
Chapter 11, Files and Exceptions

John M. Morrison

February 13, 2021

Contents

0 Introduction 2

1 Exceptions 2

2 Throwable 4

3 Throwing 6

4 Checked v. Run-Time 7

5 Path 8

6 Reading a Text File 11

7 Bu�ering 15

8 Writing a Text File 18

9 Binary/Bu�ered 20

0 Introduction

This chapter will introduce you interacting with the �le system. At the same
time, it will be necessary to learn about the concept of exception handling. The
reason for this is that when you access a �le and it is not present or you do not
have permission to read it, an exception is generated.

1

1 EXCEPTIONS

These exceptions are beyond programmer and, often user, control. What
you don't want them doing is crashing your program. So you will learn how to
run code with these sorts of hazards and learn how to recover from the problem
at hand gracefully. We will begin this chapter by discussing exceptions.

1 Exceptions

We have already seen these. For example, when creating BigFraction, we threw
an IllegalArgumentException when a client programmer attempted to create
a fraction with a zero denominator. There is little doubt you have encountered
a NullPointerException when you forgot to use new to allocate memory for
an object or a IndexOutOfBounds exception when working with a collection.
Consider this unfortunate code.

import java.util.ArrayList;

public class DumbError

{

private static ArrayList<String> roster;

public static void main(String[] args)

{

roster.add("Doofus McDuff");

System.out.println(roster);

}

}

This code compiles.

$ javac DumbError.java

Now let us run it.

$ java DumbError

Exception in thread "main" java.lang.NullPointerException

at DumbError.main(DumbError.java:8)

$

Doom. You see that a NullPointerException got thrown. The compiler
did not catch the error; an exception is a run-time error. You will see that on
line 8 the o�ending code is

roster.add("Doofus McDuff");

©2009-2021, John M. Morrison 2

1 EXCEPTIONS

This occured because we never did this

roster = new ArrayList<>();

We attempted to call a method on an object pointing to the graveyard
state null. Insert this line we just showed and your program will run without
error. Other exceptions you probably have run across include these. All of these
exceptions are examples of run-time exceptions. Most run-time exceptions are
caused by programmer errors. When you encountered them, you saw that your
program died on the spot and that a stack trace was generated.

There is another species of exception you are about to meet called checked

exceptions. These exceptions occur because of events that are beyond user, or
programmer, control. These sorts of exceptions crop up when handling �les;
being able to handle them is prerequisite to doing any interaction with the �le
system.

Java provides a mechanism called exception handling that provides a parallel
track of return from functions so that you can avoid cluttering the ordinary
execution of code with endless error-handling routines.

Exceptions are objects that are �thrown� by various methods or actions. In
this chapter we will learn how to handle (catch) an exception. By so doing
we allow our program to recover and continue to work. Failure to catch and
exception results in a �ood of nasty text from Java (a so-called �exploding
heart�). Crashes such as these should be extremely rare in production-quality
software. We can use exceptions as a means to protect our program from such
dangers as user abuse and from such misfortunes as crashing whilst attempting
to gain access to an nonexistent or prohibited resource. Many of these hazards
are beyond both user and programmer control.

When you program with �les or with socket connections, the handling of
exceptions will be mandatory; hence the need for this interlude before we begin
handling �les.

Let us now turn to understanding how exceptions �t into Java's class hier-
archy.

Progrmming Exercise

1. What happens if you try to compute 1/0 using integers?

2. What happens if you try to compute 1/0 using doubles?

3. What happens if you make the call Math.sqrt(-1)?

4. What happens if you make the call Math.log(-1)?

©2009-2021, John M. Morrison 3

2 THROWABLE

2 The Throwable Subtree

Go to the Java API guide and pull up the class Exception. The family tree is
is as follows.

java.lang.Object

java.lang.Throwable

java.lang.Exception

and here is an inheritance tree.

The class name Throwable is a bit strange; one would initially think it were
an interface. It is, however, a class. The class java.lang.Exception has a
sibling class java.lang.Error.

When objects of type Error are thrown, it is not reasonable to try to recover.
These things come from problems in the Java Virtual Machine, bad memory
problems, or problems from the underlying OS. We just accept the fact that
they cause program death. Continuing to proceed would just lead to a chain of
ever-escalating problems.

Objects of type Exception are thrown for more minor problems, such as an
attempt to open a non-existent �le for reading, trying to convert an unparseable
string to an integer, or trying to access an entry of a string, array, or array list
that is out of bounds.

Let us show this mechanism at work. For example, if you attempt to execute
the code

int foo = Integer.parseInt("gobbledegook");

you will be rewarded with an exception. To see what happens, create this
program MakeException.java.

public class MakeException

{

©2009-2021, John M. Morrison 4

2 THROWABLE

public static void main(String[] args)

{

int foo = Integer.parseInt("gobbledegook");

}

}

This program compiles happily. You will see that the infraction we have here is
a run-time error, as is any exception.

When you run the program you will see this acrimonious screed.

unix> java MakeException

Exception in thread "main" java.lang.NumberFormatException:

For input string: "gobbledegook"

at java.base/java.lang.NumberFormatException.forInputString(

NumberFormatException.java:68)

at java.base/java.lang.Integer.parseInt(Integer.java:652)

at java.base/java.lang.Integer.parseInt(Integer.java:770)

at MakeException.main(MakeException.java:5)

unix>

The exploding heart you see here shows a stack trace. This shows how the
exception propagates through the various calls the program makes. To learn
what you did wrong, you must look in this list for your �le(s). You will see the
o�ending line here.

at MakeException.main(MakeException.java:5)

You are being told that the scene of the crime is on line 5, smack in the middle
of your main method. The stack trace can yield valuable clues in tracking down
and extirpating a run-time problem such as this one.

We have seen reference to �throw� and �throws� before. Go into the API
guide and bring up the class String. Now scroll down to the method sum-
mary and click on the link for the familiar method charAt(). You will see this
notation.

Throws:

IndexOutOfBoundsException - if the index argument is negative or
not less than the length of the string.

Let us now look up this IndexOutOfBoundsException. The family tree
reveals that this class extends the RuntimeException class. The purpose of

©2009-2021, John M. Morrison 5

4 CHECKED V. RUN-TIME

this exception is to terminate the execution of the program since you are in
an error state. We can, however, run code in response to the occurrence of an
exception, so our program does not crash.

3 Throwing an Exception

You can throw exceptions when something is about to go wrong. For example
in our BigFraction class, we threw an exception if a denominator of zero was
passed. Here it is.

public BigFraction(BigInteger num, BigInteger denom)

{

if(denom.equals(BigInteger.ZERO)

{

throw new IllegalArgumentException();

}

(rest of constructor)

}

It is best, if at all possible, to use a standard library exception. You can cre-
ate your own exceptions by inheriting from any class in the Exception subtree.
If you inherit from RuntimeException, the caller does not have to handle the
exception as shown in the next section.

4 Checked and Run-Time Exceptions

There are two types of exceptions that exist: runtime exceptions and all others,
which are called checked exceptions. How do you know if an exception is a
RuntimeException? Just look up its family tree and see if it is a descendant
of RuntimeException. So far in our study of Java, we have only seen runtime
exceptions. Here is the throwable subtree with RuntimeException added.

©2009-2021, John M. Morrison 6

5 PATH

Checked exceptions, on the other hand, are usually caused by situations
beyond programmer, or even end-user control. Suppose a user tries to get a
program to open a �le that does not exist, or a �le for which he lacks appropriate
permissions. Another similar situation is that of attempting to create a socket,
or a connection to another computer. The host computer may not allow such
connections, it could be down, or it could even be nonexistent. These situations
are not necessarily the user's or programmer's fault.

Checked exceptions must be handled ; this process entails creating code to
tell your program what to do in the face of these exceptions being thrown. It is
entirely optional to handle a runtime exception.

Sometimes a runtime exception will be caused by user error; in these cases
it is appropriate to use exception handling to �x the problem. For example if a
user is supposed to enter a number into a TextField the hapless fool enters a
string that is not numeric, your program might try to use Integer.parseInt

to convert it into an integer. Here we see a problem created by an end-user.
This user should be protected and this error should be handled gracefully so
that (bumbling) user can go about his business. You always want to protect the
end-user from exceptions if it is at all feasible or reasonable. Remember: Never
reward a paying customer with death. It's bad for business. Now let us erect
some sca�olding for handling �les, as we will introduce the idea of handling
exceptions in the context of �leIO.

5 The Path to Perdition

We begin with the interface java.nio.files.Path. It has a list of methods
that is speci�es for handling locations in your �le system. Said locations might
or might not exist. Since Path is an interface, you cannot create instances of a
Path using new. However, this interface comes equipped with a static method
of Here is the method detail.

static Path of(String first, String... more)

©2009-2021, John M. Morrison 7

5 PATH

Returns a Path by converting path string, or a sequence of strings that when
joined form a path string. If more does not specify any elements then the value
of the �rst parameter is the path string to convert. If more speci�es one or
more elements then each non-empty string, including �rst, is considered to be
a sequence of name elements and is joined to form a path string. The details
as to how the Strings are joined is provider speci�c but typically they will be
joined using the name-separator as the separator. For example, if the name
separator is "/" and getPath("/foo","bar","gus") is invoked, then the path
string "/foo/bar/gus" is converted to a Path. A Path representing an empty
path is returned if �rst is the empty string and more does not contain any
non-empty strings.

The Path is obtained by invoking the getPath method of the default FileSystem.

Note that while this method is very convenient, using it will imply an assumed
reference to the default FileSystem and limit the utility of the calling code.
Hence it should not be used in library code intended for �exible reuse. A more
�exible alternative is to use an existing Path instance as an anchor, such as:

Path dir = ...

Path path = dir.resolve("file");

Parameters:
first - the path string or initial part of the path string
more - additional strings to be joined to form the path string
Returns:
the resulting Path Throws:
InvalidPathException - if the path string cannot be converted to a Path
Since:
11
See Also:
FileSystem.getPath(java.lang.String, java.lang.String...)

Note that the class Pathsmerely implement the ofmethod of this class. The
Paths is probably a dead-end class, so you should use Path.of in preference to
its get method. It will be the workhorse for us in this chapter.

Let us now take a tour of Path methods. Begin by creating a directory
named zoo with these contents

(base) MAC:Sat Nov 28:10:33:s1> ls -Rl zoo

total 0

-rw-r--r-- 1 morrison staff 0B Nov 27 16:03 capybara

drwxr-xr-x 6 morrison staff 192B Nov 28 10:32 cats

-rw-r--r-- 1 morrison staff 0B Nov 27 16:03 dingo

-rw-r--r-- 1 morrison staff 0B Nov 27 16:03 eland

drwxr-xr-x 6 morrison staff 192B Nov 28 10:32 reptiles

©2009-2021, John M. Morrison 8

5 PATH

zoo/cats:

total 0

-rw-r--r-- 1 morrison staff 0B Nov 27 16:03 bobcat

-rw-r--r-- 1 morrison staff 0B Nov 28 10:32 cheetah

-rw-r--r-- 1 morrison staff 0B Nov 28 10:32 lion

-rw-r--r-- 1 morrison staff 0B Nov 28 10:32 tiger

zoo/reptiles:

total 0

-rw-r--r-- 1 morrison staff 0B Nov 27 16:03 alligator

-rw-r--r-- 1 morrison staff 0B Nov 28 10:32 anaconda

-rw-r--r-- 1 morrison staff 0B Nov 28 10:32 cobra

-rw-r--r-- 1 morrison staff 0B Nov 28 10:32 iguana

Enter this directory and �re up jshell. We begin by getting our current
working directory as a Path and determining its absolute position in our �le
system. Note the use of isAbsolute to tell if a path is absolute or relative.

jshell> Path zoo = Path.of(".")

zoo ==> .

jshell> Path absZoo = zoo.toAbsolutePath()

absZoo ==> /Users/morrison/book/S1/zoo/.

jshell> zoo.isAbsolute()

$3 ==> false

jshell> absZoo.isAbsolute()

$4 ==> true

Here is a look up the �le family tree.

jshell> absZoo.getParent()

$8 ==> /Users/morrison/book/S1/zoo

jshell> absZoo.getParent().getParent()

$9 ==> /Users/morrison/book/S1

The result is disappointing when we do this on zoo, but we sho a hackish
workaround here.

jshell> zoo.getParent()

$10 ==> null

©2009-2021, John M. Morrison 9

5 PATH

jshell> zoo.toAbsolutePath().getParent().getFileName()

$11 ==> zoo

OPC Note In older OPC, you will see reference to the class java.io.File;
this is the predecessor to the modern Path interface, which you should prefer.
However, you can convert a Path object to a File by calling the toFile method
on it. The older File class has a toPath method to convert from File to Path.
You should prefer the Path interface when writing new code.

java.nio.�le.Paths This static service class appears to be an abortive e�ort
and you should avoid it. Construct new paths using the static of method.

Interacting with the File System The next class for you to know about
is Files; this is the workhorse class for �leIO. The Path interface and Files

jointly cover all of the territory previously covered by the old java.io.File

class and a whole lot more.

That name Files should give you a hint. You have seen the pluralized class
name before in java.util.Collections and java.util.Arrays.

Alex, give me �common bonds� for $800. Alex replies, �Here is the answer:
this is the common bond between these three classes.�

The smart contestant says, �What is being a static service class?� Bingo,
add $800 to that contestant's score.

To move around in our little �le tree and to manipulate it, we will use Files.
This is a static service class that gives us access to the �le system, as well as an
array of other useful services..

Boola! Boola! The Files class provides some useful predicates to determine
�le attributes. As you might expect, their names begin with is. These four
check out a �le's type.

� isDirectory(Path path) This returns true if the path points at a di-
rectory.

� isRegularFile(Path path) This returns true if the path points at a at
a regular �le.

� isHidden(Path path) This returns true if the path points at a a hidden
(in UNIX a dot�le) �le.

� isSymbolicLink(Path path) This returns true if the path points at a
at a symbolic link (an alias for a �le or a directory).

©2009-2021, John M. Morrison 10

6 READING A TEXT FILE

These tell you about �le permissions.

� isReadable(Path path) This returns true if the path points at a �le you
have read permissions for.

� isWritable(Path path) This returns true if the path points a �le you
have write permissions for.

� isExecutable(Path path) This returns true if the path points a �le you
have execute permissions for.

� isDirectory(Path path) This returns true if the path points

These two will tell you basic �identity� information.

� exists(Path path, LinkOption... option) This returns true if the
path points at a �le that exists. The second argument is entirely optional
and we won't bother with it.

� isSameFile(Path path1, Path path2) This returns true if the both
paths point at the same �le.

You can also create and delete �les and directories.

� createFile(Path path, FileAttribute<?>... option) This returns
true if the path points at a �le that exists. The second argument is en-
tirely optional, and allows you to specify �le permissions.

� delete(Path path) This deletes the �le at the speci�ed path. point at
the same �le.

6 Reading a Text File

Open the API page for the class java.nio.Files. We are going to write a
class named Cat.java which accepts a string as a command-line argument that
(should) be a name of an existing �le and which puts the �le to stdout. For the
sake of simplicity, we will do this all in the main method. Now get the method
detail for the static method readAllLines. This method reads the lines of the
�le into a List<String>. Let us attempt this.

import java.util.List;

import java.nio.file.Files;

import java.nio.file.Path;

public class Cat

{

public static void main(String[] args)

{

©2009-2021, John M. Morrison 11

6 READING A TEXT FILE

Path path = Path.of(args[0]);

List<String> fileContents = Files.readAllLines(path);

for(String s: fileContents)

{

System.out.print(s);

}

}

}

Now we compile and see this.

unix> javac Cat.java

Cat.java:9: error: unreported exception IOException;

must be caught or declared to be thrown

List<String> fileContents = Files.readAllLines(path);

^

1 error

Uh oh. Because an IOException is a checked exception, action on our part is
required. We begin by enclosing our �dangerous code� in a try block. This must
be followed by a catch block for an IOException. Note that a new import is
needed.

import java.util.List;

import java.nio.file.Files;

import java.nio.file.Path;

import java.io.IOException;

public class Cat

{

public static void main(String[] args)

{

try

{

Path path = Path.of(args[0]);

List<String> fileContents = Files.readAllLines(path);

for(String s: fileContents)

{

System.out.print(s);

}

}

catch(IOException ex)

{

ex.printStackTrace();

}

}

}

©2009-2021, John M. Morrison 12

6 READING A TEXT FILE

Now, create a text �le to run this on.

This is a test

it is only a test.

Let's see if this works.

Let's run it.

unix> java Cat.java test.txt

This is a testit is only a test.Let's see if this works.unix>

Evidently all of the newlines get amputated. Let's put 'em back; just change
System.out.print to System.out.println.

unix> java Cat.java test.txt

This is a test

it is only a test.

Let's see if this works.

Et Voila!

Can we shorten this code? Yes, if we avail ourselves of the forEach method
for lists.

import java.util.List;

import java.nio.file.Files;

import java.nio.file.Path;

import java.io.IOException;

public class Cat

{

public static void main(String[] args)

{

try

{

Path path = Path.of(args[0]);

List<String> fileContents = Files.readAllLines(path);

fileContents.forEach(System.out::println);

}

catch(IOException ex)

{

ex.printStackTrace();

}

}

}

We are using a method reference in the forEach method.

©2009-2021, John M. Morrison 13

6 READING A TEXT FILE

Next, for a little perverse fun, let us run our program on a nonexistent �le
heffalump.txt. Fury is unleashed by the JVM.

base) MAC:Tue Dec 22:15:57:s9> java Cat.java heffalump.txt

java.nio.file.NoSuchFileException: heffalump.txt

at java.base/sun.nio.fs.UnixException.translateToIOException(UnixException.java:92)

at java.base/sun.nio.fs.UnixException.rethrowAsIOException(UnixException.java:106)

at java.base/sun.nio.fs.UnixException.rethrowAsIOException(UnixException.java:111)

at java.base/sun.nio.fs.UnixFileSystemProvider.newByteChannel(UnixFileSystemProvider.java:218)

at java.base/java.nio.file.Files.newByteChannel(Files.java:375)

at java.base/java.nio.file.Files.newByteChannel(Files.java:426)

at java.base/java.nio.file.spi.FileSystemProvider.newInputStream(FileSystemProvider.java:420)

at java.base/java.nio.file.Files.newInputStream(Files.java:160)

at java.base/java.nio.file.Files.newBufferedReader(Files.java:2916)

at java.base/java.nio.file.Files.readAllLines(Files.java:3396)

at java.base/java.nio.file.Files.readAllLines(Files.java:3436)

at Cat.main(Cat.java:12)

at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:64)

at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)

at java.base/java.lang.reflect.Method.invoke(Method.java:564)

at jdk.compiler/com.sun.tools.javac.launcher.Main.execute(Main.java:415)

at jdk.compiler/com.sun.tools.javac.launcher.Main.run(Main.java:192)

at jdk.compiler/com.sun.tools.javac.launcher.Main.main(Main.java:132)

Scan through this wreckage; it reveals that the source of the exception was on
line 12 in our �le. Let's handle it and cut down on the Wagnerian drama.

import java.util.List;

import java.nio.file.Files;

import java.nio.file.Path;

import java.nio.file.NoSuchFileException;

import java.io.IOException;

public class Cat

{

public static void main(String[] args)

{

try

{

Path path = Path.of(args[0]);

List<String> fileContents = Files.readAllLines(path);

fileContents.forEach(System.out::println);

}

catch(NoSuchFileException ex)

{

System.err.printf("File %s does not exist.\n", args[0]);

©2009-2021, John M. Morrison 14

7 BUFFERING

}

catch(IOException ex)

{

ex.printStackTrace();

}

}

}

This is better.

unix> java Cat heffalump.txt

File heffalump.txt does not exist.

This reveals something else. We can have several catch blocks. Order is im-
portant. Put the most speci�c exceptions (lower on the inheritance tree) at the
top and the most generals ones at the bottom. Only one catch block will ever
by executed. Here is one other minor tweak. Dum-dum user just might forget
a command-line argument. Just at this at the top of your main method before
the try block.

if(args.length == 0)

{

System.err.println("A command-line argument is required");

}

7 Dealing with Dyspepsia

What if we want to process a humongous �le? Reading it all at once could be a
huge memory hog. Can we be more e�cient? Happily the tools are at hand. We
will bring newBufferedReader to bear on the problem. During this exercise,
you will learn about try with resources that will automatically close any �le you
open. Let us rewrite Cat.java using this method.

import java.util.List;

import java.nio.file.Files;

import java.nio.file.Path;

import java.nio.file.NoSuchFileException;

import java.io.BufferedReader;

import java.io.IOException;

public class Cat

{

public static void main(String[] args)

{

if(args.length == 0)

©2009-2021, John M. Morrison 15

7 BUFFERING

{

System.err.println("A command-line argument is required");

}

try

{

Path path = Path.of(args[0]);

BufferedReader br = Files.newBufferedReader(path);

String line = "";

while((line = br.readLine()) != null)

{

System.out.println(line);

}

br.close();

}

catch(NoSuchFileException ex)

{

System.err.printf("File %s does not exist.\n", args[0]);

}

catch(IOException ex)

{

ex.printStackTrace();

}

}

}

So what has happened? A BufferedReader creates a connection to a �le.
Hidden from you is the bu�er, which stores a chunk of the �le in your program's
memory. Usually this chunk is of size 4K. In the beginning the BufferedReader
grabs a chunk of text. We then have it reading the �le a line at at time. When
the bu�er is empty, another chunk of �le is hoovered into the bu�er. So, if we
are reading a large �le, our memory footprint is far smaller than if we got the
whole �le at once using readAllLines. Also, we are not pestering the operating
system with a zillion requests for chunks of the �le.

A problem remains. If an exception occurs, the �le might not close. There
is a smart way to deal with this called try with resources. Let us see what that
looks like.

import java.util.List;

import java.nio.file.Files;

import java.nio.file.Path;

import java.nio.file.NoSuchFileException;

import java.io.BufferedReader;

import java.io.IOException;

public class Cat

{

©2009-2021, John M. Morrison 16

7 BUFFERING

public static void main(String[] args)

{

if(args.length == 0)

{

System.err.println("A command-line argument is required");

}

Path path = Path.of(args[0]);

try

(

BufferedReader br = Files.newBufferedReader(path);

)

{

String line = "";

while((line = br.readLine()) != null)

{

System.out.println(line);

}

}

catch(NoSuchFileException ex)

{

System.err.printf("File %s does not exist.\n", args[0]);

}

catch(IOException ex)

{

ex.printStackTrace();

}

}

}

Notice we moved the declaration of path so it is in scope throughout main. We
no longer need to close the �le, because try with resources automatically does
this. As a result, a great deal of bother you will never see will never take place.

How do I know if I can use try with resources? Just check to see if
the class you are using implements java.lang.AutoCloseable. This interface
speci�es a single method, public void close(). Look at the API page; a lot
of things implement it. If you write some kind of �le-handling class, you should
implement it, too.

That while loop looks so awful Pssst... Here is a little magic. Ditch this
code

String line = "";

while((line = br.readLine()) != null)

©2009-2021, John M. Morrison 17

8 WRITING A TEXT FILE

{

System.out.println(line);

}

for this:

br.lines()

.forEach(System.out::println);

Ooh, sweet. How does that work? In brief, the call br.lines() gives you a
Net�ix-like streaming view of the �le. The lines come in a stream. The forEach
method applies System.out.println to each line in the stream. You have had
a preview of the Streams API which will be covered in more detail later. It
is a stupendously powerful appratus that will make your code shorter, more
readable, and more expressive.

8 Writing a Text File

One might just think that if there is a BufferedReader that there could be a
BufferedWriter. Correct. And now that we know about exception handling,
writing to a �le should be a fairly simple process. Let's do it. Here an idea.
Let's generate an HTML trig table from 0 to 90 degrees for sine and cosine.

What do we need? We will write a function that creates the table rows, and
functions that compute sine and cosine in degrees.

import java.nio.file.Files;

import java.nio.file.Path;

import java.io.BufferedWriter;

import java.io.IOException;

public class Triggie

{

private static final double FACTOR = Math.PI/180;

public static void main(String[] args)

{

}

private static double sinDeg(int x)

{

return Math.sin(FACTOR*x);

}

private static double cosDeg(int x)

{

return Math.cos(FACTOR*x);

}

©2009-2021, John M. Morrison 18

9 BINARY/BUFFERED

private static String makeRow(int x)

{

return String.format("<tr><td>%d</td><td>%.4f</td><td>%4f</td></tr>\n",

x, sinDeg(x), cosDeg(x));

}

}

Now we write the main method. We will use try with resources.

public static void main(String[] args)

{

Path path = Path.of("trigTable.html");

try(BufferedWriter bw = Files.newBufferedWriter(path))

{

bw.write("<table>\n<tr><th>x</th><th>sin(x)</th><th>cos(x)</th></tr>\n");

for(int k = 0; k <= 90; k++)

{

bw.write(makeRow(k));

}

br.write("<table>\n");

}

catch(IOException ex)

{

ex.printStackTrace();

}

}

Note the pleasing parallelism here.

9 Bu�ered IO with Binary Files

Here we introduce some new classes in java.io. These manage unbu�ered and
bu�ered byte streams.

� java.io.InputStream

� java.io.OutputStream

� java.io.BufferedInputStream

� java.io.BufferedOutputStream

We will create a program that copies �les containing raw bytes. In our example,
we will use an image �le. This has been tested on a 300 megabyte video �le and
did the job pleasingly quickly. Let's get started with some basic stu�, inserting
the needed imports and wrangling the command-line arguments.

©2009-2021, John M. Morrison 19

9 BINARY/BUFFERED

import java.nio.file.Files;

import java.nio.file.Path;

import java.io.IOException;

import java.io.InputStream;

import java.io.OutputStream;

import java.io.BufferedInputStream;

import java.io.BufferedOutputStream;

import java.nio.file.NoSuchFileException;

public class BinaryCopy

{

public static void main(String[] args)

{

String donor = args[0];

String recipient = args[1];

if(args.length < 2)

{

System.err.println("Two command-line arguments are needed");

}

Path inFile = Path.of(donor);

Path outFile = Path.of(recipient);

}

}

Now let us proceed to creating the try with resources header.

try

(

InputStream in = new

BufferedInputStream(Files.newInputStream(inFile));

OutputStream out =

new BufferedOutputStream(Files.newOutputStream(outFile));

)

We now append the usual catch blocks.

try

(

InputStream in = new

BufferedInputStream(Files.newInputStream(inFile));

OutputStream out =

new BufferedOutputStream(Files.newOutputStream(outFile));

)

{

}

catch(NoSuchFileException ex)

{

©2009-2021, John M. Morrison 20

9 BINARY/BUFFERED

System.err.printf("File %s not found.\n", donor);

}

catch(IOException ex)

{

ex.printStackTrace();

}

The coup d'grace is stunningly simple.

try

(

InputStream in = new

BufferedInputStream(Files.newInputStream(inFile));

OutputStream out = new

BufferedOutputStream(Files.newOutputStream(outFile));

)

{

byte[] bytes = Files.readAllBytes(inFile);

out.write(bytes);

}

catch(NoSuchFileException ex)

{

System.err.printf("File %s not found.\n", donor);

}

catch(IOException ex)

{

ex.printStackTrace();

}

The docs recommend against this. However it will copy a �le containing several
hundred megabytes with pleasing dispatch.

©2009-2021, John M. Morrison 21

	Introduction
	Exceptions
	Throwable
	Throwing
	Checked v. Run-Time
	Path
	Reading a Text File
	Buffering
	Writing a Text File
	Binary/Buffered

