructor produces BigFraction 0/1.

*/

public BigFraction()

©2009-2021, John M. Morrison 277

9.5. DOCUMENTING YOUR CODE CHAPTER 9. BIGFRACTION

{
this(BigInteger.ZERO,BigInteger.ONE);

}
/**

* @return a string representing this BigFraction of the form

* numerator/denominator.

*/

@Override
public String toString()
{

return String.format("%s/%s", num, denom);
}
/**

* @param o an Object we are comparing this BigFraction to

* @return true iff this BigFraction and that are equal numerically.

* A value of <code>false</code> will be returned if the Object o is not

* a BigFraction.

*/

@Override
public boolean equals(Object o)
{

if(! (o instanceof BigFraction))
return false;

BigFraction that = (BigFraction) o;
return num.equals(that.num) && denom.equals(that.denom);

}
/**

* This static factory produces num/denom as a BigFraction.

* @param num the numerator for this BigFraction

* @param denom the denominator for this BigFraction

* @return A <code>BigFraction</code> representing num/denom.

*/

public static BigFraction valueOf(long num, long denom)
{

return new BigFraction(BigInteger.valueOf(num),
BigInteger.valueOf(denom));

}
/**

* This add BigFractions.

* @param that a BigFraction we are adding to this BigFraction

* @return <code>this</code> + <code>that</code>

*/

public BigFraction add(BigFraction that)
{

BigInteger term1 = num.multiply(that.denom);
BigInteger term2 = denom.multiply(that.num);

©2009-2021, John M. Morrison 278

CHAPTER 9. BIGFRACTION 9.5. DOCUMENTING YOUR CODE

BigInteger bottom = denom.multiply(that.denom);
return new BigFraction(term1.add(term2), bottom);

}
/**

* This subtracts BigFractions.

* @param that a BigFraction we are adding to this BigFraction

* @return <code>this</code> - <code>that</code>

*/

public BigFraction subtract(BigFraction that)
{

BigInteger term1 = num.multiply(that.denom);
BigInteger term2 = denom.multiply(that.num);
BigInteger bottom = denom.multiply(that.denom);
return new BigFraction(term1.subtract(term2), bottom);

}
/**

* This multiplies BigFractions.

* @param that a BigFraction we are adding to this BigFraction

* @return <code>this</code> * <code>that</code>

*/

public BigFraction multiply(BigFraction that)
{

BigInteger top = num.multiply(that.num);
BigInteger bottom = denom.multiply(that.denom);
return new BigFraction(top, bottom);

}
/**

* This divides BigFractions.

* @param that a BigFraction we are adding to this BigFraction

* @return <code>this</code>/<code>that</code>

* @throws <code>IllegalArgumentException</code> if division by

* 0 is attempted.

*/

public BigFraction divide(BigFraction that)
{

if(that.equals(BigFraction.ZERO))
throw new IllegalArgumentException();

BigInteger top = num.multiply(that.denom);
BigInteger bottom = denom.multiply(that.num);
return new BigFraction(top, bottom);

}
/**

* @param n a long we wish to promote to a BigFraction.

* @return A BigFraction object wrapping n

*/

public static BigFraction valueOf(long n)

©2009-2021, John M. Morrison 279

9.5. DOCUMENTING YOUR CODE CHAPTER 9. BIGFRACTION

{
return new BigFraction(n, 1);

}
/**

* @param num a BigInteger we wish to promote to a BigFraction.

* @return A BigFraction object wrapping num

*/

public static BigFraction valueOf(BigInteger num)
{

return new BigFraction(num, BigInteger.ONE);
}

}

Programming Exercises

1. Add javadoc for all of the methods you wrote in the previous set of pro-
gramming exercises.

2. Write a second class called TestBigFraction. Place a main method in
this class and have it test BigFraction and its methods. Place the classes
in the same directory.

©2009-2021, John M. Morrison 280

Chapter 10

Types and Subtypes

10.0 Introduction

So far, we have been programming �in the small.� We have created simple classes
that carry out fairly straightforward chores. Our programs have been little one
or two class programs. One class has been the class you are writing, the other
has been jshell or a simple driver class with a main method in it. We created
the BigFraction API, which allows a client programmer using it to do exact,
extended-precision rational arithmetic.

So far, the relationship between classes has been a �has-a relationship.� For
example our BigFraction class has two BigIntegers, representing the numer-
ator and denominator of our fraction object. We often use instances of classes
that we attach to local variables inside of methods. This is a �uses-a� instead of
a �has-a� relationship. Both of these relationships are compositional, since we
are using them to compose, or build, our class. The compositional relationship
is the most important and most common relationship between classes.

Java programs often consist of many classes, which work together to do a
job. Sometimes we will create classes from scratch, sometimes we will aggregate
various types of objects in a class, and sometimes we will customize existing
classes using inheritance. We will also draw upon Java's vast class libraries. We
will also see how to tie related classes together by using interfaces. These are
o�ers to sign a contract whose terms are ful�lled by implementing the methods
speci�ed by the interface. Classes accepting this contract are said to imple-
ment the interface. What is interesting here is that you can create variables
of interface type which can point at objects of any class that implements the
interface.

Once this machinery is in place, we will look at functional interfaces, which
allow us to create function-like objects. These objects are absolutely key to the

281

10.1. INTERFACES CHAPTER 10. TYPES AND SUBTYPES

building of graphical user interface programs.

10.1 Interfaces

An interface in Java is an o�er to sign a contract. This is best seen via an
example. We shall create an interface for shapes; for our purposes, a shape
is an object that can compute its diameter, perimeter, and area. Here is our
interface. Notice the use of the new keyword interface. You can compile this
and you will get a .class �le.

public interface Shape
{

public double area();
public double perimeter();
public double diameter();

}

For your class to ful�l the terms of the contract, it must implement all of the
methods speci�ed in the Shape interface. Let us make a Rectangle class that
implements the three methods. Notice the �implements Shape� in the header
of the class. This is how we accept the o�er made by the interface.

public class Rectangle implements Shape
{

private double width;
private double height;
public Rectangle(double width, double height)
{

this.width = width;
this.height = height;

}
public Rectangle()
{

this(0,0);
}
public double area()
{

return height*width;
}
public double perimeter()
{

return 2*(height + width);
}
public double diameter()

©2009-2021, John M. Morrison 282

CHAPTER 10. TYPES AND SUBTYPES 10.1. INTERFACES

{
return Math.hypot(height, width);

}
}

Next, we create a Circle class. Both these classes implement Shape.

public class Circle immplements Shape
{

private double radius;
public Circle(double radius)
{

this.radius = radius;
}
public Circle()
{

this(0);
}
public double area()
{

return Math.PI*radius*radius;
}
public double perimeter()
{

return 2*Math.PI*radius;
}
public double diameter()
{

return 2*radius;
}

}

10.1.1 Pretty Polymorphism

Interfaces, like classes, are types. Since Circle and Rectangle implement
Shape, we say that Circle and Rectangle are subtypes of Shape, and that
Shape is a supertype of Circle and Rectangle.

Recall that we have previously said that both varibles and objects have type,
and that variables can only point at objects of their own type. Given the tools
you have had, this is true. We now reveal a little more about type rules. Let us
inspect our class and interface in jshell Note that since we are implementing
Shape we must open it too in the session. This is just what you expect to see.

jshell> /open Shape.java

©2009-2021, John M. Morrison 283

10.1. INTERFACES CHAPTER 10. TYPES AND SUBTYPES

jshell> /open Rectangle.java

jshell> Rectangle r = new Rectangle(6,8)
r ==> Rectangle@685f4c2e

jshell> r.area()
$5 ==> 48.0

jshell> r.diameter()
$6 ==> 10.0

jshell> r.perimeter()
$7 ==> 28.0

Let us continue our session. Now we create a variable of type Shape. Since
Rectangle is a subtype of Shape, a variable of type Shape can point at a
Rectangle.

jshell> /open Circle.java

jshell> Shape s = new Rectangle(6,8);
s ==> Rectangle@2ef1e4fa

jshell> s.diameter()
$10 ==> 10.0

jshell> s.perimeter()
$11 ==> 28.0

jshell> s.area()
$12 ==> 48.0

This works for circles, too.

jshell> s = new Circle(10);
s ==> Circle@46f7f36a

jshell> s.diameter()
$14 ==> 20.0

jshell> s.perimeter()
$15 ==> 62.83185307179586

jshell> s.area()
$16 ==> 314.1592653589793

©2009-2021, John M. Morrison 284

CHAPTER 10. TYPES AND SUBTYPES 10.1. INTERFACES

Here is what you can't do.

jshell> s = new Shape()
| Error:
| Shape is abstract; cannot be instantiated
| s = new Shape()
| ^---------^

Clearly this makes no sense because none of the methods speci�ed in the inter-
face has any code! This is a compile-time error. You cannot create instances of
an interface. You can, however, create varibles of interface type. Said variables
can point at any object whose type is a subtype of the interface's type. There
are two principles at work here.

� The Visibility Principle The type of a variable pointing at an object
determines what methods are visible; this is true for variables of class or
interface type. Only methods in the variable's type may be seen. This
is because Java is statically typed; visible methods must be known at
compile time.

� The Delegation Principle If a variable is pointing at an object and a
visible method is called, the object is responsible for executing the method.
Regardless of a variable's type, if a given method in the object is visible,
the object's method will be called. Remember objects are strongly aware
of their type so you can do this.

Programming Exercises

1. Create a class Triangle.java that has as state variables the three sides of
a triangle. To do this, you need Herron's Formula, which goes as follows.
Suppose a triangle has sides of lengths a, b, and c. Then its semiperimeter
s is de�ned as

s =
a+ b+ c

2
.

. The area of the triangle is√
s(s− a)(s− b)(s− c)

If the radicand is negative, you have an �illegal� triangle; in that case
throw an IllegalArgumentException.

2. Make your class Triangle, implement Shape.

3. Extend Triangle to EqualateralTriangle, doing as little work as pos-
sible.

4. Make Triangle implement Polygon.

©2009-2021, John M. Morrison 285

10.2. THE API GUIDE CHAPTER 10. TYPES AND SUBTYPES

5. Declare and ArrayList<Shape> and add shapes to it. Implement this
method in a new class's main.

public static double totalArea(ArrayList<Shape> al)
{

return 0;
}

Create an array list of Shapes and test it out.

10.2 The API Guide

The API guide documents both classes and interfaces. Open the page for
ArrayList. Near the top of the class, you will see this.

All Implemented Interfaces: Serializable, Cloneable,
Iterable<E>, Collection<E>, List<E>, RandomAccess

Interfaces, like classes, can have type parameters. What you see listed are
all of the standard library interfaces implemented by ArrayList.

Click on the link for List<E>. Near the top you will see this.

All Known Implementing Classes: AbstractList, AbstractSequentialList,
ArrayList, AttributeList, CopyOnWriteArrayList, LinkedList, RoleList,
RoleUnresolvedList, Stack, Vector

This is a complete list of standard library classes implementing this interface.
The Method Summary gives the methods required for a class to implement the
interface. You can see that it is a rather large list of methods.

Now look up the interface Comparable. It speci�es one method, int compareTo(T
o). You will see that there are swarms of classes that implement this interface,
including String and BigInteger. A comparable type consists of sortable data.
Implmenting this interfaces turns on some very valuable sorting tools built into
Java.

10.3 Subclasses

You might ask, �Can one class be a subtype of another?� The answer is yes, and
the purpose of this section is to show you how to do it. The mechanism we shall
use is called inheritance. Again, we will illustrate this with an example. It would
seem that a square is a special type of rectangle, so if we create a class Square it
should be a subtype of Rectangle. The extends keyword indicates that Square
is subtype of Rectangle. Automatically, Square gets all of Rectangle's public
methods. However, in this state we do not have an appropriate constructor.

©2009-2021, John M. Morrison 286

CHAPTER 10. TYPES AND SUBTYPES 10.3. SUBCLASSES

public class Square extends Rectangle
{
}

Note that to compute arae, diameter, and perimeter of a square, we just need
to know its side length. So we we begin by adding a state variable for that.

public class Square extends Rectangle
{

private double side;
}

Now we need a constructor. Here we introduce the keyword super, which calls
the parent constructor.

public class Square extends Rectangle
{

private double side;
public Square(double side)
{

super(side, side);
this.side = side;

}
}

Warning! If you use the super keyword in a constructor, it must be done in
the �rst line of the constructor's code. Failure to do this is a compile time error.
You should reverse the order of the two lines of code in Square's constructor
and see what this error looks like.

Now, It's time for inspection.

jshell> /open Shape.java

jshell> /open Rectangle.java

jshell> /open Square.java

jshell> Rectangle r = new Square(10);
r ==> Square@2e5d6d97

jshell> r.area()
$5 ==> 100.0

jshell> r.diameter()

©2009-2021, John M. Morrison 287

10.3. SUBCLASSES CHAPTER 10. TYPES AND SUBTYPES

$6 ==> 14.142135623730951

jshell> r.perimeter()
$7 ==> 40.0

jshell> Shape s = new Square(10)
s ==> Square@2ef1e4fa

jshell> s.area()
$9 ==> 100.0

jshell> s.diameter()
$10 ==> 14.142135623730951

jshell> s.perimeter()
$11 ==> 40.0

Notice that a subtype of a subtype is a subtype! Happily, we were able to inherit
all of Rectangle's methods and making Square was easy. Also, note that every
type is a subtype of the root class Object. Here is a way to convince you.

jshell> Object o = "some string"
o ==> "some string"

jshell> Object p = new ArrayList<String>();
p ==> []

jshell> o.toString()
$3 ==> "some string"

jshell> p.toString()
$4 ==> "[]"

An Object has a toString() method, so by the Visibility Principle, an Object
variable can see a toString() method. That is why everything works here.

Now see this.

jshell> o.length()
| Error:
| cannot find symbol
| symbol: method length()
| o.length()
| ^------^

Strings have a length() method, but Objects do not. The error you see
is caused by the fact that an Object variable can only see Object methods;

©2009-2021, John M. Morrison 288

CHAPTER 10. TYPES AND SUBTYPES 10.4. OVERRIDING METHODS

hence this compile-time error. A similar thing happens when we try to get the
ArrayList's size.

jshell> p.size()
| Error:
| cannot find symbol
| symbol: method size()
| p.size()
| ^----^

10.4 Overriding Methods

Let us now put a toString method in our Rectangle and Circle classes. Insert
these into your classes. As it stands now, the Object toString() method is
just the class name followed by an and some hex digits. Add these to your
classes.

public String toString()
{

return String.format("Rectangle(%s, %s)", width, height);
}

public String toString()
{

return String.format("Circle(%s)", radius);
}

jshell> /open Shape.java

jshell> /open Circle.java

jshell> /open Square.java

jshell> /open Rectangle.java

jshell> Shape r = new Rectangle(6,8);
r ==> Rectangle(6.0, 8.0)

jshell> Shape s = new Circle(10)
s ==> Circle(10.0)

jshell> Shape sq = new Square(10)
sq ==> Rectangle(10.0, 10.0)

©2009-2021, John M. Morrison 289

10.4. OVERRIDING METHODS CHAPTER 10. TYPES AND SUBTYPES

We have successfully overriden the Object toString() method. When you do
this, it is a smart idea to use the @Override annotation on these methods. Here
is what it looks like on Rectangle.

@Override
public String toString()
{

return String.format("Rectangle(%s, %s)", width, height);
}

and here it is cor Circle.

public String toString()
{

return String.format("Circle(%s)", radius);
}

Use this annotation whenever overriding the method of an ancestor class. This
causes the compiler to check to see if you are overriding properly. One thing that
can happen is that you use the wrong signature in the method you are intending
to override. In this case, you don't override the method, you overload it with
method name overloading. This can cause unfortunate and hard to diagnose
errors.

One thing we see that is unsatisfactory is the Rectangle toString()method
is not really right thing for Square. We �x this by overriding the parent method.
Add this to your Square class and you will like the result (Run it!).

@Override
public String toString()
{

return String.format("Square(%s)", side);
}

By now you have likely surmised this. If you call a method on a object an
that method is implemented in the object's class, that method is called. If the
method is not present, then the JVM checks for it in the parent class and runs
it if it is present there. This process will continue all the way up to the root
class Object. If it's not found by then, the compiler will issue forth with an
error message.

Programming Exercises

1. Make these classes, Mama.java

©2009-2021, John M. Morrison 290

CHAPTER 10. TYPES AND SUBTYPES 10.5. API/INHERITANCE

public class Mama
{

public int foo()
{

return 42;
}

}

and Baby.java

public class Baby extends Mama
{

public int foo(int x)
{

return 2*x;
}

}

2. Compile them.

3. Make this clas

public class Main
{

public static void main(String[] args)
{

Mama m = new Mama();
Baby b = new Baby();
System.out.println(m.foo());
System.out.println(b.foo());
System.out.println(b.foo(10));

}
}
\item Explain what happened.

\item Insert an \texttt{@Override} annotation on \texttt{foo} in

the class \texttt{Baby}. Compile. What happened?

10.5 Inheritance and the API Guide

Open the page for ArrayList. Right at the top of the page you will see this.

Module java.base

Package java.util

©2009-2021, John M. Morrison 291

10.6. SUBINTERFACES CHAPTER 10. TYPES AND SUBTYPES

Class ArrayList<E>

java.lang.Object
java.util.AbstractCollection<E>

java.util.AbstractList<E>
java.util.ArrayList<E>

Type Parameters: E - the type of elements in this list

All Implemented Interfaces:

Serializable, Cloneable, Iterable<E>, Collection<E>,
List<E>, RandomAccess

Direct Known Subclasses:

AttributeList, RoleList, RoleUnresolvedList

You can see the �family tree� of ArrayList displayed going all the way back
up to Object. You can also see the child classes of ArrayList in the standard
libraries.

Now scroll past the method summary. You will see all of the methods inher-
ited from ancestor classes. The method names are links; click on them to see
their method detail.

Exercises These will help you to learn to use the documentation more e�ec-
tively.

1. From which class does ArrayList inherit its toString() method?

2. From which class does ArrayList inherit its sort() method?

3. From which class does ArrayList inherit its equals() method?

4. From which class does ArrayList inherit its wait() method?

5. Whose add methood is overriden by ArrayList?

10.6 Subinterfaces

Interfaces can be extended to require additional methods in implementing classes.
For example, we could extend our Shape interface as follows.

©2009-2021, John M. Morrison 292

CHAPTER 10. TYPES AND SUBTYPES 10.6. SUBINTERFACES

public interface Polygon extends Shape
{

public int numSides();
}

An implementing class for this interface must implement all shape methods and
implement numSides() as well. Let us do this to Rectangle.

public class Rectangle implements Polygon
{

private double width;
private double height;
public Rectangle(double width, double height)
{

this.width = width;
this.height = height;

}
public Rectangle()
{

this(0,0);
}
public double area()
{

return height*width;
}
public double perimeter()
{

return 2*(height + width);
}
public double diameter()
{

return Math.hypot(height, width);
}
@Override
public String toString()
{

return String.format("Rectangle(%s, %s)", width, height);
}
public int numSides()
{

return 4;
}

}

Notice that there is no suitable numSides() method for a Circle, so we only

©2009-2021, John M. Morrison 293

10.7. FUNCTIONAL CHAPTER 10. TYPES AND SUBTYPES

implement Shape in that case. Observe that Square implements Polygon au-
tomatically since implemented interfaces are inherited. There is no need to
override here, since squares and rectangles both have four sides. Also note this;
a variable of Shape type cannot see numSides. For this, you need a variable of
type Polygon.

However, Square will inherit the implementation of Polygon from Rectangle.

Programming Exercises

1. What are the superinterfaces of java.util.Collection<E>?

2. Is ArrayList<E> a subtype of java.util.Collection<E>?

3. Of what interface(s) is List<E> a direct subinterface?

10.6.1 Default Methods

Beginning in Java8, methods called default methods were allowed to be placed
into interfaces. Here is how the work.

If you implement an interface with a default method, you automatically
�inherit� the default method. However, if you don't like what that method
does, you are free to override it by implementing the method in your class.

If you implement two interfaces that have the same default method, youmust
override that method to avoid the deadly diamond problem. This convention is
enforced by Mean Mr. Compiler.

10.7 Functional Interfaces

An interface is a functional interface if it speci�es exactly one method. These
interfaces can have default methods as exceptions to this rule but they are the
only exceptions.

We will begin by studying the Consumer family of interfaces. This consists
of four interfaces, all of which live in package java.util.function.

� Consumer<T> This is a generic interface and speci�es a function taking an
object of type T as input and having a void return type.

� IntConsumer This is interface and speci�es a function taking an int as
input and having a void return type.

� LongConsumer This is an interface that speci�es a function taking an Long
as input and having a void return type.

©2009-2021, John M. Morrison 294

CHAPTER 10. TYPES AND SUBTYPES 10.7. FUNCTIONAL

� DoubleConsumer This is an interface that speci�es a function taking an
double as input and having a void return type.

In all cases, the name of the method is accept. If you look in the API Guide,
you will see the default method default Consumer<T> andThen(Consumer<?
super T> after. Since this is a default method, we do not need to worry about
or implement it now. Consumers take a piece of data and do something with it,
such as printing it to stdout.

If you want to implement this, you might at �rst think, �Crud. I have to
make a class that implements the desired consumer, put an accept method in
it, and then create an instancd of of it to use it. Ugh. This is utterly useless,
right?

Wrong. A �endlishly clever mechanism of type inference makes using these
interfaces simple. First, realize that you can create a variable of interface type.
Secondly, Java has two means of creating function-like objects. First, let us
introduce the method reference. Bear witness to this snippet of jshell.

jshell> Consumer<String> printMe = System.out::println;
printMe ==> $Lambda$19/0x0000000800b5a440@17f052a3

jshell>

What in tarnation? Why is this allowed? There is a friendly ghost here; it is a
class with no name. We have created an object that is an instance of a nameless
class that is a subtype of Consumer<String>. You now ask, �This is a pretty
new toy, but what can you do with it.?�

It's time for a trip to the ArrayList class. Look at the method detail for
the forEach method.

public void forEach(Consumer<? super E> action)

Description copied from interface: Iterable Performs the given action for
each element of the Iterable until all elements have been processed or the action
throws an exception. Actions are performed in the order of iteration, if that
order is speci�ed. Exceptions thrown by the action are relayed to the caller.
The behavior of this method is unspeci�ed if the action performs side-e�ects
that modify the underlying source of elements, unless an overriding class has
speci�ed a concurrent modi�cation policy.

Speci�ed by:

forEach in interface Iterable<E>

Parameters:

action - The action to be performed for each element

Throws:

©2009-2021, John M. Morrison 295

10.8. LAMBDAS CHAPTER 10. TYPES AND SUBTYPES

NullPointerException - if the speci�ed action is null

You see some terrifying notation here, this <? super E> thing. This just
means that the forEach method takes a Consumer of any type that is a super-
type of the type populating the array list. In particular, our Consumer will take
any Consumer of Strings. Now watch this.

jshell> ArrayList<String> al = new ArrayList<>();
al ==> []

jshell> al.add("aardvark")
$4 ==> true

jshell> al.add("bear");
$5 ==> true

jshell> al.add("carical");
$6 ==> true

jshell> al.forEach(printMe)
aardvark
bear
carical

jshell> al.forEach(System.out::println)
aardvark
bear
carical

What's cool is this printMe variable can store a method. This eliminates the
need for writing a loop to display the items in a list. but wait. . . there is more!

10.8 Lambdas

Is there a way to customize the function object we want to create that is more
�exible than a method reference? It turns out there is; these objects are called
lambdas, and they are functions without a name. It is easy to make a lambda
that is a Consumer. Here is a very simple example.

jshell> Consumer<String> kappa = e -> System.out.println(e.toUpperCase());
kappa ==> $Lambda$21/0x0000000800b5c440@6433a2

jshell> al.forEach(kappa)
AARDVARK

©2009-2021, John M. Morrison 296

CHAPTER 10. TYPES AND SUBTYPES 10.9. COMPARATORS

BEAR
CARICAL

Java is doing a little type inference here; it knows that kappa is a Consumer<String>,
so it infers that the argument e is a String. The expresson on the right-hand
side of the arrow is the return value for the lambda.

The forEach method takes a consumer, which basically is an action, and
performs it on each item in list in index order.

10.8.1 Lambda Grammar

Lambdas can come in a variety of forms. We shall present a �eld guide here.
The simplest form looks like this for a function with one argument and a return
value.

x -> expr

The item expr is the return value of the lambda. If you have two arguments,
you must enclose them in parentheses and your lambda looks like this.

(x, y) -> expr

You can enforce a masure of type safety by specifying types for arguments; here
is an example of that.

(String s, int y) -> s.charAt(y)

You can have lambdas with more than one line of code. If you want to return
something from such a lambda, you must do so explicitly. Here is a simple
example that computes the square root of the sum of two numbers.

(int x, int y) ->
{

int z = x > 0? x: -x;
z += y > 0? y: -y;
return z;

}

10.9 Comparators

Often we have a collection of objects that are sortable in various ways and we
would like a mechanism that would conveniently a�ord us this ability. To this
end, we now undertake a brief study of the functional interface Comparator<E>.

©2009-2021, John M. Morrison 297

10.9. COMPARATORS CHAPTER 10. TYPES AND SUBTYPES

public interface Comparator<E>
{

public int compare(E e1, E e2);
}

The design contract works like this. The set of elements E is given an ordering
≤ by this compare method. This ordering works as follows.

e1 ≤ e2 ⇐⇒ compare(e1, e2) ≤ 0.

This ordering should satisfy these properties. For all e1, e2 and e3,

1. If e1.equals(e2), then compare(e1, e2) returns 0.

2. if e1 ≤ e2 and e2 ≤ e3, e1 ≤ e3 (transitivity).

3. (e1 ≤ e2)∨ (e1 ≤ e2) is always true. In other words, any two elements of
E are �related.� Mathematically, this ordering is said to be linear. This is
exactly what we expect for objects to be deemed sortable.

We will do a modest example here, which will allow us to sort an entry from
a concordance by frequency of appearance and secondarily alphabetically, or
alphabetically and then by frequency. We begin by showing the basic class.

public class ConcordanceEntry
{

String word;
int times;
public ConcordanceEntry(String word, int times)
{

this.word = word;
this.times = times;

}
@Override
public String toString()
{

return String.format("%s: %s", word, times);
}

}

Next, we add some two static elements of type Comparator; notice that these
variable are of interface type. We have made them final because they are
exposed to the client.

public class ConcordanceEntry
{

©2009-2021, John M. Morrison 298

CHAPTER 10. TYPES AND SUBTYPES 10.9. COMPARATORS

public static final Comparator<ConcordanceEntry> byTimes;
public static final Comparator<ConcordanceEntry> byFrequency
static
{

byTimes = (e1, e2) -> {
if(e1.times != e2.times)
{

return e1.times - e2.times;
}
return e1.word.compareTo(e2.word);

};
byAlpha = (e1, e2) -> {

if(!e1.word.equals(e2.times))
{

return e1.word.compareTo(e2.word);
}
return e1.times - e2.times;

};
}
String word;
int times;

public ConcordanceEntry(String word, int times)
{

this.word = word;
this.times = times;

}
@Override
public String toString()
{

return String.format("%s: %s", word, times);
}

}

What is happening here? How are these two new static members actual objects?

If you visit the API guide, you will see that the interface Comparator is a
functional interface. It speci�es one method,

public int compare(T e1, T e2);

Java is performing type inference here we described in the our discussion
of Consumers. It creates an object of class type that implements the speci�ed
method and it assigns the lambdas we assigned to the static variables as the
compare method of that object. No speci�c named class is ever created.

©2009-2021, John M. Morrison 299

10.9. COMPARATORS CHAPTER 10. TYPES AND SUBTYPES

In pre-8 Java, you would need to implement these using an anonymous inner
class. The code for byAlpha would look like this.

byAlpha = new Comparator<ConcordanceEntry>(){
public int compareTo(Concordance e1,

ConcordanceEntry e2){
if(!e1.times.equals(e2.times))
{

return e1.word.compareTo(e2);
}
return e1.times - e2.times;

};

This new construct of lambdas eliminates a good bit of boilerplate code that
adds no meaning to what we are doing. What we want to pass here is behavior
that is to be carried out by our comparator objects.

So what is the bene�t of this? How do we sort? Let us demonstrate that in a
main method. To implement this method, we introduce the static method sort
in the class java.util.Collections. There are two methods by this name.
We use the sort method which has the signature [List<E>, Comparator<E>];
this method sorts according to our comparator.

public static void main(String[] args)
{

ArrayList<ConcordanceEntry> al =
new ArrayList<>();

al.add(new ConcordanceEntry("cow", 5));
al.add(new ConcordanceEntry("pig", 2));
al.add(new ConcordanceEntry("zebra", 3));
al.add(new ConcordanceEntry("cow", 5));
al.add(new ConcordanceEntry("zebra", 5));
al.add(new ConcordanceEntry("elephant", 6));
al.add(new ConcordanceEntry("eland", 1));
al.add(new ConcordanceEntry("coati", 2));
System.out.println("Unsorted:");
for(ConcordanceEntry e: al)
{

System.out.println(e);
}
Collections.sort(al, byAlpha);
System.out.println("Sorted by word:");
for(ConcordanceEntry e: al)
{

System.out.println(e);
}

©2009-2021, John M. Morrison 300

CHAPTER 10. TYPES AND SUBTYPES 10.9. COMPARATORS

System.out.println("Sorted by frequency:");
Collections.sort(al, byTimes);
for(ConcordanceEntry e: al)
{

System.out.println(e);
}

}

Running this, here is the original list.

cow: 5
pig: 2
zebra: 3
cow: 5
zebra: 5
elephant: 6
eland: 1
coati: 2

Here it is, sorted �rst by word and second by frequency.

Sorted by word:
eland: 1
coati: 2
pig: 2
zebra: 3
cow: 5
cow: 5
zebra: 5
elephant: 6

Now we sort �rst by frequency then by word.

eland: 1
coati: 2
pig: 2
zebra: 3
cow: 5
cow: 5
zebra: 5
elephant: 6

©2009-2021, John M. Morrison 301

10.10. MULTIPLE PARENTS? CHAPTER 10. TYPES AND SUBTYPES

10.10 Can I have many parents?

One question you might ask is, �Can I implement more than one interface?�
The answer is yes. You do this.

public class ImplementingClass implements Interface1,
Interface2, InterfaceN

{
//code

}

When you do this, your class, or one of its ancestors, must implement the totality
of all of the methods speci�ed in the interface. This fact has an appealing and
useful feel.

10.10.1 The Deadly Diamond

The next queston you might ask is �Can I have several parent classes?� The
answer here is no. Class designers often speak of the �deadly diamond;� this is
a big shortcoming of multiple inheritance and can cause it to produce strange
behaviors. Imagine you have these four classes, Root, Left, Right and Bottom.
Suppose that Left and Right extend Root and that Bottom were allowed to
extend Left and Right.

Before proceeding, draw yourself a little inheritance diagram. Graphically
these four classes create a cycle in the inheritance graph (which in Java must
be a rooted tree).

Next, imagine that both the Left and Right classes implement a method
f with identical signature and return type. Further, suppose that Bottom does
not have its own version of f; it just decides to inherit it. Now imagine seeing
this code fragment

Bottom b = new Bottom(....);
b.f(...)

There is a sticky problem here: Do we call the f de�ned in the class Left or
Right? If there is a con�ict between these methods, the call is not well�de�ned
in our scheme of inheritance.

10.10.2 A C++ Interlude

There is a famous example of multiple inheritance at work in C++. There is
a class ios, with children istream and ostream. The familiar iostream class

©2009-2021, John M. Morrison 302

CHAPTER 10. TYPES AND SUBTYPES 10.11. ABSTRACT CLASSES

inherits from both istream and ostream. Since the methods for input and
output do not overlap this works well.

However, the abuse of multiple inheritance in C++ has lead to a lot of very
bad errors in code. Java's creators decided this advantage was outweighed by
the error vulnerabilities of multiple inheritance.

The One-Parent Rule Every class has exactly one parent, except for Object,
which is the root class. When you inherit from a class, you �blow your inheri-
tance.� The ability to inherit is very valuable, so we should only inherit when
it yields signi�cant bene�ts.

10.11 Abstract Classes

Interfaces do some nifty work for us. They a�ord us polymorphism which gives
some desirable �exibility. They allow a project manager to specify names and
signatures of methods for his programmers to develop. You can even insert
default methods into interfaces. You cannot, however have a constructor for an
interface, nor can you give an interface state. Interfaces also enjoy the advanage
that a class can implement several of them, where you are always limited to one
parent class via inheritance.

Sometimes, a group of related classes have a lot in common and you want
to share common state and common code. This is in accordance with the 11th
Commandment: Thou shalt not maintain duplicate code.

Fortunately there is a construct that allows us to �partially implement� a
class, prevent the class from being instantiated, and force the children of the
class to implement methods in a manner similar to that of an interface. Such a
beast is called an abstract class.

In anticipation of the future, let us think again about shapes, but this time
we will create a group of shape classes that can draw themselves in some kind
of graphical environment. A shape that is going to draw itself needs to know
its center, its color, and its size. What is di�erent about various shape types is
how they draw themselves.

For now, we will produce some �toy� classes as a means of demonstration;
in a subsequent chapter we will use the scheme we create here to build a GUI
application that renders shapes on a graphics surface.

Create these classes. Here is Color.java

public class Color
{

private final int hexCode;

©2009-2021, John M. Morrison 303

10.11. ABSTRACT CLASSES CHAPTER 10. TYPES AND SUBTYPES

public Color(int hexCode)
{

this.hexCode = hexCode;
}
@Override
public String toString()
{

return String.format("Color(#%s)",
Integer.toString(hexCode, 16));

}
}

Here is Canvas.java

public class Canvas
{

private final Pen pen;
private double width;
private double height;
public Canvas(double width, double height)
{

this.width = width;
this.height = height;
this.pen = new Pen();

}
public Pen getPen()
{

return pen;
}
public double getWidth()
{

return width;
}
public double getHeight()
{

return height;
}
@Override
public String toString()
{

return String.format("Canvas(%s, %s)", width, height);
}

}

Here is Pen.java.

©2009-2021, John M. Morrison 304

CHAPTER 10. TYPES AND SUBTYPES 10.11. ABSTRACT CLASSES

public class Pen
{

private Color color;
private double width;
private void setColor(Color color)
{

this.color = color;
}
private void setWidth(double width)
{

this.width = width;
}
@Override
public String toString()
{

return String.format("Pen(color = %s, width = %s)", color, width);
}

}

Now let us make a class for a shape, Shape.java.

public class Shape
{

private double centerX;
private double centerY;
private double color;
private double size
public Shape(double centerX, double centerY, double color, double size)
{

this.centerX = centerX;
this.centerY = centerY;
this.size = size;

}
public void draw(Pen pen)
{

//what do we do here?

}

We see a problem: how do we draw a general Shape? That makes no sense
whatsoever! This is a use case for abstract classes. Java has a keyword abstract
that can be applied to classes and methods. We will leave the draw method
unde�ned just as we would in an interface. To do this, we must declare the
method abstract, like so

public abstract draw(Pen pen);

©2009-2021, John M. Morrison 305

10.11. ABSTRACT CLASSES CHAPTER 10. TYPES AND SUBTYPES

If we mark any method in a class abstract, we must also mark the class
abstract. Our class now looks like this.

public abstract class Shape
{

private double centerX;
private double centerY;
private double color;
private double size
public Shape(double centerX, double centerY, double color, double size)
{

this.centerX = centerX;
this.centerY = centerY;
this.size = size;

}
public abstract void draw(Pen pen);

Here are the rules of the road for abstract classes.

1. If you omit a method's body in a class you must declare that method
abstract.

2. If any method in a class is declared abstract, the class itself must be
declared abstract.

3. You may declare any class you create abstract. By so doing, you prevent
any instances of it from being created; do this if it make no sense for an
instance of your class to be created.

4. You may not create instances of any abstract class.

5. You can create variables of abstract class type. They can point at any
object of any descendant type. Both the visibility and delegation principles
apply.

6. If you extend an abstract class and the child class is not abstract, you
must implement all abstract methods in the abstract class, as well as any
abstract methods in ancestor classes of the abstract class.

7. A class that is not abstract is said to be concrete.

A variable of type Shape can point at any object of a descendant type.
You could now make classes for circles, rectangles, squares, and other graphical
objects. These can each implement the draw method of Shape.

How do I know if a standard library class is abstract? Look in the Java
API guide and �nd the class AbstractList; clearly it will be abstract. Go to
the top of the page. You will see the fully-quali�ed name, the family tree, and
then its implemented interfaces and direct descendants. Just below that you
see this

©2009-2021, John M. Morrison 306

CHAPTER 10. TYPES AND SUBTYPES 10.12. FUNCTIONAL

public abstract class AbstractList<E>
extends AbstractCollection<E>
implements List<E>

The �rst line tells all: See the word abstract?

So, in summary, you can declare any class abstract and instances of it cannot
be created. You can declare methods in a class abstract and they cannot have
a method body. Any child class must override these methods unless, it too, is
abstract. Any class containing an abstract method must be marked abstract.
However, an abstract class is not required to have any abstract methods.

10.12 A Brief Trip into Functional Programming

If you look in the API guide for ArrayList, you will �nd a mysterious method
called stream. This is among the default methods inherited from the interface
java.util.Collection. Here is its method detail.

default Stream<E> stream()

Returns a sequential Stream with this collection as its source.

This method should be overridden when the spliterator() method cannot return
a spliterator that is IMMUTABLE, CONCURRENT, or late-binding. (See split-
erator() for details.)

Implementation Requirements: The default implementation creates a
sequential Stream from the collection's Spliterator.

Returns: a sequential Stream over the elements in this collection

Since: 1.8

So, what is a Stream<E>? A stream is a read-only Net�ix-like view of a
collection of objects. So for an ArrayList, a stream containing the list's objects
can be created and they are shown in the list's order. Creating a stream creates
a source. Creating the stream causes little or nothing to happen. You must
then take some action on the stream to consume it; consumption of a stream
triggers the actual processing of the data in the list.

Here are some methods that trigger consumption.

� forEach(Consumer<? super E> action This works just as it does on
an array list.

©2009-2021, John M. Morrison 307

10.12. FUNCTIONAL CHAPTER 10. TYPES AND SUBTYPES

� count() This counts the number of elements in the stream and returns
the count as an integer.

� collect(Collectors.toList()) will collect the contents of the stream
into a list. returns the count as an integer.

Wait a minute! This seems kind of useless! In its present form, admit-
tedly so. However, we have only described the bread in the sandwich (a source
and something that consues), but not the goodness inside. That's where this
becomes a very powerful tool.

The goodies inside consist of transformers that transform and �lter the items
in your collection. Transformers are basically alimenatary canals that �eat� from
streams and subsequently �excrete� a stream. Let us now meet the Predicate
family. They reside in package java.util.function. They are all functional
interfaces, so we can use lambdas where called for.

� Predicate<T> Objects of this type can be speci�ed using a lambda whose
argument is of type T and whose return value is a boolean.

� IntPredicateObjects of this type can be speci�ed using a lambda whose
argument is of type int and whose return value is a boolean.

� LongPredicateObjects of this type can be speci�ed using a lambda whose
argument is of type long and whose return value is a boolean.

� DoublePredicate Objects of this type can be speci�ed using a lambda
whose argument is of type double and whose return value is a boolean.

Let us see filter at work.

import java.util.ArrayList;
import java.util.List;
import java.util.stream.Collectors;
public class Filter
{

public static void main(String[] args)
{

ArrayList<String> words = new ArrayList<>();
words.add("aardvark");
words.add("African gazelle");
words.add("ostrich");
words.add("yak");
words.add("zebra");
words.add("vampire bat");
words.add("anaconda");
words.add("tapir");
System.out.println(words);

©2009-2021, John M. Morrison 308

CHAPTER 10. TYPES AND SUBTYPES 10.12. FUNCTIONAL

words.stream()
.filter(s -> s.compareToIgnoreCase("m") < 0)
.forEach(System.out::println);

List<String> out = words.stream()
.filter(s -> s.compareToIgnoreCase("m") < 0)
.collect(Collectors.toList());

System.out.println(out);
}

}

Let us point out some features of this little program. Notice the typograph-
ical convention of aligning �on the dots� where we �rst make a stream from the
ArrayList words. Note that only the last line in the progression ends with a
semicolon. Actually, this is a single line of code, but we do not want great long
lines of code because they become unreadable. Combining a �lter with a foreach
statement eliminates the need for creating a for loop with an if statement inside
for �ltering a list.

10.12.1 Declarative vs. Imperative

The streams API and the functional programming interface in Java enable a
style of programming that is declarative; to wit, you get exactly what you want
by saying what you want. The line

words.stream()
.filter(s -> s.compareToIgnoreCase("m") < 0)
.forEach(System.out::println);

says, "Make a stream from my list, �lter in the �rst half of the alphabet, and
print the entries out. The imperative form looks like this.

for (String s: words)
{

if(x.compareToIgnoreCase("m") < 0)
{

System.out.println(s);
}

}

Here we are �spoon-feeding� Java every minute step rather than telling it what
we want.

©2009-2021, John M. Morrison 309

10.12. FUNCTIONAL CHAPTER 10. TYPES AND SUBTYPES

10.12.2 Using map

This is the bread-and-butter means for making a stream of objects of one type
into a stream of objects as another or the same type. Let's see how we can use
it to get our animal list to print upper-case. Notice we have two transformers
in our stream sandwich.

words.stream()
.filter(s -> s.compareToIgnoreCase("m") < 0)
.map(s -> s.toUpperCase())
.forEach(System.out::println);

The output looks like this.

AARDVARK
AFRICAN GAZELLE
ANACONDA

To do this imperatively, you might do this.

for (String s: words)
{

if(x.compareToIgnoreCase("m") < 0)
{

System.out.println(s.toUpperCase());
}

}

Map, like its friend �lter, comes in various guises. Here they come.

1. mapToInt This changes an object stream into a stream of (primitive) in-
tegers, an IntStream.

2. mapToDouble This changes an object stream into a stream of (primitive)
doubles, a DoubleStream.

3. mapToLong This changes an object stream into a stream of (primitive)
longs, an LongStream.

©2009-2021, John M. Morrison 310

Chapter 11

Files and Exceptions

11.0 Introduction

This chapter will introduce you interacting with the �le system. At the same
time, it will be necessary to learn about the concept of exception handling. The
reason for this is that when you access a �le and it is not present or you do not
have permission to read it, an exception is generated.

These exceptions are beyond programmer and, often user, control. What
you don't want them doing is crashing your program. So you will learn how to
run code with these sorts of hazards and learn how to recover from the problem
at hand gracefully. We will begin this chapter by discussing exceptions.

11.1 Exceptions

We have already seen these. For example, when creating BigFraction, we threw
an IllegalArgumentException when a client programmer attempted to create
a fraction with a zero denominator. There is little doubt you have encountered
a NullPointerException when you forgot to use new to allocate memory for
an object or a IndexOutOfBounds exception when working with a collection.
Consider this unfortunate code.

import java.util.ArrayList;
public class DumbError
{

private static ArrayList<String> roster;

public static void main(String[] args)

311

11.1. EXCEPTIONS CHAPTER 11. FILES AND EXCEPTIONS

{
roster.add("Doofus McDuff");
System.out.println(roster);

}
}

This code compiles.

$ javac DumbError.java

Now let us run it.

$ java DumbError
Exception in thread "main" java.lang.NullPointerException

at DumbError.main(DumbError.java:8)
$

Doom. You see that a NullPointerException got thrown. The compiler
did not catch the error; an exception is a run-time error. You will see that on
line 8 the o�ending code is

roster.add("Doofus McDuff");

This occured because we never did this

roster = new ArrayList<>();

We attempted to call a method on an object pointing to the graveyard
state null. Insert this line we just showed and your program will run without
error. Other exceptions you probably have run across include these. All of these
exceptions are examples of run-time exceptions. Most run-time exceptions are
caused by programmer errors. When you encountered them, you saw that your
program died on the spot and that a stack trace was generated.

There is another species of exception you are about to meet called checked
exceptions. These exceptions occur because of events that are beyond user, or
programmer, control. These sorts of exceptions crop up when handling �les;
being able to handle them is prerequisite to doing any interaction with the �le
system.

Java provides a mechanism called exception handling that provides a parallel
track of return from functions so that you can avoid cluttering the ordinary
execution of code with endless error-handling routines.

Exceptions are objects that are �thrown� by various methods or actions. In
this chapter we will learn how to handle (catch) an exception. By so doing

©2009-2021, John M. Morrison 312

CHAPTER 11. FILES AND EXCEPTIONS 11.2. THROWABLE

we allow our program to recover and continue to work. Failure to catch and
exception results in a �ood of nasty text from Java (a so-called �exploding
heart�). Crashes such as these should be extremely rare in production-quality
software. We can use exceptions as a means to protect our program from such
dangers as user abuse and from such misfortunes as crashing whilst attempting
to gain access to an nonexistent or prohibited resource. Many of these hazards
are beyond both user and programmer control.

When you program with �les or with socket connections, the handling of
exceptions will be mandatory; hence the need for this interlude before we begin
handling �les.

Let us now turn to understanding how exceptions �t into Java's class hier-
archy.

Progrmming Exercise

1. What happens if you try to compute 1/0 using integers?

2. What happens if you try to compute 1/0 using doubles?

3. What happens if you make the call Math.sqrt(-1)?

4. What happens if you make the call Math.log(-1)?

11.2 The Throwable Subtree

Go to the Java API guide and pull up the class Exception. The family tree is
is as follows.

java.lang.Object
java.lang.Throwable
java.lang.Exception

The class name Throwable is a bit strange; one would initially think it were
an interface. It is, however, a class. The class java.lang.Exception has a
sibling class java.lang.Error.

When objects of type Error are thrown, it is not reasonable to try to recover.
These things come from problems in the Java Virtual Machine, bad memory
problems, or problems from the underlying OS. We just accept the fact that
they cause program death. Continuing to proceed would just lead to a chain of
ever-escalating problems.

Objects of type Exception are thrown for more minor problems, such as an
attempt to open a non-existent �le for reading, trying to convert an unparseable

©2009-2021, John M. Morrison 313

11.2. THROWABLE CHAPTER 11. FILES AND EXCEPTIONS

string to an integer, or trying to access an entry of a string, array, or array list
that is out of bounds.

Let us show this mechanism at work. For example, if you attempt to execute
the code

int foo = Integer.parseInt("gobbledegook");

you will be rewarded with an exception. To see what happens, create this
program MakeException.java.

public class MakeException
{

public static void main(String[] args)
{

int foo = Integer.parseInt("gobbledegook");
}

}

This program compiles happily. You will see that the infraction we have here is
a run-time error, as is any exception.

When you run the program you will see this acrimonious screed.

unix> java MakeException
Exception in thread "main" java.lang.NumberFormatException:

For input string: "gobbledegook"
at java.base/java.lang.NumberFormatException.forInputString(

NumberFormatException.java:68)
at java.base/java.lang.Integer.parseInt(Integer.java:652)
at java.base/java.lang.Integer.parseInt(Integer.java:770)
at MakeException.main(MakeException.java:5)
unix>

The exploding heart you see here shows a stack trace. This shows how the
exception propagates through the various calls the program makes. To learn
what you did wrong, you must look in this list for your �le(s). You will see the
o�ending line here.

at MakeException.main(MakeException.java:5)

You are being told that the scene of the crime is on line 5, smack in the middle
of your main method. The stack trace can yield valuable clues in tracking down
and extirpating a run-time problem such as this one.

©2009-2021, John M. Morrison 314

CHAPTER 11. FILES AND EXCEPTIONS 11.3. THROWING

We have seen reference to �throw� and �throws� before. Go into the API
guide and bring up the class String. Now scroll down to the method sum-
mary and click on the link for the familiar method charAt(). You will see this
notation.

Throws:

IndexOutOfBoundsException - if the index argument is negative or
not less than the length of the string.

Let us now look up this IndexOutOfBoundsException. The family tree
reveals that this class extends the RuntimeException class. The purpose of
this exception is to terminate the execution of the program since you are in
an error state. We can, however, run code in response to the occurrence of an
exception, so our program does not crash.

11.3 Throwing an Exception

You can throw exceptions when something is about to go wrong. For example
in our BigFraction class, we threw an exception if a denominator of zero was
passed. Here it is.

public BigFraction(BigInteger num, BigInteger denom)
{

if(denom.equals(BigInteger.ZERO)
{

throw new IllegalArgumentException();
}
(rest of constructor)

}

It is best, if at all possible, to use a standard library exception. You can cre-
ate your own exceptions by inheriting from any class in the Exception subtree.
If you inherit from RuntimeException, the caller does not have to handle the
exception as shown in the next section.

11.4 Checked and Run-Time Exceptions

There are two types of exceptions that exist: runtime exceptions and all others,
which are called checked exceptions. How do you know if an exception is a

©2009-2021, John M. Morrison 315

11.5. PATH CHAPTER 11. FILES AND EXCEPTIONS

RuntimeException? Just look up its family tree and see if it is a descendant
of RuntimeException. So far in our study of Java, we have only seen runtime
exceptions.

Checked exceptions, on the other hand, are usually caused by situations
beyond programmer, or even end-user control. Suppose a user tries to get a
program to open a �le that does not exist, or a �le for which he lacks appropriate
permissions. Another similar situation is that of attempting to create a socket,
or a connection to another computer. The host computer may not allow such
connections, it could be down, or it could even be nonexistent. These situations
are not necessarily the user's or programmer's fault.

Checked exceptions must be handled ; this process entails creating code to
tell your program what to do in the face of these exceptions being thrown. It is
entirely optional to handle a runtime exception.

Sometimes a runtime exception will be caused by user error; in these cases
it is appropriate to use exception handling to �x the problem. For example if a
user is supposed to enter a number into a TextField the hapless fool enters a
string that is not numeric, your program might try to use Integer.parseInt
to convert it into an integer. Here we see a problem created by an end-user.
This user should be protected and this error should be handled gracefully so
that (bumbling) user can go about his business. You always want to protect the
end-user from exceptions if it is at all feasible or reasonable. Remember: Never
reward a paying customer with death. It's bad for business. Now let us erect
some sca�olding for handling �les, as we will introduce the idea of handling
exceptions in the context of �leIO.

11.5 The Path to Perdition

We begin with the interface java.nio.files.Path. It has a list of methods
that is speci�es for handling locations in your �le system. Said locations might
or might not exist. Since Path is an interface, you cannot create instances of a
Path using new. However, this interface comes equipped with a static method
of Here is the method detail.

static Path of(String first, String... more)

Returns a Path by converting path string, or a sequence of strings that when
joined form a path string. If more does not specify any elements then the value
of the �rst parameter is the path string to convert. If more speci�es one or
more elements then each non-empty string, including �rst, is considered to be
a sequence of name elements and is joined to form a path string. The details
as to how the Strings are joined is provider speci�c but typically they will be
joined using the name-separator as the separator. For example, if the name
separator is "/" and getPath("/foo","bar","gus") is invoked, then the path

©2009-2021, John M. Morrison 316

CHAPTER 11. FILES AND EXCEPTIONS 11.5. PATH

string "/foo/bar/gus" is converted to a Path. A Path representing an empty
path is returned if �rst is the empty string and more does not contain any
non-empty strings.

The Path is obtained by invoking the getPath method of the default FileSystem.

Note that while this method is very convenient, using it will imply an assumed
reference to the default FileSystem and limit the utility of the calling code.
Hence it should not be used in library code intended for �exible reuse. A more
�exible alternative is to use an existing Path instance as an anchor, such as:

Path dir = ...
Path path = dir.resolve("file");

Parameters:
first - the path string or initial part of the path string
more - additional strings to be joined to form the path string
Returns:
the resulting Path Throws:
InvalidPathException - if the path string cannot be converted to a Path
Since:
11
See Also:
FileSystem.getPath(java.lang.String, java.lang.String...)

Note that the class Pathsmerely implement the ofmethod of this class. The
Paths is probably a dead-end class, so you should use Path.of in preference to
its get method. It will be the workhorse for us in this chapter.

Let us now take a tour of Path methods. Begin by creating a directory
named zoo with these contents

(base) MAC:Sat Nov 28:10:33:s1> ls -Rl zoo
total 0
-rw-r--r-- 1 morrison staff 0B Nov 27 16:03 capybara
drwxr-xr-x 6 morrison staff 192B Nov 28 10:32 cats
-rw-r--r-- 1 morrison staff 0B Nov 27 16:03 dingo
-rw-r--r-- 1 morrison staff 0B Nov 27 16:03 eland
drwxr-xr-x 6 morrison staff 192B Nov 28 10:32 reptiles

zoo/cats:
total 0
-rw-r--r-- 1 morrison staff 0B Nov 27 16:03 bobcat
-rw-r--r-- 1 morrison staff 0B Nov 28 10:32 cheetah
-rw-r--r-- 1 morrison staff 0B Nov 28 10:32 lion
-rw-r--r-- 1 morrison staff 0B Nov 28 10:32 tiger

©2009-2021, John M. Morrison 317

11.5. PATH CHAPTER 11. FILES AND EXCEPTIONS

zoo/reptiles:
total 0
-rw-r--r-- 1 morrison staff 0B Nov 27 16:03 alligator
-rw-r--r-- 1 morrison staff 0B Nov 28 10:32 anaconda
-rw-r--r-- 1 morrison staff 0B Nov 28 10:32 cobra
-rw-r--r-- 1 morrison staff 0B Nov 28 10:32 iguana

Enter this directory and �re up jshell. We begin by getting our current
working directory as a Path and determining its absolute position in our �le
system. Note the use of isAbsolute to tell if a path is absolute or relative.

jshell> Path zoo = Path.of(".")
zoo ==> .

jshell> Path absZoo = zoo.toAbsolutePath()
absZoo ==> /Users/morrison/book/S1/zoo/.

jshell> zoo.isAbsolute()
$3 ==> false

jshell> absZoo.isAbsolute()
$4 ==> true

Here is a look up the �le family tree.

jshell> absZoo.getParent()
$8 ==> /Users/morrison/book/S1/zoo

jshell> absZoo.getParent().getParent()
$9 ==> /Users/morrison/book/S1

The result is disappointing when we do this on zoo, but we sho a hackish
workaround here.

jshell> zoo.getParent()
$10 ==> null

jshell> zoo.toAbsolutePath().getParent().getFileName()
$11 ==> zoo

OPC Note In older OPC, you will see reference to the class java.io.File;
this is the predecessor to the modern Path interface, which you should prefer.
However, you can convert a Path object to a File by calling the toFile method
on it. The older File class has a toPath method to convert from File to Path.
You should prefer the Path interface when writing new code.

©2009-2021, John M. Morrison 318

CHAPTER 11. FILES AND EXCEPTIONS 11.5. PATH

java.nio.�le.Paths This static service class appears to be an abortive e�ort
and you should avoid it. Construct new paths using the static of method.

Interacting with the File System The next class for you to know about
is Files; this is the workhorse class for �leIO. The Path interface and Files
jointly cover all of the territory previously covered by the old java.io.File
class and a whole lot more.

That name Files should give you a hint. You have seen the pluralized class
name before in java.util.Collections and java.util.Arrays.

Alex, give me �common bonds� for $800. Alex replies, �Here is the answer:
this is the common bond between these three classes.�

The smart contestant says, �What is being a static service class?� Bingo,
add $800 to that contestant's score.

To move around in our little �le tree and to manipulate it, we will use Files.
This is a static service class that gives us access to the �le system, as well as an
array of other useful services..

Boola! Boola! The Files class provides some useful predicates to determine
�le attributes. As you might expect, their names begin with is. These four
check out a �le's type.

� isDirectory(Path path) This returns true if the path points at a di-
rectory.

� isRegularFile(Path path) This returns true if the path points at a at
a regular �le.

� isHidden(Path path) This returns true if the path points at a a hidden
(in UNIX a dot�le) �le.

� isSymbolicLink(Path path) This returns true if the path points at a
at a symbolic link (an alias for a �le or a directory).

These tell you about �le permissions.

� isReadable(Path path) This returns true if the path points at a �le you
have read permissions for.

� isWritable(Path path) This returns true if the path points a �le you
have write permissions for.

� isExecutable(Path path) This returns true if the path points a �le you
have execute permissions for.

� isDirectory(Path path) This returns true if the path points

These two will tell you basic �identity� information.

©2009-2021, John M. Morrison 319

11.6. READING A TEXT FILECHAPTER 11. FILES AND EXCEPTIONS

� exists(Path path, LinkOption... option) This returns true if the
path points at a �le that exists. The second argument is entirely optional
and we won't bother with it.

� isSameFile(Path path1, Path path2) This returns true if the both
paths point at the same �le.

You can also create and delete �les and directories.

� createFile(Path path, FileAttribute<?>... option) This returns
true if the path points at a �le that exists. The second argument is en-
tirely optional, and allows you to specify �le permissions.

� delete(Path path) This deletes the �le at the speci�ed path. point at
the same �le.

11.6 Reading a Text File

Open the API page for the class java.nio.Files. We are going to write a
class named Cat.java which accepts a string as a command-line argument that
(should) be a name of an existing �le and which puts the �le to stdout. For the
sake of simplicity, we will do this all in the main method. Now get the method
detail for the static method readAllLines. This method reads the lines of the
�le into a List<String>. Let us attempt this.

import java.util.List;
import java.nio.file.Files;
import java.nio.file.Path;
public class Cat
{

public static void main(String[] args)
{

Path path = Path.of(args[0]);
List<String> fileContents = Files.readAllLines(path);
for(String s: fileContents)
{

System.out.print(s);
}

}
}

Now we compile and see this.

unix> javac Cat.java
Cat.java:9: error: unreported exception IOException;

©2009-2021, John M. Morrison 320

CHAPTER 11. FILES AND EXCEPTIONS11.6. READING A TEXT FILE

must be caught or declared to be thrown
List<String> fileContents = Files.readAllLines(path);

^
1 error

Uh oh. Because an IOException is a checked exception, action on our part is
required. We begin by enclosing our �dangerous code� in a try block. This must
be followed by a catch block for an IOException. Note that a new import is
needed.

import java.util.List;
import java.nio.file.Files;
import java.nio.file.Path;
import java.io.IOException;
public class Cat
{

public static void main(String[] args)
{

try
{

Path path = Path.of(args[0]);
List<String> fileContents = Files.readAllLines(path);
for(String s: fileContents)
{

System.out.print(s);
}

}
catch(IOException ex)
{

ex.printStackTrace();
}

}
}

Now, create a text �le to run this on.

This is a test
it is only a test.
Let's see if this works.

Let's run it.

unix> java Cat.java test.txt
This is a testit is only a test.Let's see if this works.unix>

Evidently all of the newlines get amputated. Let's put 'em back; just change
System.out.print to System.out.println.

©2009-2021, John M. Morrison 321

11.6. READING A TEXT FILECHAPTER 11. FILES AND EXCEPTIONS

unix> java Cat.java test.txt
This is a test
it is only a test.
Let's see if this works.

Et Voila!

Can we shorten this code? Yes, if we avail ourselves of the forEach method
for lists.

import java.util.List;
import java.nio.file.Files;
import java.nio.file.Path;
import java.io.IOException;
public class Cat
{

public static void main(String[] args)
{

try
{

Path path = Path.of(args[0]);
List<String> fileContents = Files.readAllLines(path);
fileContents.forEach(System.out::println);

}
catch(IOException ex)
{

ex.printStackTrace();
}

}
}

We are using a method reference in the forEach method.

Next, for a little perverse fun, let us run our program on a nonexistent �le
heffalump.txt. Fury is unleashed by the JVM.

base) MAC:Tue Dec 22:15:57:s9> java Cat.java heffalump.txt
java.nio.file.NoSuchFileException: heffalump.txt

at java.base/sun.nio.fs.UnixException.translateToIOException(UnixException.java:92)
at java.base/sun.nio.fs.UnixException.rethrowAsIOException(UnixException.java:106)
at java.base/sun.nio.fs.UnixException.rethrowAsIOException(UnixException.java:111)
at java.base/sun.nio.fs.UnixFileSystemProvider.newByteChannel(UnixFileSystemProvider.java:218)
at java.base/java.nio.file.Files.newByteChannel(Files.java:375)
at java.base/java.nio.file.Files.newByteChannel(Files.java:426)
at java.base/java.nio.file.spi.FileSystemProvider.newInputStream(FileSystemProvider.java:420)
at java.base/java.nio.file.Files.newInputStream(Files.java:160)
at java.base/java.nio.file.Files.newBufferedReader(Files.java:2916)

©2009-2021, John M. Morrison 322

CHAPTER 11. FILES AND EXCEPTIONS11.6. READING A TEXT FILE

at java.base/java.nio.file.Files.readAllLines(Files.java:3396)
at java.base/java.nio.file.Files.readAllLines(Files.java:3436)
at Cat.main(Cat.java:12)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:64)
at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.base/java.lang.reflect.Method.invoke(Method.java:564)
at jdk.compiler/com.sun.tools.javac.launcher.Main.execute(Main.java:415)
at jdk.compiler/com.sun.tools.javac.launcher.Main.run(Main.java:192)
at jdk.compiler/com.sun.tools.javac.launcher.Main.main(Main.java:132)

Scan through this wreckage; it reveals that the source of the exception was on
line 12 in our �le. Let's handle it and cut down on the Wagnerian drama.

import java.util.List;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.NoSuchFileException;
import java.io.IOException;
public class Cat
{

public static void main(String[] args)
{

try
{

Path path = Path.of(args[0]);
List<String> fileContents = Files.readAllLines(path);
fileContents.forEach(System.out::println);

}
catch(NoSuchFileException ex)
{

System.err.printf("File %s does not exist.\n", args[0]);
}
catch(IOException ex)
{

ex.printStackTrace();
}

}
}

This is better.

unix> java Cat heffalump.txt
File heffalump.txt does not exist.

This reveals something else. We can have several catch blocks. Order is im-

©2009-2021, John M. Morrison 323

11.7. BUFFERING CHAPTER 11. FILES AND EXCEPTIONS

portant. Put the most speci�c exceptions (lower on the inheritance tree) at the
top and the most generals ones at the bottom. Only one catch block will ever
by executed. Here is one other minor tweak. Dum-dum user just might forget
a command-line argument. Just at this at the top of your main method before
the try block.

if(args.length == 0)
{

System.err.println("A command-line argument is required");
}

11.7 Dealing with Dyspepsia

What if we want to process a humongous �le? Reading it all at once could be a
huge memory hog. Can we be more e�cient? Happily the tools are at hand. We
will bring newBufferedReader to bear on the problem. During this exercise,
you will learn about try with resources that will automatically close any �le you
open. Let us rewrite Cat.java using this method.

import java.util.List;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.NoSuchFileException;
import java.io.BufferedReader;
import java.io.IOException;
public class Cat
{

public static void main(String[] args)
{

if(args.length == 0)
{

System.err.println("A command-line argument is required");
}
try
{

Path path = Path.of(args[0]);
BufferedReader br = Files.newBufferedReader(path);
String line = "";
while((line = br.readLine()) != null)
{

System.out.println(line);
}
br.close();

}

©2009-2021, John M. Morrison 324

CHAPTER 11. FILES AND EXCEPTIONS 11.7. BUFFERING

catch(NoSuchFileException ex)
{

System.err.printf("File %s does not exist.\n", args[0]);
}
catch(IOException ex)
{

ex.printStackTrace();
}

}
}

So what has happened? A BufferedReader creates a connection to a �le.
Hidden from you is the bu�er, which stores a chunk of the �le in your program's
memory. Usually this chunk is of size 4K. In the beginning the BufferedReader
grabs a chunk of text. We then have it reading the �le a line at at time. When
the bu�er is empty, another chunk of �le is hoovered into the bu�er. So, if we
are reading a large �le, our memory footprint is far smaller than if we got the
whole �le at once using readAllLines. Also, we are not pestering the operating
system with a zillion requests for chunks of the �le.

A problem remains. If an exception occurs, the �le might not close. There
is a smart way to deal with this called try with resources. Let us see what that
looks like.

import java.util.List;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.NoSuchFileException;
import java.io.BufferedReader;
import java.io.IOException;
public class Cat
{

public static void main(String[] args)
{

if(args.length == 0)
{

System.err.println("A command-line argument is required");
}
Path path = Path.of(args[0]);
try
(

BufferedReader br = Files.newBufferedReader(path);
)
{

String line = "";
while((line = br.readLine()) != null)

©2009-2021, John M. Morrison 325

11.7. BUFFERING CHAPTER 11. FILES AND EXCEPTIONS

{
System.out.println(line);

}
}
catch(NoSuchFileException ex)
{

System.err.printf("File %s does not exist.\n", args[0]);
}
catch(IOException ex)
{

ex.printStackTrace();
}

}
}

Notice we moved the declaration of path so it is in scope throughout main. We
no longer need to close the �le, because try with resources automatically does
this. As a result, a great deal of bother you will never see will never take place.

How do I know if I can use try with resources? Just check to see if
the class you are using implements java.lang.AutoCloseable. This interface
speci�es a single method, public void close(). Look at the API page; a lot
of things implement it. If you write some kind of �le-handling class, you should
implement it, too.

That while loop looks so awful Pssst... Here is a little magic. Ditch this
code

String line = "";
while((line = br.readLine()) != null)
{

System.out.println(line);
}

for this:

br.lines()
.forEach(System.out::println);

Ooh, sweet. How does that work? In brief, the call br.lines() gives you a
Net�ix-like streaming view of the �le. The lines come in a stream. The forEach
method applies System.out.println to each line in the stream. You have had
a preview of the Streams API which will be covered in more detail later. It
is a stupendously powerful appratus that will make your code shorter, more
readable, and more expressive.

©2009-2021, John M. Morrison 326

CHAPTER 11. FILES AND EXCEPTIONS11.8. WRITING A TEXT FILE

11.8 Writing a Text File

One might just think that if there is a BufferedReader that there could be a
BufferedWriter. Correct. And now that we know about exception handling,
writing to a �le should be a fairly simple process. Let's do it. Here an idea.
Let's generate an HTML trig table from 0 to 90 degrees for sine and cosine.

What do we need? We will write a function that creates the table rows, and
functions that compute sine and cosine in degrees.

import java.nio.file.Files;
import java.nio.file.Path;
import java.io.BufferedWriter;
import java.io.IOException;
public class Triggie
{

private static final double FACTOR = Math.PI/180;
public static void main(String[] args)
{
}
private static double sinDeg(int x)
{

return Math.sin(FACTOR*x);
}
private static double cosDeg(int x)
{

return Math.cos(FACTOR*x);
}
private static String makeRow(int x)
{

return String.format("<tr><td>%d</td><td>%.4f</td><td>%4f</td></tr>\n",
x, sinDeg(x), cosDeg(x));

}
}

Now we write the main method. We will use try with resources.

public static void main(String[] args)
{

Path path = Path.of("trigTable.html");
try(BufferedWriter bw = Files.newBufferedWriter(path))
{

bw.write("<table>\n<tr><th>x</th><th>sin(x)</th><th>cos(x)</th></tr>\n");
for(int k = 0; k <= 90; k++)
{

bw.write(makeRow(k));

©2009-2021, John M. Morrison 327

11.9. BINARY/BUFFERED CHAPTER 11. FILES AND EXCEPTIONS

}
br.write("<table>\n");

}
catch(IOException ex)
{

ex.printStackTrace();
}

}

Note the pleasing parallelism here.

11.9 Bu�ered IO with Binary Files

Here we introduce some new classes in java.io. These manage unbu�ered and
bu�ered byte streams.

� java.io.InputStream

� java.io.OutputStream

� java.io.BufferedInputStream

� java.io.BufferedOutputStream

We will create a program that copies �les containing raw bytes. In our example,
we will use an image �le. This has been tested on a 300 megabyte video �le and
did the job pleasingly quickly. Let's get started with some basic stu�, inserting
the needed imports and wrangling the command-line arguments.

import java.nio.file.Files;
import java.nio.file.Path;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.BufferedInputStream;
import java.io.BufferedOutputStream;
import java.nio.file.NoSuchFileException;
public class BinaryCopy
{

public static void main(String[] args)
{

String donor = args[0];
String recipient = args[1];
if(args.length < 2)
{

System.err.println("Two command-line arguments are needed");

©2009-2021, John M. Morrison 328

CHAPTER 11. FILES AND EXCEPTIONS 11.9. BINARY/BUFFERED

}
Path inFile = Path.of(donor);
Path outFile = Path.of(recipient);

}
}

Now let us proceed to creating the try with resources header.

try
(

InputStream in = new
BufferedInputStream(Files.newInputStream(inFile));

OutputStream out =
new BufferedOutputStream(Files.newOutputStream(outFile));

)

We now append the usual catch blocks.

try
(

InputStream in = new
BufferedInputStream(Files.newInputStream(inFile));

OutputStream out =
new BufferedOutputStream(Files.newOutputStream(outFile));

)
{
}
catch(NoSuchFileException ex)
{

System.err.printf("File %s not found.\n", donor);
}
catch(IOException ex)
{

ex.printStackTrace();
}

The coup d'grace is stunningly simple.

try
(

InputStream in = new
BufferedInputStream(Files.newInputStream(inFile));

OutputStream out = new
BufferedOutputStream(Files.newOutputStream(outFile));

)

©2009-2021, John M. Morrison 329

11.9. BINARY/BUFFERED CHAPTER 11. FILES AND EXCEPTIONS

{
byte[] bytes = Files.readAllBytes(inFile);
out.write(bytes);

}
catch(NoSuchFileException ex)
{

System.err.printf("File %s not found.\n", donor);
}
catch(IOException ex)
{

ex.printStackTrace();
}

The docs recommend against this. However it will copy a �le containing several
hundred megabytes with pleasing dispatch.

©2009-2021, John M. Morrison 330

Bibliography

[1] I. Anaconda, Anaconda download site. https://www.anaconda.com/
products/individual.

[2] J. Bloch, E�ective Java, Third Edition, Addison-Wesley, 2017.

[3] U. o. H. a. M. College of Engineering, Mastering the vi Editor,
http://www.eng.hawaii.edu/Tutor/vi.html, 2020.

[4] N. Ninja, The net ninja python 3. https://www.youtube.com/playlist?
list=PL4cUxeGkcC9idu6GZ8EU_5B6WpKTdYZbK.

[5] I. Python Foundation, Python built-in types. https://docs.python.
org/3/library/functions.html.

[6] A. Robbins, Learning the vi and vim Editors, O'Reilly Associates, 2008.

[7] C. Schaefer, Python tutorials. https://www.youtube.com/watch?
v=YYXdXT2l-Gg&list=PL-osiE80TeTt2d9bfVyTiXJA-UTHn6WwU&ab_
channel=CoreySchafer.

[8] J. Wang, Vi for smarties. http://www.jerrywang.net/vi.

[9] Wikipedia, Duck typing. https://en.wikipedia.org/wiki/Duck_
typing.

[10] , Two's complement. http://en.wikipedia.org/wiki/IEEE_754.

331

https://www.anaconda.com/products/individual
https://www.anaconda.com/products/individual
http://www.eng.hawaii.edu/Tutor/vi.html
https://www.youtube.com/playlist?list=PL4cUxeGkcC9idu6GZ8EU_5B6WpKTdYZbK
https://www.youtube.com/playlist?list=PL4cUxeGkcC9idu6GZ8EU_5B6WpKTdYZbK
https://docs.python.org/3/library/functions.html
https://docs.python.org/3/library/functions.html
https://www.youtube.com/watch?v=YYXdXT2l-Gg&list=PL-osiE80TeTt2d9bfVyTiXJA-UTHn6WwU&ab_channel=CoreySchafer
https://www.youtube.com/watch?v=YYXdXT2l-Gg&list=PL-osiE80TeTt2d9bfVyTiXJA-UTHn6WwU&ab_channel=CoreySchafer
https://www.youtube.com/watch?v=YYXdXT2l-Gg&list=PL-osiE80TeTt2d9bfVyTiXJA-UTHn6WwU&ab_channel=CoreySchafer
http://www.jerrywang.net/vi
https://en.wikipedia.org/wiki/Duck_typing
https://en.wikipedia.org/wiki/Duck_typing
http://en.wikipedia.org/wiki/IEEE_754

	Getting Started
	Introduction
	Server Access
	Installing Python
	Getting a JDK

	Linux
	Introduction
	In the Beginning …
	Anatomy of a Command
	Managing Directories
	Processes and Directories

	Paths
	 A Field Trip
	Directories and Files
	Renaming and Deleting
	Everything is a Program

	Editing Files
	Launching vi
	vi Modes
	Cut and Paste
	Using External Files
	Search and Replace

	Visual Mode
	Replace Mode

	Copy Paste from a GUI
	Permissions

	The Octal Representation
	The Man
	Scripts
	Redirection of Standard Output and Standard Input
	More Filters
	The sort filter
	The Filters head, tail, and uniq
	The grep Filter
	Serving up Delicious Data Piping Hot

	Python
	Running Python
	Scalar Types
	Variables and Assignment
	The Lowdown on Assignment

	Pooling
	Writing a Program
	Objects
	How do I find all of the string behaviors?
	Compound Assignment

	Sequence Types
	Slicing of Sequences
	Slicing of Lists

	Casting About
	List Behaviors
	Hashed Types
	What hashing? Why do it?

	Sets
	Dictionaries
	Terminology Roundup

	Boss Statements
	Introduction
	Functions
	Scoping
	Conditional Logic
	Stack and Heap
	The Heap
	Program Life Cycle

	Recursion
	The Standard Library
	Accessing the File System
	Random Thoughts

	Termnology Roundup

	Repetition
	Introduction
	Iterables and Definite Loops
	File IO
	A Helpful Tool: Raw Strings

	Some FileIO Applications
	while and Indefinite Looping
	Programming Projects
	Function Flexibility
	A Star is Born
	Keyword Arguments

	Generators
	Holy Iterable, Batman!

	Terminology Roundup

	Algorithms
	Introduction
	A Rough Measure of Growth
	Searching
	Binary Search

	Root Finding
	A little number theory
	The Performance of isPrime
	Iterative Techniques
	Mergesort
	Terminlogy Roundup

	Introducing Java
	Introduction
	Welcome to JShell!
	Coding Mechanics
	Python Classes
	Java Classes
	Java's Integer Types
	Using Java Integer Types in Java Code

	Four More Primitive Types
	The boolean Type
	Floating–Point Types
	The char type

	More Java Class Examples

	Classes and Objects
	Java Object Types
	Java Strings
	But is there More?

	Primitive vs. Object
	Aliasing

	More String Methods
	The Wrapper Classes
	Autoboxing and Autounboxing

	Two Caveats
	Classes Know Things: State
	Quick! Call the OBGYN! And get a load of this!
	Now Let's do the Same Thing in Python
	Method and Constructor Overloading
	Get a load of this again!
	Now Let Us Make this Class DO Something
	Who am I?
	Mutator Methods

	Java Scope
	OO Weltanschauung
	Procedural Programming
	OO Programming

	Python --3mu Java
	Introduction
	Java Data Structures
	java.util.Arrays
	Fixed Size? C'mon!
	What is this Object?
	Back to the Matter at Hand

	Conditional Execution
	The New switch Statement

	Big Integers
	Recursion in Java
	Looping in Java
	Starguments for Java
	static and final
	Etiquette for Static Members

	BigFraction
	Case Study: An Extended-Precision Fraction Class
	A Brief Orientation

	Starting BigFraction.py
	Reducing Fractions
	Speeding things up
	Finishing __init__

	Starting BigFraction.java
	Arithmetic
	Addition
	Subtraction
	Multiplication
	Division
	Pow!

	Adding Static Constants
	Documenting Your Code
	Documenting BigFraction.py
	Documenting BigFraction.java
	Triggering Javadoc
	Documenting toString() and equals()
	Putting in a Preamble and Documenting the Static Constants
	Documenting Arithmetic
	The Complete Code

	Types and Subtypes
	Introduction
	Interfaces
	Pretty Polymorphism

	The API Guide
	Subclasses
	Overriding Methods
	API/Inheritance
	Subinterfaces
	Default Methods

	Functional
	Lambdas
	Lambda Grammar

	Comparators
	Multiple Parents?
	The Deadly Diamond
	A C++ Interlude

	Abstract Classes
	Functional
	Declarative vs. Imperative
	Using map

	Files and Exceptions
	Introduction
	Exceptions
	Throwable
	Throwing
	Checked v. Run-Time
	Path
	Reading a Text File
	Buffering
	Writing a Text File
	Binary/Buffered

