
Chapter 10, Interfaces and Inheritance

John M. Morrison

January 19, 2021

Contents

0 Introduction 2

1 Interfaces 2

1.1 Pretty Polymorphism . 4

2 The API Guide 7

3 Classes and Subtypes 7

4 Overriding Methods 10

5 API/Inheritance 12

6 Extending Interfaces 13

6.1 Default Methods . 15

7 Functional Interfaces 15

8 Lambdas 17

8.1 Lambda Grammar . 18

9 Comparators and Sorting 18

10 Can I have many parents? 22

10.1 The Deadly Diamond . 23

1

1 INTERFACES

10.2 A C++ Interlude . 23

11 Abstract Classes 24

11.1 Declarative vs. Imperative . 30

11.2 Using map . 30

0 Introduction

So far, we have been programming �in the small.� We have created simple classes
that carry out fairly straightforward chores. Our programs have been little one
or two class programs. One class has been the class you are writing, the other
has been jshell or a simple driver class with a main method in it. We created
the BigFraction API, which allows a client programmer using it to do exact,
extended-precision rational arithmetic.

So far, the relationship between classes has been a �has-a relationship.� For
example our BigFraction class has two BigIntegers, representing the numer-
ator and denominator of our fraction object. We often use instances of classes
that we attach to local variables inside of methods. This is a �uses-a� instead of
a �has-a� relationship. Both of these relationships are compositional, since we
are using them to compose, or build, our class. The compositional relationship
is the most important and most common relationship between classes.

Java programs often consist of many classes, which work together to do a
job. Sometimes we will create classes from scratch, sometimes we will aggregate
various types of objects in a class, and sometimes we will customize existing
classes using inheritance. We will also draw upon Java's vast class libraries. We
will also see how to tie related classes together by using interfaces. These are
o�ers to sign a contract whose terms are ful�lled by implementing the methods
speci�ed by the interface. Classes accepting this contract are said to imple-

ment the interface. What is interesting here is that you can create variables
of interface type which can point at objects of any class that implements the
interface.

Once this machinery is in place, we will look at functional interfaces, which
allow us to create function-like objects. These objects are absolutely key to the
building of graphical user interface programs.

1 Interfaces

An interface in Java is an o�er to sign a contract. This is best seen via an
example. We shall create an interface for shapes; for our purposes, a shape
is an object that can compute its diameter, perimeter, and area. Here is our

©2009-2021, John M. Morrison 2

1 INTERFACES

interface. Notice the use of the new keyword interface. You can compile this
and you will get a .class �le.

public interface Shape

{

public double area();

public double perimeter();

public double diameter();

}

For your class to ful�l the terms of the contract, it must implement all of the
methods speci�ed in the Shape interface. Let us make a Rectangle class that
implements the three methods. Notice the �implements Shape� in the header
of the class. This is how we accept the o�er made by the interface.

public class Rectangle implements Shape

{

private double width;

private double height;

public Rectangle(double width, double height)

{

this.width = width;

this.height = height;

}

public Rectangle()

{

this(0,0);

}

public double area()

{

return height*width;

}

public double perimeter()

{

return 2*(height + width);

}

public double diameter()

{

return Math.hypot(height, width);

}

}

Next, we create a Circle class. Both these classes implement Shape.

public class Circle immplements Shape

{

©2009-2021, John M. Morrison 3

1.1 Pretty Polymorphism 1 INTERFACES

private double radius;

public Circle(double radius)

{

this.radius = radius;

}

public Circle()

{

this(0);

}

public double area()

{

return Math.PI*radius*radius;

}

public double perimeter()

{

return 2*Math.PI*radius;

}

public double diameter()

{

return 2*radius;

}

}

1.1 Pretty Polymorphism

Interfaces, like classes, are types. Since Circle and Rectangle implement
Shape, we say that Circle and Rectangle are subtypes of Shape, and that
Shape is a supertype of Circle and Rectangle.

Recall that we have previously said that both varibles and objects have type,
and that variables can only point at objects of their own type. Given the tools
you have had, this is true. We now reveal a little more about type rules. Let us
inspect our class and interface in jshell Note that since we are implementing
Shape we must open it too in the session. This is just what you expect to see.

jshell> /open Shape.java

jshell> /open Rectangle.java

jshell> Rectangle r = new Rectangle(6,8)

r ==> Rectangle@685f4c2e

jshell> r.area()

$5 ==> 48.0

©2009-2021, John M. Morrison 4

1.1 Pretty Polymorphism 1 INTERFACES

jshell> r.diameter()

$6 ==> 10.0

jshell> r.perimeter()

$7 ==> 28.0

Let us continue our session. Now we create a variable of type Shape. Since
Rectangle is a subtype of Shape, a variable of type Shape can point at a
Rectangle.

jshell> /open Circle.java

jshell> Shape s = new Rectangle(6,8);

s ==> Rectangle@2ef1e4fa

jshell> s.diameter()

$10 ==> 10.0

jshell> s.perimeter()

$11 ==> 28.0

jshell> s.area()

$12 ==> 48.0

This works for circles, too.

jshell> s = new Circle(10);

s ==> Circle@46f7f36a

jshell> s.diameter()

$14 ==> 20.0

jshell> s.perimeter()

$15 ==> 62.83185307179586

jshell> s.area()

$16 ==> 314.1592653589793

Here is what you can't do.

jshell> s = new Shape()

| Error:

| Shape is abstract; cannot be instantiated

| s = new Shape()

| ^---------^

©2009-2021, John M. Morrison 5

1.1 Pretty Polymorphism 1 INTERFACES

Clearly this makes no sense because none of the methods speci�ed in the inter-
face has any code! This is a compile-time error. You cannot create instances of
an interface. You can, however, create varibles of interface type. Said variables
can point at any object whose type is a subtype of the interface's type. There
are two principles at work here.

� The Visibility Principle The type of a variable pointing at an object
determines what methods are visible; this is true for variables of class or
interface type. Only methods in the variable's type may be seen. This
is because Java is statically typed; visible methods must be known at
compile time.

� The Delegation Principle If a variable is pointing at an object and a
visible method is called, the object is responsible for executing the method.
Regardless of a variable's type, if a given method in the object is visible,
the object's method will be called. Remember objects are strongly aware
of their type so you can do this.

Programming Exercises

1. Create a class Triangle.java that has as state variables the three sides of
a triangle. To do this, you need Herron's Formula, which goes as follows.
Suppose a triangle has sides of lengths a, b, and c. Then its semiperimeter
s is de�ned as

s =
a+ b+ c

2
.

. The area of the triangle is√
s(s− a)(s− b)(s− c)

If the radicand is negative, you have an �illegal� triangle; in that case
throw an IllegalArgumentException.

2. Make your class Triangle, implement Shape.

3. Extend Triangle to EqualateralTriangle, doing as little work as pos-
sible.

4. Make Triangle implement Polygon.

5. Declare and ArrayList<Shape> and add shapes to it. Implement this
method in a new class's main.

public static double totalArea(ArrayList<Shape> al)

{

return 0;

}

Create an array list of Shapes and test it out.

©2009-2021, John M. Morrison 6

3 CLASSES AND SUBTYPES

2 The API Guide

The API guide documents both classes and interfaces. Open the page for
ArrayList. Near the top of the class, you will see this.

All Implemented Interfaces: Serializable, Cloneable,

Iterable<E>, Collection<E>, List<E>, RandomAccess

Interfaces, like classes, can have type parameters. What you see listed are
all of the standard library interfaces implemented by ArrayList.

Click on the link for List<E>. Near the top you will see this.

All Known Implementing Classes: AbstractList, AbstractSequentialList,

ArrayList, AttributeList, CopyOnWriteArrayList, LinkedList, RoleList,

RoleUnresolvedList, Stack, Vector

This is a complete list of standard library classes implementing this interface.
The Method Summary gives the methods required for a class to implement the
interface. You can see that it is a rather large list of methods.

Now look up the interface Comparable. It speci�es one method, int compareTo(T

o). You will see that there are swarms of classes that implement this interface,
including String and BigInteger. A comparable type consists of sortable data.
Implmenting this interfaces turns on some very valuable sorting tools built into
Java.

3 Classes and Subtypes

You might ask, �Can one class be a subtype of another?� The answer is yes, and
the purpose of this section is to show you how to do it. The mechanism we shall
use is called inheritance. Again, we will illustrate this with an example. It would
seem that a square is a special type of rectangle, so if we create a class Square it
should be a subtype of Rectangle. The extends keyword indicates that Square
is subtype of Rectangle. Automatically, Square gets all of Rectangle's public
methods. However, in this state we do not have an appropriate constructor.

public class Square extends Rectangle

{

}

Note that to compute arae, diameter, and perimeter of a square, we just need
to know its side length. So we we begin by adding a state variable for that.

public class Square extends Rectangle

{

©2009-2021, John M. Morrison 7

3 CLASSES AND SUBTYPES

private double side;

}

Now we need a constructor. Here we introduce the keyword super, which calls
the parent constructor.

public class Square extends Rectangle

{

private double side;

public Square(double side)

{

super(side, side);

this.side = side;

}

}

Warning! If you use the super keyword in a constructor, it must be done in
the �rst line of the constructor's code. Failure to do this is a compile time error.
You should reverse the order of the two lines of code in Square's constructor
and see what this error looks like.

Now, It's time for inspection.

jshell> /open Shape.java

jshell> /open Rectangle.java

jshell> /open Square.java

jshell> Rectangle r = new Square(10);

r ==> Square@2e5d6d97

jshell> r.area()

$5 ==> 100.0

jshell> r.diameter()

$6 ==> 14.142135623730951

jshell> r.perimeter()

$7 ==> 40.0

jshell> Shape s = new Square(10)

s ==> Square@2ef1e4fa

jshell> s.area()

©2009-2021, John M. Morrison 8

3 CLASSES AND SUBTYPES

$9 ==> 100.0

jshell> s.diameter()

$10 ==> 14.142135623730951

jshell> s.perimeter()

$11 ==> 40.0

Notice that a subtype of a subtype is a subtype! Happily, we were able to inherit
all of Rectangle's methods and making Square was easy. Also, note that every
type is a subtype of the root class Object. Here is a way to convince you.

jshell> Object o = "some string"

o ==> "some string"

jshell> Object p = new ArrayList<String>();

p ==> []

jshell> o.toString()

$3 ==> "some string"

jshell> p.toString()

$4 ==> "[]"

An Object has a toString() method, so by the Visibility Principle, an Object

variable can see a toString() method. That is why everything works here.

Now see this.

jshell> o.length()

| Error:

| cannot find symbol

| symbol: method length()

| o.length()

| ^------^

Strings have a length() method, but Objects do not. The error you see
is caused by the fact that an Object variable can only see Object methods;
hence this compile-time error. A similar thing happens when we try to get the
ArrayList's size.

jshell> p.size()

| Error:

| cannot find symbol

| symbol: method size()

| p.size()

| ^----^

©2009-2021, John M. Morrison 9

4 OVERRIDING METHODS

4 Overriding Methods

Let us now put a toString method in our Rectangle and Circle classes. Insert
these into your classes. As it stands now, the Object toString() method is
just the class name followed by an and some hex digits. Add these to your
classes.

public String toString()

{

return String.format("Rectangle(%s, %s)", width, height);

}

public String toString()

{

return String.format("Circle(%s)", radius);

}

jshell> /open Shape.java

jshell> /open Circle.java

jshell> /open Square.java

jshell> /open Rectangle.java

jshell> Shape r = new Rectangle(6,8);

r ==> Rectangle(6.0, 8.0)

jshell> Shape s = new Circle(10)

s ==> Circle(10.0)

jshell> Shape sq = new Square(10)

sq ==> Rectangle(10.0, 10.0)

We have successfully overriden the Object toString() method. When you do
this, it is a smart idea to use the @Override annotation on these methods. Here
is what it looks like on Rectangle.

@Override

public String toString()

{

return String.format("Rectangle(%s, %s)", width, height);

}

and here it is cor Circle.

©2009-2021, John M. Morrison 10

4 OVERRIDING METHODS

public String toString()

{

return String.format("Circle(%s)", radius);

}

Use this annotation whenever overriding the method of an ancestor class. This
causes the compiler to check to see if you are overriding properly. One thing that
can happen is that you use the wrong signature in the method you are intending
to override. In this case, you don't override the method, you overload it with
method name overloading. This can cause unfortunate and hard to diagnose
errors.

One thing we see that is unsatisfactory is the Rectangle toString()method
is not really right thing for Square. We �x this by overriding the parent method.
Add this to your Square class and you will like the result (Run it!).

@Override

public String toString()

{

return String.format("Square(%s)", side);

}

By now you have likely surmised this. If you call a method on a object an
that method is implemented in the object's class, that method is called. If the
method is not present, then the JVM checks for it in the parent class and runs
it if it is present there. This process will continue all the way up to the root
class Object. If it's not found by then, the compiler will issue forth with an
error message.

Programming Exercises

1. Make these classes, Mama.java

public class Mama

{

public int foo()

{

return 42;

}

}

and Baby.java

public class Baby extends Mama

{

public int foo(int x)

{

©2009-2021, John M. Morrison 11

5 API/INHERITANCE

return 2*x;

}

}

2. Compile them.

3. Make this clas

public class Main

{

public static void main(String[] args)

{

Mama m = new Mama();

Baby b = new Baby();

System.out.println(m.foo());

System.out.println(b.foo());

System.out.println(b.foo(10));

}

}

\item Explain what happened.

\item Insert an \texttt{@Override} annotation on \texttt{foo} in

the class \texttt{Baby}. Compile. What happened?

5 Inheritance and the API Guide

Open the page for ArrayList. Right at the top of the page you will see this.

Module java.base

Package java.util

Class ArrayList<E>

java.lang.Object

java.util.AbstractCollection<E>

java.util.AbstractList<E>

java.util.ArrayList<E>

Type Parameters: E - the type of elements in this list

All Implemented Interfaces:

©2009-2021, John M. Morrison 12

6 EXTENDING INTERFACES

Serializable, Cloneable, Iterable<E>, Collection<E>,

List<E>, RandomAccess

Direct Known Subclasses:

AttributeList, RoleList, RoleUnresolvedList

You can see the �family tree� of ArrayList displayed going all the way back
up to Object. You can also see the child classes of ArrayList in the standard
libraries.

Now scroll past the method summary. You will see all of the methods inher-
ited from ancestor classes. The method names are links; click on them to see
their method detail.

Exercises These will help you to learn to use the documentation more e�ec-
tively.

1. From which class does ArrayList inherit its toString() method?

2. From which class does ArrayList inherit its sort() method?

3. From which class does ArrayList inherit its equals() method?

4. From which class does ArrayList inherit its wait() method?

5. Whose add methood is overriden by ArrayList?

6 Extending Interfaces

Interfaces can be extended to require additional methods in implementing classes.
For example, we could extend our Shape interface as follows.

public interface Polygon extends Shape

{

public int numSides();

}

An implementing class for this interface must implement all shape methods and
implement numSides() as well. Let us do this to Rectangle.

public class Rectangle implements Polygon

{

private double width;

private double height;

©2009-2021, John M. Morrison 13

6 EXTENDING INTERFACES

public Rectangle(double width, double height)

{

this.width = width;

this.height = height;

}

public Rectangle()

{

this(0,0);

}

public double area()

{

return height*width;

}

public double perimeter()

{

return 2*(height + width);

}

public double diameter()

{

return Math.hypot(height, width);

}

@Override

public String toString()

{

return String.format("Rectangle(%s, %s)", width, height);

}

public int numSides()

{

return 4;

}

}

Notice that there is no suitable numSides() method for a Circle, so we only
implement Shape in that case. Observe that Square implements Polygon au-
tomatically since implemented interfaces are inherited. There is no need to
override here, since squares and rectangles both have four sides. Also note this;
a variable of Shape type cannot see numSides. For this, you need a variable of
type Polygon.

However, Square will inherit the implementation of Polygon from Rectangle.

Programming Exercises

1. What are the superinterfaces of java.util.Collection<E>?

2. Is ArrayList<E> a subtype of java.util.Collection<E>?

©2009-2021, John M. Morrison 14

6.1 Default Methods 7 FUNCTIONAL INTERFACES

3. Of what interface(s) is List<E> a direct subinterface?

6.1 Default Methods

Beginning in Java8, methods called default methods were allowed to be placed
into interfaces. Here is how the work.

If you implement an interface with a default method, you automatically
�inherit� the default method. However, if you don't like what that method
does, you are free to override it by implementing the method in your class.

If you implement two interfaces that have the same default method, youmust
override that method to avoid the deadly diamond problem. This convention is
enforced by Mean Mr. Compiler.

7 Functional Interfaces

An interface is a functional interface if it speci�es exactly one method. These
interfaces can have default methods as exceptions to this rule but they are the
only exceptions.

We will begin by studying the Consumer family of interfaces. This consists
of four interfaces, all of which live in package java.util.function.

� Consumer<T> This is a generic interface and speci�es a function taking an
object of type T as input and having a void return type.

� IntConsumer This is interface and speci�es a function taking an int as
input and having a void return type.

� LongConsumer This is an interface that speci�es a function taking an Long

as input and having a void return type.

� DoubleConsumer This is an interface that speci�es a function taking an
double as input and having a void return type.

In all cases, the name of the method is accept. If you look in the API Guide,
you will see the default method default Consumer<T> andThen(Consumer<?

super T> after. Since this is a default method, we do not need to worry about
or implement it now. Consumers take a piece of data and do something with it,
such as printing it to stdout.

If you want to implement this, you might at �rst think, �Crud. I have to
make a class that implements the desired consumer, put an accept method in
it, and then create an instancd of of it to use it. Ugh. This is utterly useless,
right?

©2009-2021, John M. Morrison 15

7 FUNCTIONAL INTERFACES

Wrong. A �endlishly clever mechanism of type inference makes using these
interfaces simple. First, realize that you can create a variable of interface type.
Secondly, Java has two means of creating function-like objects. First, let us
introduce the method reference. Bear witness to this snippet of jshell.

jshell> Consumer<String> printMe = System.out::println;

printMe ==> $Lambda$19/0x0000000800b5a440@17f052a3

jshell>

What in tarnation? Why is this allowed? There is a friendly ghost here; it is a
class with no name. We have created an object that is an instance of a nameless
class that is a subtype of Consumer<String>. You now ask, �This is a pretty
new toy, but what can you do with it.?�

It's time for a trip to the ArrayList class. Look at the method detail for
the forEach method.

public void forEach(Consumer<? super E> action)

Description copied from interface: Iterable Performs the given action for
each element of the Iterable until all elements have been processed or the action
throws an exception. Actions are performed in the order of iteration, if that
order is speci�ed. Exceptions thrown by the action are relayed to the caller.
The behavior of this method is unspeci�ed if the action performs side-e�ects
that modify the underlying source of elements, unless an overriding class has
speci�ed a concurrent modi�cation policy.

Speci�ed by:

forEach in interface Iterable<E>

Parameters:

action - The action to be performed for each element

Throws:

NullPointerException - if the speci�ed action is null

You see some terrifying notation here, this <? super E> thing. This just
means that the forEach method takes a Consumer of any type that is a super-
type of the type populating the array list. In particular, our Consumer will take
any Consumer of Strings. Now watch this.

jshell> ArrayList<String> al = new ArrayList<>();

al ==> []

jshell> al.add("aardvark")

$4 ==> true

©2009-2021, John M. Morrison 16

8 LAMBDAS

jshell> al.add("bear");

$5 ==> true

jshell> al.add("carical");

$6 ==> true

jshell> al.forEach(printMe)

aardvark

bear

carical

jshell> al.forEach(System.out::println)

aardvark

bear

carical

What's cool is this printMe variable can store a method. This eliminates the
need for writing a loop to display the items in a list. but wait. . . there is more!

8 Lambdas

Is there a way to customize the function object we want to create that is more
�exible than a method reference? It turns out there is; these objects are called
lambdas, and they are functions without a name. It is easy to make a lambda
that is a Consumer. Here is a very simple example.

jshell> Consumer<String> kappa = e -> System.out.println(e.toUpperCase());

kappa ==> $Lambda$21/0x0000000800b5c440@6433a2

jshell> al.forEach(kappa)

AARDVARK

BEAR

CARICAL

Java is doing a little type inference here; it knows that kappa is a Consumer<String>,
so it infers that the argument e is a String. The expresson on the right-hand
side of the arrow is the return value for the lambda.

The forEach method takes a consumer, which basically is an action, and
performs it on each item in list in index order.

©2009-2021, John M. Morrison 17

8.1 Lambda Grammar 9 COMPARATORS AND SORTING

8.1 Lambda Grammar

Lambdas can come in a variety of forms. We shall present a �eld guide here.
The simplest form looks like this for a function with one argument and a return
value.

x -> expr

The item expr is the return value of the lambda. If you have two arguments,
you must enclose them in parentheses and your lambda looks like this.

(x, y) -> expr

You can enforce a masure of type safety by specifying types for arguments; here
is an example of that.

(String s, int y) -> s.charAt(y)

You can have lambdas with more than one line of code. If you want to return
something from such a lambda, you must do so explicitly. Here is a simple
example that computes the square root of the sum of two numbers.

(int x, int y) ->

{

int z = x > 0? x: -x;

z += y > 0? y: -y;

return z;

}

9 Comparators and Sorting

Often we have a collection of objects that are sortable in various ways and we
would like a mechanism that would conveniently a�ord us this ability. To this
end, we now undertake a brief study of the functional interface Comparator<E>.

public interface Comparator<E>

{

public int compare(E e1, E e2);

}

The design contract works like this. The set of elements E is given an ordering
≤ by this compare method. This ordering works as follows.

e1 ≤ e2 ⇐⇒ compare(e1, e2) ≤ 0.

This ordering should satisfy these properties. For all e1, e2 and e3,

©2009-2021, John M. Morrison 18

9 COMPARATORS AND SORTING

1. If e1.equals(e2), then compare(e1, e2) returns 0.

2. if e1 ≤ e2 and e2 ≤ e3, e1 ≤ e3 (transitivity).

3. (e1 ≤ e2)∨ (e1 ≤ e2) is always true. In other words, any two elements of
E are �related.� Mathematically, this ordering is said to be linear. This is
exactly what we expect for objects to be deemed sortable.

We will do a modest example here, which will allow us to sort an entry from
a concordance by frequency of appearance and secondarily alphabetically, or
alphabetically and then by frequency. We begin by showing the basic class.

public class ConcordanceEntry

{

String word;

int times;

public ConcordanceEntry(String word, int times)

{

this.word = word;

this.times = times;

}

@Override

public String toString()

{

return String.format("%s: %s", word, times);

}

}

Next, we add some two static elements of type Comparator; notice that these
variable are of interface type. We have made them final because they are
exposed to the client.

public class ConcordanceEntry

{

public static final Comparator<ConcordanceEntry> byTimes;

public static final Comparator<ConcordanceEntry> byFrequency

static

{

byTimes = (e1, e2) -> {

if(e1.times != e2.times)

{

return e1.times - e2.times;

}

return e1.word.compareTo(e2.word);

};

byAlpha = (e1, e2) -> {

©2009-2021, John M. Morrison 19

9 COMPARATORS AND SORTING

if(!e1.word.equals(e2.times))

{

return e1.word.compareTo(e2.word);

}

return e1.times - e2.times;

};

}

String word;

int times;

public ConcordanceEntry(String word, int times)

{

this.word = word;

this.times = times;

}

@Override

public String toString()

{

return String.format("%s: %s", word, times);

}

}

What is happening here? How are these two new static members actual objects?

If you visit the API guide, you will see that the interface Comparator is a
functional interface. It speci�es one method,

public int compare(T e1, T e2);

Java is performing type inference here we described in the our discussion
of Consumers. It creates an object of class type that implements the speci�ed
method and it assigns the lambdas we assigned to the static variables as the
compare method of that object. No speci�c named class is ever created.

In pre-8 Java, you would need to implement these using an anonymous inner
class. The code for byAlpha would look like this.

byAlpha = new Comparator<ConcordanceEntry>(){

public int compareTo(Concordance e1,

ConcordanceEntry e2){

if(!e1.times.equals(e2.times))

{

return e1.word.compareTo(e2);

}

return e1.times - e2.times;

};

©2009-2021, John M. Morrison 20

9 COMPARATORS AND SORTING

This new construct of lambdas eliminates a good bit of boilerplate code that
adds no meaning to what we are doing. What we want to pass here is behavior
that is to be carried out by our comparator objects.

So what is the bene�t of this? How do we sort? Let us demonstrate that in a
main method. To implement this method, we introduce the static method sort

in the class java.util.Collections. There are two methods by this name.
We use the sort method which has the signature [List<E>, Comparator<E>];
this method sorts according to our comparator.

public static void main(String[] args)

{

ArrayList<ConcordanceEntry> al =

new ArrayList<>();

al.add(new ConcordanceEntry("cow", 5));

al.add(new ConcordanceEntry("pig", 2));

al.add(new ConcordanceEntry("zebra", 3));

al.add(new ConcordanceEntry("cow", 5));

al.add(new ConcordanceEntry("zebra", 5));

al.add(new ConcordanceEntry("elephant", 6));

al.add(new ConcordanceEntry("eland", 1));

al.add(new ConcordanceEntry("coati", 2));

System.out.println("Unsorted:");

for(ConcordanceEntry e: al)

{

System.out.println(e);

}

Collections.sort(al, byAlpha);

System.out.println("Sorted by word:");

for(ConcordanceEntry e: al)

{

System.out.println(e);

}

System.out.println("Sorted by frequency:");

Collections.sort(al, byTimes);

for(ConcordanceEntry e: al)

{

System.out.println(e);

}

}

Running this, here is the original list.

cow: 5

pig: 2

zebra: 3

©2009-2021, John M. Morrison 21

10 CAN I HAVE MANY PARENTS?

cow: 5

zebra: 5

elephant: 6

eland: 1

coati: 2

Here it is, sorted �rst by word and second by frequency.

Sorted by word:

eland: 1

coati: 2

pig: 2

zebra: 3

cow: 5

cow: 5

zebra: 5

elephant: 6

Now we sort �rst by frequency then by word.

eland: 1

coati: 2

pig: 2

zebra: 3

cow: 5

cow: 5

zebra: 5

elephant: 6

10 Can I have many parents?

One question you might ask is, �Can I implement more than one interface?�
The answer is yes. You do this.

public class ImplementingClass implements Interface1,

Interface2, InterfaceN

{

//code

}

When you do this, your class, or one of its ancestors, must implement the totality
of all of the methods speci�ed in the interface. This fact has an appealing and
useful feel.

©2009-2021, John M. Morrison 22

10.1 The Deadly Diamond 10 CAN I HAVE MANY PARENTS?

10.1 The Deadly Diamond

The next queston you might ask is �Can I have several parent classes?� The
answer here is no. Class designers often speak of the �deadly diamond;� this is
a big shortcoming of multiple inheritance and can cause it to produce strange
behaviors. Imagine you have these four classes, Root, Left, Right and Bottom.
Suppose that Left and Right extend Root and that Bottom were allowed to
extend Left and Right.

Before proceeding, draw yourself a little inheritance diagram. Graphically
these four classes create a cycle in the inheritance graph (which in Java must
be a rooted tree).

Next, imagine that both the Left and Right classes implement a method
f with identical signature and return type. Further, suppose that Bottom does
not have its own version of f; it just decides to inherit it. Now imagine seeing
this code fragment

Bottom b = new Bottom(....);

b.f(...)

There is a sticky problem here: Do we call the f de�ned in the class Left or
Right? If there is a con�ict between these methods, the call is not well�de�ned
in our scheme of inheritance.

10.2 A C++ Interlude

There is a famous example of multiple inheritance at work in C++. There is
a class ios, with children istream and ostream. The familiar iostream class
inherits from both istream and ostream. Since the methods for input and
output do not overlap this works well.

However, the abuse of multiple inheritance in C++ has lead to a lot of very
bad errors in code. Java's creators decided this advantage was outweighed by
the error vulnerabilities of multiple inheritance.

The One-Parent Rule Every class has exactly one parent, except for Object,
which is the root class. When you inherit from a class, you �blow your inheri-
tance.� The ability to inherit is very valuable, so we should only inherit when
it yields signi�cant bene�ts.

©2009-2021, John M. Morrison 23

11 ABSTRACT CLASSES

11 Abstract Classes

Interfaces do some nifty work for us. They a�ord us polymorphism which gives
some desirable �exibility. They allow a project manager to specify names and
signatures of methods for his programmers to develop. You can even insert
default methods into interfaces. You cannot, however have a constructor for an
interface, nor can you give an interface state. Interfaces also enjoy the advanage
that a class can implement several of them, where you are always limited to one
parent class via inheritance.

Sometimes, a group of related classes have a lot in common and you want
to share common state and common code. This is in accordance with the 11th
Commandment: Thou shalt not maintain duplicate code.

Fortunately there is a construct that allows us to �partially implement� a
class, prevent the class from being instantiated, and force the children of the
class to implement methods in a manner similar to that of an interface. Such a
beast is called an abstract class.

In anticipation of the future, let us think again about shapes, but this time
we will create a group of shape classes that can draw themselves in some kind
of graphical environment. A shape that is going to draw itself needs to know
its center, its color, and its size. What is di�erent about various shape types is
how they draw themselves.

For now, we will produce some �toy� classes as a means of demonstration;
in a subsequent chapter we will use the scheme we create here to build a GUI
application that renders shapes on a graphics surface.

Create these classes. Here is Color.java

public class Color

{

private final int hexCode;

public Color(int hexCode)

{

this.hexCode = hexCode;

}

@Override

public String toString()

{

return String.format("Color(#%s)", Integer.toString(hexCode, 16));

}

}

Here is Canvas.java

public class Canvas

©2009-2021, John M. Morrison 24

11 ABSTRACT CLASSES

{

private final Pen pen;

private double width;

private double height;

public Canvas(double width, double height)

{

this.width = width;

this.height = height;

this.pen = new Pen();

}

public Pen getPen()

{

return pen;

}

public double getWidth()

{

return width;

}

public double getHeight()

{

return height;

}

@Override

public String toString()

{

return String.format("Canvas(%s, %s)", width, height);

}

}

Here is Pen.java.

public class Pen

{

private Color color;

private double width;

private void setColor(Color color)

{

this.color = color;

}

private void setWidth(double width)

{

this.width = width;

}

@Override

public String toString()

{

©2009-2021, John M. Morrison 25

11 ABSTRACT CLASSES

return String.format("Pen(color = %s, width = %s)", color, width);

}

}

Now let us make a class for a shape, Shape.java.

public class Shape

{

private double centerX;

private double centerY;

private double color;

private double size

public Shape(double centerX, double centerY, double color, double size)

{

this.centerX = centerX;

this.centerY = centerY;

this.size = size;

}

public void draw(Pen pen)

{

//what do we do here?

}

We see a problem: how do we draw a general Shape? That makes no sense
whatsoever! This is a use case for abstract classes. Java has a keyword abstract

that can be applied to classes and methods. We will leave the draw method
unde�ned just as we would in an interface. To do this, we must declare the
method abstract, like so

public abstract draw(Pen pen);

If we mark any method in a class abstract, we must also mark the class
abstract. Our class now looks like this.

public abstract class Shape

{

private double centerX;

private double centerY;

private double color;

private double size

public Shape(double centerX, double centerY, double color, double size)

{

this.centerX = centerX;

this.centerY = centerY;

this.size = size;

©2009-2021, John M. Morrison 26

11 ABSTRACT CLASSES

}

public abstract void draw(Pen pen);

Here are the rules of the road for abstract classes.

1. If you omit a method's body in a class you must declare that method
abstract.

2. If any method in a class is declared abstract, the class itself must be
declared abstract.

3. You may declare any class you create abstract. By so doing, you prevent
any instances of it from being created; do this if it make no sense for an
instance of your class to be created.

4. You may not create instances of any abstract class.

5. You can create variables of abstract class type. They can point at any
object of any descendant type. Both the visibility and delegation principles
apply.

6. If you extend an abstract class and the child class is not abstract, you
must implement all abstract methods in the abstract class, as well as any
abstract methods in ancestor classes of the abstract class.

7. A class that is not abstract is said to be concrete.

A variable of type Shape can point at any object of a descendant type.
You could now make classes for circles, rectangles, squares, and other graphical
objects. These can each implement the draw method of Shape.

How do I know if a standard library class is abstract? Look in the Java
API guide and �nd the class AbstractList; clearly it will be abstract. Go to
the top of the page. You will see the fully-quali�ed name, the family tree, and
then its implemented interfaces and direct descendants. Just below that you
see this

public abstract class AbstractList<E>

extends AbstractCollection<E>

implements List<E>

The �rst line tells all: See the word abstract?

So, in summary, you can declare any class abstract and instances of it cannot
be created. You can declare methods in a class abstract and they cannot have
a method body. Any child class must override these methods unless, it too, is
abstract. Any class containing an abstract method must be marked abstract.
However, an abstract class is not required to have any abstract methods.

©2009-2021, John M. Morrison 27

11 ABSTRACT CLASSES

sectionA Brief Trip into Functional Programming If you look in the API
guide for ArrayList, you will �nd a mysterious method called stream. This is
among the default methods inherited from the interface java.util.Collection.
Here is its method detail.

default Stream<E> stream()

Returns a sequential Stream with this collection as its source.

This method should be overridden when the spliterator() method cannot return
a spliterator that is IMMUTABLE, CONCURRENT, or late-binding. (See split-
erator() for details.)

Implementation Requirements: The default implementation creates a
sequential Stream from the collection's Spliterator.

Returns: a sequential Stream over the elements in this collection

Since: 1.8

So, what is a Stream<E>? A stream is a read-only Net�ix-like view of a
collection of objects. So for an ArrayList, a stream containing the list's objects
can be created and they are shown in the list's order. Creating a stream creates
a source. Creating the stream causes little or nothing to happen. You must
then take some action on the stream to consume it; consumption of a stream
triggers the actual processing of the data in the list.

Here are some methods that trigger consumption.

� forEach(Consumer<? super E> action This works just as it does on
an array list.

� count() This counts the number of elements in the stream and returns
the count as an integer.

� collect(Collectors.toList()) will collect the contents of the stream
into a list. returns the count as an integer.

Wait a minute! This seems kind of useless! In its present form, admit-
tedly so. However, we have only described the bread in the sandwich (a source
and something that consues), but not the goodness inside. That's where this
becomes a very powerful tool.

The goodies inside consist of transformers that transform and �lter the items
in your collection. Transformers are basically alimenatary canals that �eat� from
streams and subsequently �excrete� a stream. Let us now meet the Predicate

©2009-2021, John M. Morrison 28

11 ABSTRACT CLASSES

family. They reside in package java.util.function. They are all functional
interfaces, so we can use lambdas where called for.

� Predicate<T> Objects of this type can be speci�ed using a lambda whose
argument is of type T and whose return value is a boolean.

� IntPredicateObjects of this type can be speci�ed using a lambda whose
argument is of type int and whose return value is a boolean.

� LongPredicateObjects of this type can be speci�ed using a lambda whose
argument is of type long and whose return value is a boolean.

� DoublePredicate Objects of this type can be speci�ed using a lambda
whose argument is of type double and whose return value is a boolean.

Let us see filter at work.

import java.util.ArrayList;

import java.util.List;

import java.util.stream.Collectors;

public class Filter

{

public static void main(String[] args)

{

ArrayList<String> words = new ArrayList<>();

words.add("aardvark");

words.add("African gazelle");

words.add("ostrich");

words.add("yak");

words.add("zebra");

words.add("vampire bat");

words.add("anaconda");

words.add("tapir");

System.out.println(words);

words.stream()

.filter(s -> s.compareToIgnoreCase("m") < 0)

.forEach(System.out::println);

List<String> out = words.stream()

.filter(s -> s.compareToIgnoreCase("m") < 0)

.collect(Collectors.toList());

System.out.println(out);

}

}

Let us point out some features of this little program. Notice the typograph-
ical convention of aligning �on the dots� where we �rst make a stream from the
ArrayList words. Note that only the last line in the progression ends with a

©2009-2021, John M. Morrison 29

11.1 Declarative vs. Imperative 11 ABSTRACT CLASSES

semicolon. Actually, this is a single line of code, but we do not want great long
lines of code because they become unreadable. Combining a �lter with a foreach
statement eliminates the need for creating a for loop with an if statement inside
for �ltering a list.

11.1 Declarative vs. Imperative

The streams API and the functional programming interface in Java enable a
style of programming that is declarative; to wit, you get exactly what you want
by saying what you want. The line

words.stream()

.filter(s -> s.compareToIgnoreCase("m") < 0)

.forEach(System.out::println);

says, "Make a stream from my list, �lter in the �rst half of the alphabet, and
print the entries out. The imperative form looks like this.

for (String s: words)

{

if(x.compareToIgnoreCase("m") < 0)

{

System.out.println(s);

}

}

Here we are �spoon-feeding� Java every minute step rather than telling it what
we want.

11.2 Using map

This is the bread-and-butter means for making a stream of objects of one type
into a stream of objects as another or the same type. Let's see how we can use
it to get our animal list to print upper-case. Notice we have two transformers
in our stream sandwich.

words.stream()

.filter(s -> s.compareToIgnoreCase("m") < 0)

.map(s -> s.toUpperCase())

.forEach(System.out::println);

The output looks like this.

©2009-2021, John M. Morrison 30

11.2 Using map 11 ABSTRACT CLASSES

AARDVARK

AFRICAN GAZELLE

ANACONDA

To do this imperatively, you might do this.

for (String s: words)

{

if(x.compareToIgnoreCase("m") < 0)

{

System.out.println(s.toUpperCase());

}

}

Map, like its friend �lter, comes in various guises. Here they come.

1. mapToInt This changes an object stream into a stream of (primitive) in-
tegers, an IntStream.

2. mapToDouble This changes an object stream into a stream of (primitive)
doubles, a DoubleStream.

3. mapToLong This changes an object stream into a stream of (primitive)
longs, an LongStream.

©2009-2021, John M. Morrison 31

	Introduction
	Interfaces
	Pretty Polymorphism

	The API Guide
	Classes and Subtypes
	Overriding Methods
	API/Inheritance
	Extending Interfaces
	Default Methods

	Functional Interfaces
	Lambdas
	Lambda Grammar

	Comparators and Sorting
	Can I have many parents?
	The Deadly Diamond
	A C++ Interlude

	Abstract Classes
	Declarative vs. Imperative
	Using map

