
Chapter 9, BigFraction

John M. Morrison

January 19, 2021

Contents

0 Case Study: An Extended-Precision Fraction Class 2

0.1 A Brief Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1 Starting BigFraction.py 3

1.1 Reducing Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Speeding things up . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Finishing __init__ . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Starting BigFraction.java 8

3 Arithmetic 12

3.1 Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Subtraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.5 Pow! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Adding Static Constants 17

5 Documenting Your Code 18

5.1 Documenting BigFraction.py . . . . . . . . . . . . . . . . . . . 18

5.2 Documenting BigFraction.java . . . . . . . . . . . . . . . . . . 21

5.3 Triggering Javadoc . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1



0 CASE STUDY: AN EXTENDED-PRECISION FRACTION CLASS

5.4 Documenting toString() and equals() . . . . . . . . . . . . . . 23

5.5 Putting in a Preamble and Documenting the Static Constants . . 24

5.6 Documenting Arithmetic . . . . . . . . . . . . . . . . . . . . . . . 25

5.7 The Complete Code . . . . . . . . . . . . . . . . . . . . . . . . . 27

0 Case Study: An Extended-Precision Fraction

Class

We have achieved several goals so far, the most important of which are under-
standing what make up a Java and Python classes and understanding the core
both languages so as to be Turing-complete.

To tie everything together, we will do a case study of creating two classes
class BigFraction.java and BigFraction.py, which will impleement extended-
precison rational arithmetic in both languagess. This class will have a profes-
sional appearance and will have full documentation.

0.1 A Brief Orientation

Before we begin let us remind ourselves of some basic mathematical facts and
provide a rationale for what we are about to do. We are all familiar with the
natural (counting) numbers

N = {1, 2, 3, 4, .....}.

We can also start counting at zero because we are C family language geeks with

N0 = {0, 1, 2, 3, .....}.

The set of all integers (with signs) is often denoted by Z. Why the letter Z?
This comes from the German word zahlen, meaning �to count.�

The BigInteger class in Java and the int type in Python create computa-
tional environments for computing in Z without danger of over�ow, unless you
really go bananas.

The rational numbers consist of all numbers that can be represented as a
ratio of integers; the symbol used for them is Q. The `Q' is for �quotient.� So,

Q = {m/n : m ∈ Z, n ∈ N, n 6= 0}.

The BigFraction classes will create an environment for computing in Q
similar to that which BigInteger provides for Z.

©2009-2021, John M. Morrison 2



1 STARTING BIGFRACTION.PY

1 Starting BigFraction.py

We begin by creating a class BigFraction in a �le BigFraction.py.

class BigFraction:

pass

What does a fraction need to know? It needs to know its numerator and de-
nominator.

class BigFraction:

def __init__(self, num, denom):

this.num = num

this.denom = denom

The other thing we should do is to give our class a string representatin.

class BigFraction:

def __init__(self, num, denom):

this.num = num

this.denom = denom

def __str__(self):

return f"{self.num}/{self.denom}"

def __repr__(self):

return f"BigFraction({self.num}, {self.denom})"

Now let's test our new class in the interactive shell.

>>> from BigFraction import BigFraction

>>> b = BigFraction(1,2)

>>> b

BigFraction(1, 2)

>>> print(b)

1/2

>>> b = BigFraction(5,10)

>>> b

BigFraction(5, 10)

>>> print(b)

5/10

>>> b = BigFraction(-2,-4)

>>> print(b)

-2/-4

Uh oh. We can foresee problems here. Fractions should be stored in a fully
reduced form. And, let's get the negative upstairs; this will turn out to be very

©2009-2021, John M. Morrison 3



1.1 Reducing Fractions 1 STARTING BIGFRACTION.PY

bene�cial down the road. So, we will put our fractions in a canonical form: fully
reduced and any negative in the numerator.

Also, let us raise an error if the client programmer attempts to create a
fraction with a zero denomintor.

1.1 Reducing Fractions

Ah, we are now back in the Miss Wormwood days of elementary school. She
showed you a fraction such as

32

12

and you are supposed to reduce it. Well, both the top and bottom are even, so

32

12
=

16

6
.

Hey we can do that again, and the result is

16

6
=

8

3
.

Since 8 and 3 have no common factors, we are done.

This, however, is not going to cut the computational mustard. What if you
have a fraction with 1000 digits on the top and bottom? Are you going to hunt
for the common factors one by one and keep reducing? That would be a joyless
slog to code as well as being baronially wasteful. We need a better way.

Suppose that a and b are integers that are not both zero. We de�ne the
greatest common divisor of a and b to be the largest positive integer dividing
both evenly. Such a thing exsts, because 1 is a divisor of every integer. We will
denote this function by gcd(a, b). The two quantities a/ gcd(a, b) and b/ gcd(a, b)
are both integers. Also, they have no other common factor than 1. Now you see
the raison d'etre for our interest in the greatest common divisor. If we have
a fraction and we compute the greatest common divisor of its numerator and
denominator, the result is a fully-reduced fraction.

Being avid Pythonista, we might take this approach. Suppose we have a
and b. We could start at 2 and see if 2 is a common divisor of a and b. If it is,
we can keep track of that fact in a variable. We then go to 3 and repeat this
procedure. We stop when we get to the smaller of a and b. This is a pretty
hackish approach, but let's give it a whirl.

Programming Exercise Implement this function in Python. For what size
of numbers does this really begin to bog down?

Where's the catch? Again, consider the case of a couple of integers, each
having hundreds of digits. This method could take an eternity. It's time for a

©2009-2021, John M. Morrison 4



1.2 Speeding things up 1 STARTING BIGFRACTION.PY

little math! We are going to state and prove a simple little theorem that is the
key to a fast gcd calculation.

First, let's talk a little bit about divisibility. We will use the notation a | b
to indicate that a divides b evenly; equivalently b%a = 0. This means that there
is some integer q so that aq = b.

Suppose that d is a common divisor of a and b You can choose integers s
and t so that ds = a and dt = b. Now suppose x and y are any integers. Then

ax+ by = ads+ bty = d(as+ by);

since as+ by is an integer, we have d|as+ by. The denouement: Any common
divisor of a and b will also be a divisor of ax+ by for any integers x and y.

Let's call such things as ax+ by integer combinations of a and b. What we
have show is that if d is a common divisor of a and b, it is a divisor of any
integer combination of a and b.

Theorem. Suppose that a, b, q, and r are integers and that b = aq+ r. Then
gcd(b, a) = gcd(a, r).

Proof. Suppose that d is a common divisor of a and r. Since b = aq + r, we
have represented b as an integer combination of a and r. Therefore d | b. We
conclude that d is a common divisor of a and b. We have just shown that every
common divisor of a and r is a common divisor of a and b.

Now suppose d is common divisor of a and b. Since b = aq + r, r = b− aq.
The integer r is an integer combination of a and b; therefore d | r. We have
just shown that d is a common divisor of a and r. We have shown that every
common divisor of a and b is a common divisor of a and r.

This tells us that a and b have exactly the same common divisors as a and
r. We conclude gcd(b, a) = gcd(a, r).

1.2 Speeding things up

One thing we know is that for any integer b and and non-zero integer a,

b = a ∗ (b//a) + b%a.

Here is another useful fact, gcd(a, 0) = |a|, provided that a 6= 0. Let's compute
gcd(1048576, 7776). We will use Python as our calculator. You should try this
on another pair of big numbers.

>>> a = 7776

>>> b = 1048576

©2009-2021, John M. Morrison 5



1.2 Speeding things up 1 STARTING BIGFRACTION.PY

>>> remainder = 1048576 % 7776

>>> remainder

6592

>>> b, a = a, remainder

>>> b

7776

>>> a

6592

>>> remainder = b%a

>>> b, a = a, remainder

>>> a

1184

>>> b

6592

>>> remainder = b%a

>>> b, a = a, remainder

>>> b

1184

>>> a

672

>>> remainder = b%a

>>> b, a = a, remainder

>>> b

672

>>> a

512

>>> remainder = b%a

>>> b, a = a, remainder

>>> b

512

>>> a

160

>>> remainder = b%a

>>> b, a = a, remainder

>>> b

160

>>> a

32

>>> remainder = b%a

>>> b, a = a, remainder

>>> a

0

>>> b

32

©2009-2021, John M. Morrison 6



1.3 Finishing __init__ 1 STARTING BIGFRACTION.PY

Thhis gives us a chain of equalities.

gcd(1048576, 7776) = gcd(7776, 6592) = · · · = gcd(32, 0).

Since gcd(32, 0) = 32, we are done. It seems we have a loop here

while a > 0:

b, a = a, b%a

Changing signs does not change the gcd; to wit gcd(±a,±b) = gcd(a, b), so we
can strip o� any negative signs. Also, let's raise an error if some reckless client
tries to compute gcd(0, 0). Now for the coup d'grace.

def gcd(a,b):

if a == 0 and b == 0:

raise ValueError

if a < 0:

a = -a

if b < 0:

b = -b

while a > 0:

b, a = a, b%a

return b

Place this in a �le named number_theory.py. Import it and test it. Ooh, it's
quick.

>>> from number_theory import gcd

>>> gcd(1048576, 7776)

32

>>> gcd(323980490348, 32980398423123456)

4

This algorithm is called Euclid's Algorithm. The slowest it can work is the case
of two adjacent �bonacci numbers. Since these grow exponentially, the number
of iterations is at worst proportional to log(n), where n is the larger of the two
numbers.

1.3 Finishing __init__

Now let us write this method. We will take the addional step of kicking any
negative upstars. We will rase an error if a zero denominator gets passed in.

def __init__(self, num, denom)

if denom == 0:

©2009-2021, John M. Morrison 7



2 STARTING BIGFRACTION.JAVA

raise ValueError

if denom < 0:

num = -num

denom = -denom

d = gcd(num, denom)

self.num = num//d

self.denom = denom//d

This method has the desirable property of storing a fraction in the canonical
form we speci�ed. The fraction is stored fully reduced. Any negative is in the
denominator. You will see that this design decision will pay dividendds down
the road. The care we took here will bene�t us very soon. Let us lay out the
whole class that we have so far.

from number_theory import gcd

class BigFraction:

def __init__(self, num, denom):

if denom == 0:

raise ValueError

if denom < 0:

num = -num

denom = -denom

d = gcd(num, denom)

self.num = num//d

self.denom = denom//d

def __str__(self):

return f"{self.num}/{self.denom}"

def __repr__(self):

return f"BigFraction({self.num}, {self.denom})"

>>> from BigFraction import BigFraction

>>> b = BigFraction(7776, 1048576)

>>> b

BigFraction(243, 32768)

>>> print(b)

243/32768

2 Starting BigFraction.java

In this section, we will build a big fraction class with the same capabilities as
the Python class. Note that we will be using BigIntegers as numerator and
denominator. So, let's get started. We will rough in some items.

import java.math.BigInteger;

public class BigFraction

©2009-2021, John M. Morrison 8



2 STARTING BIGFRACTION.JAVA

{

private BigInteger num;

private BigInteger denom;

public BigFraction(BigInteger num, BigInteger denom)

{

}

public String toString()

{

return String.format("%s/%s", num, denom);

}

}

Looking at the BigInteger docs, we notice several things. One is that BigIntegerss
are immutable. We can ensure this by making our state variables final.

import java.math.BigInteger;

public class BigFraction

{

private final BigInteger num;

private final BigInteger denom;

public BigFraction(BigInteger num, BigInteger denom)

{

}

public String toString()

{

return String.format("%s/%s", num, denom);

}

}

Another is that BigInteger has a gcd method. We can avail ourselves of that.
We also have to do the correct things to negate a BigInteger and to checks its
positivity or negativity.

Changing sign is easy; just use the negate() method. To check sign, it is
handy to compare with the static constant BigInteger.ZERO. Dividing is done
with the divide method.

Let us go to work on the constructor. We show the lines of Python and use
them as a guide, translating into Java as we progress.

public BigFraction(BigInteger num, BigInteger denom)

{

//if denom == 0:

//raise ValueError

if(denom.equals(BigInteger.ZERO))

{

©2009-2021, John M. Morrison 9



2 STARTING BIGFRACTION.JAVA

throw new IllegalArgumentException();

}

//if denom < 0:

//num = -num

//denom = -denom

if(denom.compareTo(BigInteger.ZERO) < 0)

{

num = num.negate();

denom = denom.negate();

}

//d = gcd(num, denom)

BigInteger d = num.gcd(denom);

//self.num = num//d

//self.denom = denom//d

this.num = num.divide(d);

this.denom = denom.divide(d);

}

Observe that we can only initialize state once because the state variables are
final. We worked with the constructor's parameters as local variables until the
very end.

Now let's assemble our e�ort.

import java.math.BigInteger;

public class BigFraction

{

private final BigInteger num;

private final BigInteger denom;

public BigFraction(BigInteger num, BigInteger denom)

{

if(denom.equals(BigInteger.ZERO))

{

throw new IllegalArgumentException();

}

if(denom.compareTo(BigInteger.ZERO) < 0)

{

num = num.negate();

denom = denom.negate();

}

BigInteger d = num.gcd(denom);

this.num = num.divide(d);

this.denom = denom.divide(d);

}

@Override

public String toString()

©2009-2021, John M. Morrison 10



2 STARTING BIGFRACTION.JAVA

{

return String.format("%s/%s", num, denom);

}

}

We are thinking that there might be a constructor that will take a integer and
convert it into a BigInteger, but there isn't. However, if we look in the docs,
we wil see this.

public static BigInteger valueOf(long val)

Returns a BigInteger whose value is equal to that of the speci�ed long.
API Note:

This static factory method is provided in preference to a (long) constructor be-
cause it allows for reuse of frequently used BigIntegers.
Parameters:

val - value of the BigInteger to return.
Returns:

a BigInteger with the speci�ed value.

We will crib from this strategy and make our own static factory method
BigFraction.valueOf(long num, long denom). This will save us work down
the road.

import java.math.BigInteger;

public class BigFraction

{

private final BigInteger num;

private final BigInteger denom;

public BigFraction(BigInteger num, BigInteger denom)

{

if(denom.equals(BigInteger.ZERO))

{

throw new IllegalArgumentException();

}

if(denom.compareTo(BigInteger.ZERO) < 0)

{

num = num.negate();

denom = denom.negate();

}

BigInteger d = num.gcd(denom);

this.num = num.divide(d);

this.denom = denom.divide(d);

}

@Override

public String toString()

{

©2009-2021, John M. Morrison 11



3 ARITHMETIC

return String.format("%s/%s", num, denom);

}

public static BigFraction valueOf(long num, long denom)

{

return new BigFraction(BigInteger.valueOf(num),

BigInteger.valueOf(denom));

}

}

Et voila! It works!

jshell> /open BigFraction.java

jshell> BigFraction b = BigFraction.valueOf(7776, 1048576);

b ==> 243/32768

Our two classes are at the same level of progress.

3 Look out Miss Wormwood! Arithmetic!

The aim of this section is to endoow our big fractions with the ability to do
arithmetic. Let us focus on these �ve operations: +, -, *, / and exponentiation.

3.1 Addition

Recall that
a

b
+

c

d
=

ad+ bc

bd
.

Let's start on the Python side. To rede�ne addition, there is the dunder
method __add__. So in our class we make the header as follows

def __add__(self, other):

Both self and other will be BigFractions so each has a numerator and a
denominator. We use the addition formula for fractions and compute the nu-
merator for the sum as follows.

top = self.num*other.denom + self.denom*other.num

Now let's get the denominator

bottom = self.denom*other.denom

©2009-2021, John M. Morrison 12



3.1 Addition 3 ARITHMETIC

Now let's put the whole thing together and ship out a BigFraction.

def __add__(self, other):

top = self.num*other.denom + self.denom*other.num

bottom = self.denom*other.denom

return BigFraction(top, bottom)

Now we test our work.

>>> from BigFraction import BigFraction

>>> a = BigFraction(1,3)

>>> b = BigFraction(1,2)

>>> a + b

BigFraction(5, 6)

>>> print(a + b)

5/6

Now it's Java's turn. You cannot rede�ne operators in Java, so we will do
as they did in BigInteger and create an add method. The lines of Python are
show here.

public BigFraction add(BigFraction that)

{

//top = self.num*other.denom + self.denom*other.num

//bottom = self.denom*other.denom

//return BigFraction(top, bottom)

}

We now translate them.

public BigFraction add(BigFraction that)

{

//top = self.num*other.denom + self.denom*other.num

BigInteger top = num.multiply(that.denom).add(

denom.multiply(that.num));

//bottom = self.denom*other.denom

BigInteger bottom = denom.multiply(that.denom);

//return BigFraction(top, bottom)

return new BigFraction(top, bottom);

}

Now test it. You can delete the python comments from your add method.

jshell> /open BigFraction.java

©2009-2021, John M. Morrison 13



3.2 Subtraction 3 ARITHMETIC

jshell> BigFraction a = BigFraction.valueOf(1,2);

a ==> 1/2

jshell> BigFraction b = BigFraction.valueOf(1,3);

b ==> 1/3

jshell> a.add(b)

$5 ==> 5/6

3.2 Subtraction

This is �sh in a barrel since

a

b
− c

d
=

ad− bc

bd
.

We just change the addition in the middle to a subtraction. Here is Python

def __sub__(self, other):

top = self.num*other.denom - self.denom*other.num

bottom = self.denom*other.denom

return BigFraction(top, bottom)

And here is Java.

public BigFraction subtract(BigFraction that)

{

BigInteger top = num.multiply(that.denom).subtract(

denom.multiply(that.num));

BigInteger bottom = denom.multiply(that.denom);

return new BigFraction(top, bottom);

}

3.3 Multiplication

We all know that
a

b
· c
d
=

ac

bd
.

We therefore proceed as follows in Python.

def __mul__(self, other):

top = self.num*other.num

bottom = self.denom*other.denom

return BigFraction(top, bottom)

©2009-2021, John M. Morrison 14



3.4 Division 3 ARITHMETIC

Now for Java.

public BigFraction multiply(BigFraction that)

{

BigInteger top = num.multiply(that.num);

BigInteger bottom = denom.multiply(that.denom);

return new BigFraction(top, bottom);

}

3.4 Division

This is just �invert and multiply.�

def __truediv__(self, other):

top = self.num*other.denom

bottom = self.denom*other.num

return BigFraction(top, bottom)

public BigFraction divide(BigFraction that)

{

BigInteger top = num.multiply(that.denom);

BigInteger bottom = denom.multiply(that.num);

return new BigFraction(top, bottom);

}

Let's test-drive the Python.

>>> b = BigFraction(1,4);

>>> c = BigFraction(1,5);

>>> b + c

BigFraction(9, 20)

>>> b - c

BigFraction(1, 20)

>>> b*c

BigFraction(1, 20)

>>> b/c

BigFraction(5, 4)

>>>

And now the Java.

jshell> /open BigFraction.java

©2009-2021, John M. Morrison 15



3.5 Pow! 3 ARITHMETIC

jshell> BigFraction b = BigFraction.valueOf(1,4);

b ==> 1/4

jshell> BigFraction c = BigFraction.valueOf(1,5);

c ==> 1/5

jshell> b.add(c)

$5 ==> 9/20

jshell> b.subtract(c)

$6 ==> 1/20

jshell> b.divide(c)

$7 ==> 5/4

jshell> b.multiply(c)

$8 ==> 1/20

3.5 Pow!

Holy exponent, Batman! It's time to compute powers! Note the argument is an
integer.

def __pow__(self, n):

if n == 0:

return BigFraction(1,1)

if n > 0:

return BigFraction(self.num**n, self.denom**n)

n = -n

return BigFraction(self.denom**n, self.num**n)

public BigFraction pow(int n)

{

if n == 0:

{

return BigFraction.valueOf(1,1);

}

if n > 0:

{

return BigFraction(num.pow(n), denom.pow(n));

}

n = -n;

return BigFraction(denom.pow(n), num.pow(n));

}

©2009-2021, John M. Morrison 16



4 ADDING STATIC CONSTANTS

Programming Exercises Add these methods to our existing BigFraction

class. These will make our BigFractions more resemble BigIntegers.

1. Write a method public BigInteger bigIntValue() that divides the de-
nominator into the numerator and which truncates towards zero.

2. Write the method public BigFraction abs() which returns the absolute
value of this BigFraction.

3. Write a method public BigFraction negate() which returns a copy of
this BigFraction with its sign changed.

4. Write the method public BigFraction max(BigFraction) which returns
the larger of this BigFraction and that.

5. Write the method public BigFraction min(BigFraction) which returns
the smaller of this BigFraction and that.

6. Write the method public int signum() which returns +1 if this BigFraction
is positive, -1 if it is negative and 0 if it is zero.

7. Write the method public int compareTo(BigFraction that) which re-
turns +1 if this BigFraction is larger than that, -1 if that is larger than
this BigFraction and 0 if this BigFraction equals that.

8. Add a static method public BigFraction harmonic(int n) which computes
the nth harmonic number. Throw an IllegalArgumentException if the
client passes an n that is negative.

9. When should division throw an IllegalArgumentException? Add this
feature to the class.

10. (Quite Challenging) Write the method public double doubleValue()

which returns a �oating point value for this BigFraction. It should re-
turn Double.NEGATIVE_INFINITY or Double.POSITIVE_INFINITY where
appropriate. Test this very carefully; it is not easy to get it right.

4 Adding Static Constants

In Java, we have a notion of constness; this consists of a final variable pointing
at an immutable object. Let's give our BigFraction class static constants ZERO,
ONE, and HALF. We will create them at the top of the class and initialize them
in a static block.

To do this just insert this right at the top of your class

public static final BigFraction ZERO;

public static final BigFraction HALF;

public static final BigFraction ONE;

static

{

©2009-2021, John M. Morrison 17



5 DOCUMENTING YOUR CODE

ZERO = BigFraction.valueOf(0,1);

HALF = BigFraction.valueOf(1,2);

ONE = BigFraction.valueOf(1,1);

}

5 Documenting Your Code

These two classes could be quite useful to others. Now we need to give our users
documentation so they can learn how to use our classes e�ectively.

We will document our Java code using the javadoc system. This system is
easy to use and it creates a professional-looking API page that is similar in a
appearance to the ones you see for the standard libraries.

Javadoc comments are delimited by the starting token /** and the ending
token */. C/C++ style comments delimited by // and /* ........ */ do
not appear on Javadoc pages. You may use HTML markup in your javadoc
where needed.

Use Javadoc to document your interface, the public portion of your class. Do
not javadoc private methods or state variables. We will produce a full javadoc
page for our BigFraction class.

We will use docstings to document our Python class. These will be displayed
in response to the help command or with the command

unix> python -m pydoc YourModule.py

5.1 Documenting BigFraction.py

Begin by describing the class right after the class header like so.

from number_theory import gcd

class BigFraction:

"""This is a class for performing extended-precision rational

arithmetic. It includes a full suite of operators for arithmetic

and it produces a sortable objects, ordered by their numerical

values.

All BigFractions are stored in a canonical form: they are fully

reduced and any negative is stored in the numerator.

"""

Now for the __init__ method.

©2009-2021, John M. Morrison 18



5.1 Documenting BigFraction.py 5 DOCUMENTING YOUR CODE

def __init__(self, num, denom):

"""This accepts two integer argments, a numerator

and a denominator. A zero denominator will trigger a ValueError."""

if denom == 0:

raise ValueError

if denom < 0:

num = -num

denom = -denom

d = gcd(num, denom)

self.num = num//d

self.denom = denom//d

If you type the command python -m pydoc BigFraction, in a command
window you will see this. Users can also see this documentaton in an interactive
session using the help command.

NAME

BigFraction

CLASSES

builtins.object

BigFraction

class BigFraction(builtins.object)

| BigFraction(num, denom)

|

| This is a class for performing extended-precision rational

| arithmetic. It includes a full suite of operators for arithmetic

| and it produces a sortable objects, ordered by their numerical

| values.

|

| All BigFractions are stored in a canonical form: they are fully

| reduced and any negative is stored in the numerator.

|

| Methods defined here:

|

| __add__(self, other)

|

| __init__(self, num, denom)

| This accepts two integer argments, a numerator

| and a denominator. A zero denominator will trigger a ValueError.

To exit, type q. Now we document the rest of the class

from number_theory import gcd

class BigFraction:

©2009-2021, John M. Morrison 19



5.1 Documenting BigFraction.py 5 DOCUMENTING YOUR CODE

"""This is a class for performing extended-precision rational

arithmetic. It includes a full suite of operators for arithmetic

and it produces a sortable objects, ordered by their numerical

values.

All BigFractions are stored in a canonical form: they are fully

reduced and any negative is stored in the numerator.

This class has three static constants

ZERO, the BigFraction representing 0

ONE, the BigFraction representing 1

HALF, the BigFraction representing 1/2

"""

ZERO = None

ONE = None

HALF = None

def __init__(self, num, denom):

"""This accepts two integer argments, a numerator

and a denominator. A zero denominator will trigger a ValueError."""

if denom == 0:

raise ValueError

if denom < 0:

num = -num

denom = -denom

d = gcd(num, denom)

self.num = num//d

self.denom = denom//d

def __str__(self):

"""This returns a string represenation for this

BigFraction of the form numerator/denominator."""

return f"{self.num}/{self.denom}"

def __repr__(self):

"""This returns a string representation of the form

BigFraction(numerator, denominator) suitable for the Python

REPL"""

return f"BigFraction({self.num}, {self.denom})"

def __add__(self, other):

"""This defines + and returns the sum of two BigFractions."""

top = self.num*other.denom + self.denom*other.num

bottom = self.denom*other.denom

return BigFraction(top, bottom)

def __sub__(self, other):

"""This defines - and returns the difference of two BigFractions."""

top = self.num*other.denom - self.denom*other.num

bottom = self.denom*other.denom

©2009-2021, John M. Morrison 20



5.2 Documenting BigFraction.java 5 DOCUMENTING YOUR CODE

return BigFraction(top, bottom)

def __mul__(self, other):

"""This defines * and returns the product of two BigFractions."""

top = self.num*other.num

bottom = self.denom*other.denom

return BigFraction(top, bottom)

def __truediv__(self, other):

"""This defines / and returns the quotient of two BigFractions."""

top = self.num*other.denom

bottom = self.denom*other.num

return BigFraction(top, bottom)

def __pow__(self, n):

"""This defines ** and returns this BigFraction raised to the

nth power. This works for both positive and negative integers."""

if n == 0:

return BigFraction(1,1)

if n > 0:

return BigFraction(self.num**n, self.denom**n)

n = -n

return BigFraction(self.denom**n, self.num**n)

@staticmethod

def init_static():

"""initializes the static constants ZERO, HALF, and ONE."""

BigFraction.ZERO = BigFraction(0,1)

"""The Big Fraction 0/1"""

BigFraction.ONE = BigFraction(1,1)

"""The Big Fraction 1/1"""

BigFraction.HALF = BigFraction(1,2)

"""The Big Fraction 1/2"""

BigFraction.init_static()

5.2 Documenting BigFraction.java

The kind of class we have created represents a real extension of the Java language
that could be useful to others. Now we need to give our class an API page so it
has a professional appearance and so it can easily be used by others.

Javadoc comments are delimited by the starting token /** and the ending
token */. C/C++ style comments delimited by // and /* ........ */ do
not appear on Javadoc pages.

You may use HTML markup in your javadoc where needed.

Use Javadoc to document your interface, the public portion of your class.
Do not javadoc private methods or state variables.

We will produce a full javadoc page for our BigFraction class. Let us begin

©2009-2021, John M. Morrison 21



5.3 Triggering Javadoc 5 DOCUMENTING YOUR CODE

with the constructors.

/**

* This constructor stores a <code>BigFraction</code> in

* reduced form, with any negative factor appearing in

* the numerator.

* @param num the numerator of this <code>BigFraction</code>

* @param denom the denomnator of this <code>BigFraction</code>

* @throws IllegalArgumentException if a zero

* denominator is passed in

*/

public BigFraction(BigInteger num, BigInteger denom)

{

if(denom.equals(BigInteger.ZERO))

throw new IllegalArgumentException();

BigInteger d = num.gcd(denom);

if(denom.compareTo(BigInteger.ZERO) < 0)

{

num = num.negate();

denom = denom.negate();

}

this.num = num.divide(d);

this.denom = denom.divide(d);

}

/**

* This default constructor produces BigFraction 0/1.

*/

public BigFraction()

{

this(BigInteger.ZERO,BigInteger.ONE);

}

We see the special markup @param; this is the description given for each
parameter. The markup @throws warns the client that an exception can be
thrown by a method. You should always tell exactly what triggers the throwing
of an exception, as the penalty for an exception is program death.

5.3 Triggering Javadoc

First we give instructions for DrJava. Bring up the Preferences by hitting
control-; or by selecting the Preferences item from the bottom of the Edit menu.
Under Web browser put the path to your web browser. An example of a valid
path is

©2009-2021, John M. Morrison 22



5.4 Documenting toString() and equals()5 DOCUMENTING YOUR CODE

/usr/lib/firefox/firefox.sh

If you use Windoze, your path should begin with \tt C:\. If you use a Mac,
it will be in your Applications folder. You can browse for it by hitting the ...
button just to the right of the Web Browser text �eld.

The javadoc will be saved in a directory called doc that is created in same
directory as your class's code. Allow the javadoc to be saved in that folder, or
�les will �spray� all over your directory and make a big mess.

You can also javadoc at the command line with

unix> javadoc -d someDirectory BigFraction.java

The javadoc output will be placed in the directory someDirectory that
you specify. Make sure you use the -d option to avoid spraying. To see your
objet d'art, select File Open... in your browser and then navigate to the �le
index.html in your doc directory and open it.

Note that yoiur program must compile before any javadoc will be generated.

I don't see my javadoc! Make sure you are using the javadoc comment
tokens like so.

/**

* stuff

*/

and not regular multiline comment token that look like this.

/*

* stuff

*/

5.4 Documenting toString() and equals()

You will see a new markup device @return and overrides which tells you what
these methods override. You will notice if you look in the javadoc you generated,
that an overrides tag is already in the method detail.

/**

* @return a string representing this BigFraction of the form

* numerator/denominator.

*/

@Override

©2009-2021, John M. Morrison 23



5.5 Putting in a Preamble and Documenting the Static Constants5 DOCUMENTING YOUR CODE

public String toString()

{

return "" + num + "/" + denom;

}

Note the use of the @Override construct just after our javadoc markup. This
is called an annotation, and the compiler checks that you have used the right
signature to actual override the method. If you don't it will be �agged as a
compiler error. Always use this annotation if you are implementing the methods
public boolean equals(Object o) or public String toString().

Now we deal similarly with the equals method.

/**

* @param o an Object we are comparing this BigFraction to

* @return true iff this BigFraction and that are equal numerically.

* A value of <tt>false</tt> will be returned if the Object o is not

* a BigFraction.

*/

@Override

public boolean equals(Object o)

{

if(! (o instanceof BigFraction))

return false;

BigFraction that = (BigFraction) o;

return num.equals(that.num) && denom.equals(that.denom);

}

5.5 Putting in a Preamble and Documenting the Static

Constants

We show where to preamble goes, after the imports and before the head for the
class. Place a succinct description of your class here to let your clients know
what it does.

import java.math.BigInteger

/**

* This is a class of immutable arbitrary-precision

* rational numbers. BigFraction provides

* extended-precision fractional arithmetic

* operations, including + with the <code>add</code> method,

* - with the <code>subtract</code>

* method, * with the <code>multiply</code> method,

* and / with the <code>divide</code> method.

* It computes integer powers

©2009-2021, John M. Morrison 24



5.6 Documenting Arithmetic 5 DOCUMENTING YOUR CODE

* of fractions using the <code>pow</code> method.

*/

public class BigFraction

{

//code

}

Documenting the static constants is very straightforward.

/**

* This is the BigFraction constant 0, which is 0/1.

*/

public static final BigFraction ZERO;

/**

* This is the BigFraction constant 1, which is 1/1.

*/

public static final BigFraction ONE;

5.6 Documenting Arithmetic

Next we javadoc all of the arithmetic operations we have provided the client.
Notice how we add an exception if the client attempts to divide by zero.

/**

* This add BigFractions.

* @param that a BigFraction we are adding to this BigFraction

* @return <code>this</code> + <code>that</code>

*/

public BigFraction add(BigFraction that)

{

BigInteger term1 = num.multiply(that.denom);

BigInteger term2 = denom.multiply(that.num);

BigInteger bottom = denom.multiply(that.denom);

return new BigFraction(term1.add(term2), bottom);

}

/**

* This subtracts BigFractions.

* @param that a BigFraction we are adding to this BigFraction

* @return <code>this</code> - <code>that</code>

*/

public BigFraction subtract(BigFraction that)

{

BigInteger term1 = num.multiply(that.denom);

BigInteger term2 = denom.multiply(that.num);

©2009-2021, John M. Morrison 25



5.6 Documenting Arithmetic 5 DOCUMENTING YOUR CODE

BigInteger bottom = denom.multiply(that.denom);

return new BigFraction(term1.subtract(term2), bottom);

}

/**

* This multiplies BigFractions.

* @param that a BigFraction we are adding to this BigFraction

* @return <code>this</code> * <code>that</code>

*/

public BigFraction multiply(BigFraction that)

{

BigInteger top = num.multiply(that.num);

BigInteger bottom = denom.multiply(that.denom);

return new BigFraction(top, bottom);

}

/**

* This divides BigFractions.

* @param that a BigFraction we are adding to this BigFraction

* @return <code>this</code>/<code>that</code>

* @throws <code>IllegalArgumentException</code> if division by

* 0 is attempted.

*/

public BigFraction divide(BigFraction that)

{

if(that.equals(BigFraction.ZERO))

throw new IllegalArgumentException();

BigInteger top = num.multiply(that.denom);

BigInteger bottom = denom.multiply(that.num);

return new BigFraction(top, bottom);

}

/**

* This computes an integer power of BigFraction.

* @param n an integer power

* @return <code>this</code><sup><code>n</code></sup>

*/

public BigFraction pow(int n)

{

if(n > 0)

return new BigFraction(num.pow(n), denom.pow(n));

if(n == 0)

return new BigFraction(1,1);

else

{

n = -n; //strip sign

return new BigFraction(denom.pow(n), num.pow(n));

}

}

©2009-2021, John M. Morrison 26



5.7 The Complete Code 5 DOCUMENTING YOUR CODE

Finally, we will take care of our two valueOf methods.

/**

* @param n a long we wish to promote to a BigFraction.

* @return A BigFraction object wrapping n

*/

public static BigFraction valueOf(long n)

{

return new BigFraction(n, 1);

}

/**

* @param num a BigInteger we wish to promote to a BigFraction.

* @return A BigFraction object wrapping num

*/

public static BigFraction valueOf(BigInteger num)

{

return new BigFraction(num, BigInteger.ONE);

}

5.7 The Complete Code

Here it is! We have dropped in javadoc for our stateic factory method as well.

import java.math.BigInteger;

/**

* This is a class of immutable arbitrary-precision

* rational numbers. BigFraction provides

* extended-precision fractional arithmetic

* operations, including + with the <code>add</code> method,

* - with the <code>subtract</code>

* method, * with the <code>multiply</code> method,

* and / with the <code>divide</code> method.

* It computes integer powers

* of fractions using the <code>pow</code> method.

*/

public class BigFraction

{

/**

* This is the BigFraction constant 0, which is 0/1.

*/

public static final BigFraction ZERO;

/**

* This is the BigFraction constant 1, which is 1/1.

*/

public static final BigFraction ONE;

©2009-2021, John M. Morrison 27



5.7 The Complete Code 5 DOCUMENTING YOUR CODE

static

{

ZERO = new BigFraction();

ONE = new BigFraction(1,1);

}

private final BigInteger num;

private final BigInteger denom;

/**

* This constructor stores a <code>BigFraction</code> in

* reduced form, with any negative factor appearing in

* the numerator.

* @param num the numerator of the <code>BigFraction</code>

* @param denom the denominator of the <code>BigFraction</code>

* @throws <code>IllegalArgumentException</code> if the creation

* of a zero-denominator <code>BigFraction</code> is attempted.

*/

public BigFraction(BigInteger num, BigInteger denom)

{

if(denom.equals(BigInteger.ZERO))

throw new IllegalArgumentException();

BigInteger d = num.gcd(denom);

if(denom.compareTo(BigInteger.ZERO) < 0)

{

num = num.negate();

denom = denom.negate();

}

num = num.divide(d);

denom = denom.divide(d);

}

/**

* This default constructor produces BigFraction 0/1.

*/

public BigFraction()

{

this(BigInteger.ZERO,BigInteger.ONE);

}

/**

* @return a string representing this BigFraction of the form

* numerator/denominator.

*/

@Override

public String toString()

{

return String.format("%s/%s", num, denom);

©2009-2021, John M. Morrison 28



5.7 The Complete Code 5 DOCUMENTING YOUR CODE

}

/**

* @param o an Object we are comparing this BigFraction to

* @return true iff this BigFraction and that are equal numerically.

* A value of <code>false</code> will be returned if the Object o is not

* a BigFraction.

*/

@Override

public boolean equals(Object o)

{

if(! (o instanceof BigFraction))

return false;

BigFraction that = (BigFraction) o;

return num.equals(that.num) && denom.equals(that.denom);

}

/**

* This static factory produces num/denom as a BigFraction.

* @param num the numerator for this BigFraction

* @param denom the denominator for this BigFraction

* @return A <code>BigFraction</code> representing num/denom.

*/

public static BigFraction valueOf(long num, long denom)

{

return new BigFraction(BigInteger.valueOf(num),

BigInteger.valueOf(denom));

}

/**

* This add BigFractions.

* @param that a BigFraction we are adding to this BigFraction

* @return <code>this</code> + <code>that</code>

*/

public BigFraction add(BigFraction that)

{

BigInteger term1 = num.multiply(that.denom);

BigInteger term2 = denom.multiply(that.num);

BigInteger bottom = denom.multiply(that.denom);

return new BigFraction(term1.add(term2), bottom);

}

/**

* This subtracts BigFractions.

* @param that a BigFraction we are adding to this BigFraction

* @return <code>this</code> - <code>that</code>

*/

public BigFraction subtract(BigFraction that)

{

BigInteger term1 = num.multiply(that.denom);

©2009-2021, John M. Morrison 29



5.7 The Complete Code 5 DOCUMENTING YOUR CODE

BigInteger term2 = denom.multiply(that.num);

BigInteger bottom = denom.multiply(that.denom);

return new BigFraction(term1.subtract(term2), bottom);

}

/**

* This multiplies BigFractions.

* @param that a BigFraction we are adding to this BigFraction

* @return <code>this</code> * <code>that</code>

*/

public BigFraction multiply(BigFraction that)

{

BigInteger top = num.multiply(that.num);

BigInteger bottom = denom.multiply(that.denom);

return new BigFraction(top, bottom);

}

/**

* This divides BigFractions.

* @param that a BigFraction we are adding to this BigFraction

* @return <code>this</code>/<code>that</code>

* @throws <code>IllegalArgumentException</code> if division by

* 0 is attempted.

*/

public BigFraction divide(BigFraction that)

{

if(that.equals(BigFraction.ZERO))

throw new IllegalArgumentException();

BigInteger top = num.multiply(that.denom);

BigInteger bottom = denom.multiply(that.num);

return new BigFraction(top, bottom);

}

/**

* @param n a long we wish to promote to a BigFraction.

* @return A BigFraction object wrapping n

*/

public static BigFraction valueOf(long n)

{

return new BigFraction(n, 1);

}

/**

* @param num a BigInteger we wish to promote to a BigFraction.

* @return A BigFraction object wrapping num

*/

public static BigFraction valueOf(BigInteger num)

{

return new BigFraction(num, BigInteger.ONE);

}

©2009-2021, John M. Morrison 30



5.7 The Complete Code 5 DOCUMENTING YOUR CODE

}

Programming Exercises

1. Add javadoc for all of the methods you wrote in the previous set of pro-
gramming exercises.

2. Write a second class called TestBigFraction. Place a main method in
this class and have it test BigFraction and its methods. Place the classes
in the same directory.

©2009-2021, John M. Morrison 31


	Case Study: An Extended-Precision Fraction Class
	A Brief Orientation

	Starting BigFraction.py
	Reducing Fractions
	Speeding things up
	Finishing __init__

	Starting BigFraction.java
	Arithmetic
	Addition
	Subtraction
	Multiplication
	Division
	Pow!

	Adding Static Constants
	Documenting Your Code
	Documenting BigFraction.py
	Documenting BigFraction.java
	Triggering Javadoc
	Documenting toString() and equals()
	Putting in a Preamble and Documenting the Static Constants
	Documenting Arithmetic
	The Complete Code


