
1

Chpater 2, Using Modules: Don't Reinvent the

Wheel

John M. Morrison

June 21, 2021

Contents

1 Introduction 3

2 OK, TI89, Time to Sweat! 3

2.1 How do I Import a Module? . 3

2.2 Exploring the math Module . 6

3 Reading Python Documentation 8

4 Creating your own Modules 9

5 Preconditions, Postconditions, and Documentation 12

6 Integrated Testing of Modules 14

6.1 An Example . 15

7 A Chinese Wall 17

8 Stack Frames and the Function Call Stack 19

8.1 A Summary . 27

8.2 A Terminology Roundup . 27

8.3 The Python Ternary Operator 28

9 Some Types are Smarter than Others 29

2

10 Format Strings 32

1 Introduction

Heretofore we have learned about the basics of a programming language. We
now have the tools of conditional execution and functions to build programs.
We are now going to proceed to learn how to use code created by others for our
purposes, and how to distribute our code to others who might use it.`

This is in keeping with the philosophy of �Use wheels, don't reinvent them.�
It is best to use an o� the shelf solution to a problem if possible. However, we
all know that we can sometimes learn by re-creating things for ourselves, which
we will sometimes do so we can understand how they work.

Let us begin by turning Python into a scienti�c calculator.

2 OK, TI89, Time to Sweat!

A module in Python is a �le containing code for functions. Python has a sizable
number of built-in modules; to use them we must use the import statement in
our programs.

2.1 How do I Import a Module?

To avail ourselves of scienti�c calculator functions, we just import the math

module. One way to import the math module is to type

import math

at the beginning of our program. This is the regular import.

A second way is to use the intimate import

from math import *

Let us do a quick comparison. We can use dir() to see what symbols are visible
at any time. Here we do the regular import; the only new symbol visible is that
of math; we did a dir() before and after the import to see this. However, if we
do dir(math), we can see all of the mathematical goodness inside.

>>> dir()

['__builtins__', '__doc__', '__name__', '__package__']

3

>>> import math

>>> dir()

['__builtins__', '__doc__', '__name__', '__package__', 'math']

>>> dir(math)

['__doc__', '__name__', '__package__', 'acos', 'acosh',

'asin', 'asinh', 'atan', 'atan2', 'atanh', 'ceil',

'copysign', 'cos', 'cosh', 'degrees', 'e', 'exp',

'fabs', 'factorial', 'floor', 'fmod', 'frexp',

'fsum', 'hypot', 'isinf', 'isnan', 'ldexp', 'log',

'log10', 'log1p', 'modf', 'pi', 'pow', 'radians',

'sin', 'sinh', 'sqrt', 'tan', 'tanh', 'trunc']

To use a math function with the regular import, we must use the pre�x
math.; think of this as the genitive case, i.e., math. means math's. Observe
that math.pi is just a number; it is not a function. The name math provides
a namespace; it is an umbrella under which a group of symbols live. When we
write math.sqrt(5) we are using the full name of the function.

>>> math.sqrt(5)

2.2360679774997898

>>> math.log10(100)

2.0

>>> math.pi

3.1415926535897931

We can also by import all names in math directly into our session by using the
intimate import as follows.

from math import *

Now let us view the visible symbols with dir(). The names of the math
functions are directly visible in our session.

>>> dir()

['__builtins__', '__doc__', '__name__', '__package__',

'acos', 'acosh', 'asin', 'asinh', 'atan', 'atan2',

'atanh', 'ceil'' 'copysign', 'cos', 'cosh', 'degrees',

'e', 'exp', 'fabs', 'factorial', 'floor', 'fmod',

'frexp', 'fsum', 'hypot', 'isinf', 'isnan', 'ldexp',

'log', 'log10', 'log1p', 'modf', 'pi', 'pow', 'radians',

'sin', 'sinh', 'sqrt', 'tan', 'tanh', 'trunc']

We can use them without math.; in fact, using them with math. causes an
error.

4

>>> sqrt(5)

2.2360679774997898

>>> log10(100)

2.0

>>> pi

3.1415926535897931

>>> math.pi

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name 'math' is not defined

>>>

Ooh, goodie! We have to type less! Isn't that nice? On the other hand, there is
a devil to pay. You have many more symbols visible; all of the symbols in math

are unprotected in your program. Let's play Indiana Legislature. Continuing
the last session, we can rede�ne π! Now our program believes π to be 3.

>>> pi = 3

>>> pi

3

>>> pi*10*10

300

You can repeat similar foolishness the regular import. However, you know you
are in dangerous waters reassigning a value in an existing module. This is
deliberate vandalistic stupidity which will result in nasty self-in�icted wounds.

The other ga�e, pi = 3 could be unintentional if you did not know the
math module contained a constant named pi. Such an unfortunate occurrence
is called a namespace collision, and it produces terrible programming errors that
are incredibly hard to ferret out.

Hence it is best to use the regular import when writing code into programs.
The intimate import is �ne for informal testing and exploration especially in
Python's interactive mode, and it saves typing. In general, keeping the num-
ber of visible symbols small is like driving in light tra�c: less congestion and
confusion ensue.

If you only want a couple of math functions, you can use the one-at-a-time
import like so.

from math import sin, cos

During your program, you may use sin or cos on a �rst-name basis and you do
not clutter your namespace with lots of functions you are not going to use. In
general, you should strive to keep your symbol table as small as possible, but
the convenience generated in this situation is probably worth the small number
of new symbols.

5

As a matter of style, it is a good idea to place your import statements at the
top of your program. This is part of Google's style rules and we shall adhere to
it here.

2.2 Exploring the math Module

Most objects output by functions in this module are float objects. Since we
are just test-driving in an interactive session, the intimate import is �ne.

>>> from math import *

>>> ceil(1.5)

2

>>> ceil(5)

5

>>> ceil(-7.5) #negatives, but this is right!

-7 #round up looks funny on

>>> type(ceil(5))

<class 'int'>

Now let's round down.

>>> floor(-7.5)

-8

>>> floor(4.6)

4

Python 2 vs. 3 Note In Python 2, floor and ceil return floats. In
Python 3, they return an int.

Here is absolute value. Be aware that all math functions return �oating-point
numbers.

>>> fabs(-2)

2.0

Here is the natural exponential function.

>>> exp(1)

2.7182818284590451

>>> exp(2)

7.3890560989306504

>>> exp(.693)

1.9997056605411638

6

The log function is the natural log function. However, by using a second argu-
ment, you can compute logs of any base.

>>> log(1000)

6.9077552789821368

>>> log(1000,10) #log base 10

2.9999999999999996

>>> log(1000)/log(10) #also log base 10 by change-of-base

2.9999999999999996

Here we see powers and a separate square-root function.

>>> pow(5,6)

15625.0

>>> sqrt(4)

2.0

We saw this trick for computing square roots before.

>>> 3**.5

1.7320508075688772

>>> 3**(1/2)

1.7320508075688772

Beware, if you are using Python 2, that 1/2 evaluates to zero! This is what
would happen in a Python 2 session.

>>> 3**.5

1.7320508075688772

>>> 3**(1/2)

1

Here we show inverse sine and arcsine. All angles are in radians. In this
example we see that arcsin(1) = π/2.

>>> asin(1)

1.5707963267948966

And here is inverse cosine; we are seeing here that arccos(1) = 0 and arccos(−1) =
π.

>>> acos(1)

0.0

>>> acos(-1)

3.1415926535897931

7

Finally we see that arctan(1) = π/4, arctan(4/3) = .92729521800161219, and
that in degrees, arctan(1) = 45◦ .

Programming Exercises These exercises will acquaint you with the math

module.

1. What do degrees and radians do?

2. What does fmod do?

3. How can you compute a log of any base using only the natural log function
log?

4. Write a function length(a,b,theta) which, given side-angle-side data on
a triangle, computes the length of the third side.

5. Does the math library have a cube root function? a square root function?

6. At the interactive prompt, type

print(math.log__doc__)

What happens? Try this on some other functions. Did you learn some-
thing useful? If you did, put it in yoour pocket and don't forget about
it.

3 Reading Python Documentation

How do you �nd out what sort of modules Python has in its standard libraries?
You can go to the Python site, http://docs.python.org/3/.

Under Indices and Tables, you will see the Global Module Index. Click on
that link and be delivered here, http://docs.python.org/3/py-modindex.

html. This has an alphabetical index of all Python modules. Navigate to math

by using the alphabetical link area at the top of the page, and click on m, then
you will see the math link.

You will see complete information about math functions Type some of them
them into an interactive session and see them at work.

Python has hundreds of modules you can use to do a wide array of pro-
gramming tasks. We will discuss the module random later in this chapter; it
is handy for writing simple games. We encourage you to go for a little walk
in the documentation and experiment. Just look for the random module under
the letter r. You should do some exploring. The exercises below will have you
poking through the datetime and os modules. Do not skip them; you will get
to learn about some handy new toys.

8

http://docs.python.org/3/
http://docs.python.org/3/py-modindex.html
http://docs.python.org/3/py-modindex.html

Programming Exercise It's shiny objects time! These exercises all you to
see some cool tools for doing an assortment of programming tasks. At this time,
you can begin reading Chapter 4 to learn more. To start these exercises visit
the documentation under datetime, and scroll down to Date Objects. Then
use the directive from datetime import date in an interactive session.

1. Get Python to print today's date.

2. Make your birth date by typing something like

d = date(1776, 7, 4)

Note this is 4 July 1776. Subtract this from today. What do you see?

3. How many days old are you? Can you �gure out when you will be 30000
days old?

4. What day of the week were you born on?
For the next couple of exercises use import os

5. What happens when you enter os.listdir() into an interactive session.
How about os.listdir("..") Try this on an absolute path in your �le
system. Windoze users should remember to use a raw string. Can you use
this to count the number of �les in a directory?

6. Pick a �le in your cwd and call os.stat() on it. Then exit python and
do an ls -li on it.. What do you see? Check the man page for ls and
see what the -i option does.

7. At the interactive prompt, import os and then do a dir(os). Check out
some of the goodies inside. Make a junk directory and put some empty
�les in it. See if you can remove or rename �les using the os module.
Now use import os.path

8. How do you check to see if a �le by a given name exists?

9. Choose a �le that exists in your python processes's cwd and see if you can
print out its absolute path.

10. For a �le or directory on your machine, how do you tell if it is a �le or if
it is a directory?

11. Import the statistics module and see if you can use it to compute the
mean, median and standard deviation of numbers in a list.

12. For the functions you have tried here, print out their docstrings and see
what those say. Just use .__doc__. For example, try print(os.listdir.__doc__).

4 Creating your own Modules

You can place functions in programs and use them repeatedly. You can also call
one function from another function. Enter the following program in a �le called
fun.py.

9

#!/usr/bin/python

def square(x):

return x*x

def hypot(x,y):

return (square(x) + square(y))**(.5)

The �le fun.py is a module of code containing two functions. You will often
see that programmers will organize related groups of functions into modules in
exactly this manner.

Run the program by entering

$ python fun.py

at the UNIX command line. If you entered the program correctly, you will see
that nothing appears to have happened. What did happen is that your functions
were stored in memory. Since you never called them, your program ends before
they get used.

Now let's see how to use our module in another program. Create this �le and
name it foo.py; make sure it is in the same directory as your module fun.py.

#!/usr/bin/python

import fun

print (fun.square(5))

print (fun.hypot(5,12))

At the UNIX command line type

$python foo.py

You will see

25

13.0

appear on the screen. Let's now deconstruct. The directive import fun tells
Python to load the code from the �le fun.py; the functions you created in
fun.py are now available. The command print fun.square(5) means, �pass
the value 5 to fun.py's square function�. If you forget the "fun." before square
you will get this error message.

>>> square(5)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name 'square' is not defined

>>>

10

Python is saying, �I have never heard of the square function!� It is expecting
your program foo.py to have a square function. You must tell python whose

function you are calling. Here we see Python's namespace mechanism at work.

This naming of function works much like the naming of people. Since you
have a �rst and last name, if your full name is called in a crowded room, it is
fairly unlikely that two people will respond, whereas if just a �rst name is called,
several people are likely to respond and confusion is likely to ensue. Your last
name behaves as a namespace. We now demonstrate this action.

Begin by modifying your foo.py to look like this.

#!/usr/bin/python

import fun

def square(x):

return "This square function is not from fun.py!"

print (fun.square(5))

print (fun.hypot(5,12))

print (square(5))

Run this from the command line and you see the following

$ python foo.py

25

13.0

This square function is not from fun.py

These two lines

print (fun.square(5))

print (fun.hypot(5,12))

call fun.py's square and hypot functions. However the last line

print (square(5))

moduleName.function(args)

If you list your �les at the command line using ls, you will see that a side e�ect
of importing fun.py into foo.py is that you will have the �le fun.pyc. If you
try to open this �le with vi, you will see a bunch of gibberish. This �le is called
a precompiled Python �le; it is an executable �le that encodes the Python �le
fun.py in a format called Python byte code.

11

5 Preconditions, Postconditions, and Documen-

tation

It is easy to enhance the usefulness of your Python functions by giving them a
it docstring, or documentation string. This is done in the following manner.

def benjaminFranklin(key, string, kite):

"""This function performs scientific experiments and then during the

American Revolution, it woos ladies in Paris to get France in the war."""

return "I am on the C-Note"

The docstring must go right after the function header in triple�quotes. Users
can see it by printing benjaminFranklin.__doc__ as shown in this interactive
session. This should be familiar if you did the last two sets of exercises. Notice
how using the print command causes the newline to be expanded.

>>> def benjaminFranklin(key, string, kite):

... """This function performs scientific experiments and

... then during the American Revolution, it woos ladies

... in Paris to get France into the war."""

... return "I am on the C-Note"

...

>>> benjaminFranklin.__doc__

'This function performs scientific experiments and\n then

during the American Revolution, it woos ladies\n in

Paris to get France into the war.'

>>> print (benjaminFranklin.__doc__)

This function performs scientific experiments and

then during the American Revolution, it woos ladies

in Paris to get France into the war.

>>>

In a docstring, you can state preconditions and postconditions.

Preconditions can be speci�cations on the arguments passed to the function;
more generally, they are conditions that should be satis�ed before the function is
called. You may treat preconditions as being �God-given� when you are writing
your function. They are the rules you lay down for the proper use of your
function. Woe betide the abuser of your function, for he is likely to get exactly
what he deserves! For him, it's Caveat emptor!

If a function is unfamiliar to you, read its docstring, and make sure you are
playing by the rules. Fail to do so at your own risk. You should try printing out
some docstrings from various functions in various libraries. Here are two quick
examples.

12

>>> import math

>>> print(math.cos.__doc__)

cos(x)

Return the cosine of x (measured in radians).

>>> import os.path

>>> print(os.path.exists.__doc__)

Test whether a path exists. Returns False for broken symbolic links

>>>

Postconditions describe the action of a function; they are things that are
true after the function is done running. You should describe any return value
and any side-e�ects of calling the function. We will specify all functions by their
preconditions and postconditions. For a well-designed function, specifying the
function in this way should be a simple matter. This description needs to be
absolutely complete. This is the standard: Another person should be able to

use your function properly by reading your function's docstring.

Place these conditions in your docstring. Remember that the docstring
must occur at the �rst line of the function, inside of triple-quotes. Remember
the purpose of creating modules is to create re-usable chunks of code. If you
document your modules properly, other programmers can use your code base
on their projects.

Here are two programs; enter these and save them in the same directory.
Notice how you make the second and subsequent lines in your docstring �ush-
left. Also note the use of proper indentation.

docstring.py

#!/usr/bin/python

def square(x):

"""Precondition: x is a number

Postcondition: The square of x is returned to the caller.

This is a pure function. """

return x*x

doo.py

#!/usr/bin/python

import docstring

print ("Here is the docstring: ")

print (docstring.square.__doc__)

print (docstring.square(5))

At the UNIX command line type

13

$ python doo.py

Here is the docstring

Precondition: x is a number

Postcondition: x*x is returned to the caller.

This is a pure function.`

25

Exercises Place the functions listed here in a Python program so you can
test them as you create them. Give appropriate pre and post conditions in a
docstring for each function.

1. Write a Python function lastChar that takes a nonempty string as an
argument and which returns its last character.

2. Write a Python function sumOfThree that takes three numbers are argu-
ments and returns their sum

3. Write a Python function repeat that takes a string and a non-negative
integer as an argument, and which returns the string repeated the integer
number of times.

Here are some sample outputs you can test against.

lastChar("platypus") -> "s"

lastChar("a") -> "a"

sumOfThree(4,5,6.7) -> 15.7

sumOfThree(-1,0,1) -> 0

repeat("ab", 5) -> "ababababab"

repeat("moo ", 6) -> "moo moo moo moo moo moo "

6 Integrated Testing of Modules

The best way to write a function is to use the �Mean Teacher� procedure. In
this procedure we administer the test, fail the student, then teach the lesson.
We keep failing the �student� (function) until it passes with a score of 100%. In
books on software development, you will hear this referred to as test-driven de-

velopment. It is a very widespread practice in professional software development
shops.

1. Give the function a name and an argument list.

2. Describe preconditions and postconditions for the function. These will
completely specify the desired behavior of the function. If you are unable
to do this easily and succinctly, you do not understand the task at hand
well enough to carry it out.

14

3. Write test code for the function. Give it a pro forma return value called
a stub. A good return value for a stub a nominal value of the correct
return type for your function. On that line make a comment #TODO. You
can use the search facility in vi to search for the string #TODO to �nd any
incomplete functions in your module of code.

4. Run this code before coding your function. Make sure you extirpate any
syntax errors and that your program compiles happily before continuing
to the next step. Be merciless and seek out all potential weaknesses you
can think of.

5. Code each function, and test it. Progress to another as each function
passes the tests.

6. If all goes well, your test code performs as expected as each function is
implemented.

6.1 An Example

Here is an example of good test code for the lastChar function residing in the
last collection of exercises. Notice the return value for the function that makes
it obvious we are not done yet. Place this in a program lastCharShell.py.

def lastChar(x):

"""prec: x is a nonempty string

postc: returns the last character of x"""

return "TODO"

x = "moose"

print (f"lastChar({x}) = {lastChar(x)}, expected: e")

x = "This is an sentence."

print (f"lastChar({x}) = {lastChar(x)}, expected: .")

x = "DYSTOPIA"

print (f"lastChar({x}) = {lastChar(x)}, expected: A")

The code fragment

x = "This is an sentence."

print (f"lastChar({x}) = {lastChar(x)}, expected: .")

is called a test case. The collection of test code illustrated here is called a test

harness or test suite. This test harness has three test cases in it. As your
repertoire of programming skill grows, you will need to think carefully about
the murphology of your functions. Try test cases that are likely to �break� your
functions. For example, if a function contains conditional logic, have at least
one test case for each possible path of execution. Test any border cases. Be
merciless. However, play fairly and do not violate the preconditions of your
function. Remember, good teachers are tough but fair.

15

If you implement the function correctly you should get this output.

$ python lastCharShell.py

lastChar(moose) = e , expected: e

lastChar(This is an sentence.) = . , expected: .

lastChar(DYSTOPIA) = A , expected: A

This procedure ensures the maximum integrity for your functions. In the
professional world, you are often required to furnish test harnesses for any func-
tions you write. By so doing you provide a starting point for others who may be
using your functions to �gure out what goes wrong if code depending on your
functions should develop bugs. Your colleagues will be aware of the vulnera-
bilities you have tested, and they will not waste expensive and valuable time
retracing old territory.

If you are creating modules of functions for a program, you will want to test
them severely to ensure that they are reliable tools for your project. This is what
is meant by the maxim �Creates strong black boxes and test them mercilessly.
Then rely on them.�

What if I want to import a module and not see the test code? You
have been using functions from day one, but didn't know it. How can this be?
Here is our �rst program hello.py. Yeah, print is a function, but that's not
the point.

#!/usr/bin/python

print ("Hello, world!")

It appears that the print statement is outside of any function. However, it
is not. There is a super-secret function with the ungainly name of __main__
that actually contains the call to print. We will refer to __main__ henceforth
as the main routine of a program.

Say we want to test the square function. Here is a full-blown module.

def square(x):

"""Precondition: x is a number

Postcondition: returns the square of x.

This is a pure function"""

return x*x

if __name__ == "__main__":

t = 1

print("PASS" if square(t) == 1 else "FAIL")

t = 0

16

print("PASS" if square(t) == 0 else "FAIL")

t = -1

print("PASS" if square(t) == 1 else "FAIL")

If you run this directly, it will execute the test code. If you import it into
another module, the test code will be suppressed. This is the best way to keep
test code for modules.

Exercise Write test harnesses for each of the functions you developed in the
last section. Give them appropriate docstrings. Import the functions into an-
other module and use the trick we have just seen here so the test code does not
run in the program into which it is imported.

7 A Chinese Wall

Functions store procedures we want to use to accomplish tasks. A large program
may contain hundreds, or thousands of functions.

This brings us back to the symbol table. If a program contains many func-
tions, how do we avoid confusion about variable names? How do we avoid
con�icts where we use the same variable name in two places and cause untold
vicious errors and un�ndable bugs? We could spend vast volumes of time keep-
ing track of variable names we have used! What if we are importing a module?
Is there documentation telling you all of the local variables so you can avoid
problems? Why haven't we done this yet?

If we do things correctly, this fear will prove to be entirely unfounded and
the need for any such documentation will not exist. Phew! Functions provide a
means of managing the visibility of symbols in a program.

For good style and sanity, all programs you write should have the following
elements in this order.

1. Put all import statements �rst.

2. De�ne all of your functions.

3. Put the �main routine� of your code last. This begins with the �rst unin-
tended statement outside of any function.

It is possible to violate this discipline, and that can indeed leave you sorry. Using
this scheme will give you the best possible management of symbol visibility. If
you hear anyone say �global variable,� immediately place a paper bag over your
head and run away as fast as you can.

Using this system, here is what happens. Python starts and all of is built-
in methods are visible. The code for each of your imports and functions is

17

processed. The functions are then visible for the entire lifetime of the program.
In particular, when you are inside of any function, all the other functions in the
module as well as all of the imported modules, and Python's built-in methods
are visible. This is really what we want to be visible. We shall term this
collection of visible stu� the global symbol table.

If your program has a very large number of functions, you should think about
organizing them into modules and importing the modules, to keep the size of
the global symbol table manageable by giving functions surnames.

We have the protection of the Chinese Wall : every function, during its
execution, has its own private symbol table. We shall see that when a function
is called, control of the program passes into that function. During this time,
the function can only see user�de�ned variables in its private symbol table, and
the items present in the global symbol table. However, it cannot see any of
the variables inside of other functions. This relieves us from worrying about
con�icts between variable names. This is also the reason you can use functions
from other modules and be completely oblivious to the variable names used
inside of them.

Consider this example, twoFunctions.py.

#!/usr/bin/python

def square(x):

y = x*x

return y

def cube(x):

return x*x*x

When you are coding inside of a function, you can treat anything found in a
function's argument list as a variable; these variables, which are properly called
parameters, are only visible inside of the function. You can also create variables
inside of functions; such variables are called local variables. Notice that the
name x is used for both of these functions' arguments. Yet, because of the
Chinese Wall, these x variables are separate. One is cube's x and the other is
square's x. We will say that variables created inside of a function are local to
that function. You can see that the function square has a local variable named
y. Local variables inside of any function are invisible outside of that function.
You can only interact with the function by passing data to its arguments. There

are no user-serviceable parts inside!

The scope of a variable is the region of code in which the variable is visible.
Python is said to have function scope, since the lifetime of a variable is from the
time of its creation until the time at which the function containing it returns.
When a function returns, its local variables are said to go out of scope.

Since the main routine contains all your code that is outside of any function
and it constitutes a real function, variables created inside of main routine are

18

separate from any variable created inside of any function in your program. This,
again, is the Chinese Wall at work.

The Chinese Wall is helpful, because it precludes namespace collisions in
which two objects of the same name could cause confusion. Since any given
function will only have a few variables and arguments inside of it, this relieves
you of the massive headache of remembering all the variable names you ever
used and keeping them from �ghting with each other. It makes writing programs
simpler, more fun, and basically ... possible.

The Chinese Wall is the reason that we can concern ourselves with the be-
havior of a function and we can forget about the speci�cs of its implementation.

In practice, functions should seldom be more than a screenful of code. Write
functions that perform one speci�c task. This is the Principle of Atomicity of

Purpose. Make functions as general and extensible as possible without rendering
them confusing. There is a delicate art that manages the compromise between
completeness of a function and e�ciency and manageability.

Next, we discuss the call stack, we shall look at the life cycles of symbol
tables in detail. There you will see very speci�cally how functions keep variable
names separate.

8 Stack Frames and the Function Call Stack

The mechanism of the call stack will help you to understand how a chain of
function calls builds and resolves. Understanding this process is absolutely key
to understanding much of what happens later.

Although this section contains a lot of minute detail, it is important to read
through it carefully to grasp the key ideas. Your patience will be rewarded when
you program, and with insight into how things work in Python.

A stack of objects is a data structure containing a list of objects; think of
the list as building from the bottom upwards. Visualize it just as you would a
stack of books. Putting an item on the top of the stack called pushing the item
onto the stack. Removing an item on the stack is called popping the item from
the stack. A stack is either empty (no items on it) or nonempty. Simply looking
at and reporting the item on top is called peeking at the stack. Trying to pop
an item from an empty stack or trying to peek at it is an error.

A list in Python can act as a stack. Observe what we do here. A list has a
pop method; this method removes the last item of the list as a side-e�ect and
returns that list item as a return value.

>>> x = [1,2,3]

>>> x

[1, 2, 3]

19

>>> y = x.pop()

>>> y

3

Here is how to peek at the top of the stack; simply view the last item. This is
called �peeking.�

>>> x[-1]

2

Finally, here is how we can push, or add an item to the top of the stack. We
just press the existing append method into service.

>>> x.append("seahorse")

>>> x

[1, 2, 'seahorse']

Function calls in Python are controlled by a stack called the call stack. Recall
we spoke of the heap and the stack before; the call stack is the stack that stores
function calls, and its stores the memory addresses of objects being pointed at
by variables.

Visible Names At any time in a program's execution there is one source of
names that is visible for the entire lifetime of the program; this is the global
symbol table.

After your import statements, come your functions. These all are placed in
the global symbol table as Python sees them; this is how functions can see each
other from within their bodies. Variables local to the main routine go in the
global symbol table too, but you should only read their values when outside of
the main routine. Attempting to change the values attached to these variables
within a function other than the main routine is a dangerous and foolish thing
to do. Do not do it.

Can I see this? Yes, use print(dir()) and you can see all visible names.
If you import a module, seeing inside of it is simple. For example, if you have
imported the module os, just enter dir(os) and you will see the goodness
inside.

Remember, all Python programs begin executing in the main routine; prior
to that, they are just reading things into memory. When a function is called,
its stack frame or activation record is pushed onto the function call stack.

The main routine lives at the bottom of the call stack. It occupies a special
stack frame called the global frame. Items in this frame are visible throughout
a program's execution.

20

You should think of a stack frame as a box that contains information about
the function, including function's symbol table and a pointer that bookmarks
where the the caller was in its execution. This pointer allows the caller to resume
execution exactly where it left o�, and it is known as the return address.

When a function returns, its stack frame is popped from the function call
stack, its return value, if any, is returned to its caller, and its stack frame
is orphaned. All variables local to a function die when the function returns.
This may orphan objects on the heap, which will make them susceptible to
garbage collection. The function may have side e�ects, which can live beyond
the function's (or program's) lifetime.

When the main routine returns, the global frame is popped from the call
stack and program's execution terminates. Then operating system then discards
the process generated by the program and deallocates its virtual memory.

The Chinese wall is enforced, because only the global symbol table and
the variables in the currently working function are the only ones visible. This
currently working function is the one whose frame is on the top of the call stack.
Each function can only see its own private symbol table and the global symbol
table.

We shall take a detailed look at this phenomenon with this sample program,
fAndG.py.

def f(x):

y = x*x

return y*y

def g(x):

z = f(x + 1)

return z*4

#Here is the main routine

x = 2

print ("Whoopie!")

This program begins to run. The code for the functions fand gis recognized
and then fand g, along with Python's built-in modules comprise the global
symbol table. Then the main routine begins. The �rst line causes it its frame
to look like this.

global frame:

x -> 2

The second line causes the function print to be called, so a frame is created
for it and it is pushed onto the stack. It will have an argument, whose name we
don't know but will assume is s.

21

print:

s -> "Whoopie!"

global frame:

x -> 2

Then print causes "Whoopie!" to be put to stdout, and it returns. Its frame
is then popped from the stack.

global frame:

x -> 2

What's di�erent now is that we are just beyond the print function call in
the main routine. Since the main routine has run out of code, it has a tacit
return and the program ends. This feature is common to all functions; they
return automatically if they run out of code. If this occurs, they return the
Python graveyard object None to the caller.

Since neither f nor g was called, they played no role in the execution of
the program. They were visible and memory was allocated for their procedure
but they remained unused. Now we will add a little code to make things more
interesting.

def f(x):

y = x*x

return y*y

def g(x):

z = f(x + 1)

return z*4

#Here is the main routine

x = 2

print ("Whoopie!")

print (f(x))

We start o� just like last time after the �rst line.

global frame:

x -> 2

Next, we call print. Our stack now looks like this.

print:

s -> "Whoopie!"

global frame:

x -> 2

22

Next, print puts its string to the screen and it runs out of code. It has a
tacit return and control passes back to the global frame right where it left o�.

global frame:

x -> 2

The next line of code is print(f(x)). We push print onto the stack.

print:

s -> f(2)

global frame:

x -> 2

The print frame has no clue what to do; it sees a call to f while it is building
its arguement list. What to do? Push f's frame onto the stack with argument
x = 2

f:

x -> 2

print:

s -> f(2)

global frame:

x -> 2

The function f is now controlling execution. The line y = x*x is now exe-
cuted. We see that since x is pointing at 2, x*x evaluates to 4. That gets put
in the frame's local symbol table.

f:

x -> 2

y -> 4

print:

s -> f(2)

global frame:

x -> 2

The next line is f is return y*y, so the value 4 is fetched from the local
symbol table, y*y evaluates to 16, it is returned to the caller, and the frame for
f is popped from the stack.

23

print:

s -> f(2)

global frame:

x -> 2

Where'd the 16 go? The return address in the stack frame for f tells exactly
where to resume execution in print's frame. That frame was just building it
argument list, so that's what happens. Our diagram looks like this.

print:

s -> 16

global frame:

x -> 2

Now print knows exactly what to do with 16; it puts it to the screen, then
its frame is popped. We are now here.

global frame:

x -> 2

The return address puts us just beyond the last line of code in the main
routine. The program terminates. What got put to the screen?

Whoopie!

16

Next we will call the function g and see the enchilada in its peppery entirety.

def f(x):

y = x*x

return y*y

def g(x):

z = f(x + 1)

return z*4

#Here is the main routine

x = 2

print "Whoopie!"

print (g(x))

In the �rst two lines of the main routine, the local variable x is set to 2,
print gets pushed onto the stack, then Whoopie! is put to stdout, and then
print gets popped from the stack, just as we saw in the previous example. This
leaves our stack looking like this.

24

global frame:

x -> 2

Next we come to this line print(g(x)). We push print onto the stack.

print

s -> g(2)

global frame:

x -> 2

Next, the function g is called for the value x = 2. The call stack now looks
like this

g:

x -> 2

print

s -> g(2)

main routine:

x -> 2

The next line of g has the instruction z = f(x + 1); the expression x + 1

evaluates to 3 and the call f(3) is made.

f:

x -> 3

g:

x -> 2

print

s -> g(2)

main routine:

x -> 2

Now f's frame is in control since it's on top. The line z = f The call f(3)
initializes f's y to x*x, which evaluates to 9. We therefore augment its symbol
table int he next stack diagram.

25

f:

x -> 3

y -> 9

g:

x -> 2

print

s -> g(2)

main routine:

x -> 2

The next line to execute is in f, which is return y*y. This pops f from the
stack and returns 81 to the caller. We now have this.

g:

x -> 2

z -> 81

print

s -> g(2)

main routine:

x -> 2

The caller, g, resumes where it left o�; it must return 4*y, which evaluates
to 324. That value goes back to print which was just building its argument
list. We now have this.

print

s -> 324

main routine:

x -> 2

Now print puts 324 to the screen and it runs out of code. This triggers a
tacit return and its framea is popped.

print

s -> 324

main routine:

x -> 2

The main routine now ends, as does program execution. Here is what got
put to the screen.

26

Whoopie!

324

8.1 A Summary

Python reads all imported modules into program memory. It then places all
functions you have de�ned in the global symbol table. Execution of a program
begins in the main routine. If there is no main routine, the program will not
do anything. When a function is called, its stack frame is pushed onto the call
stack. The only data visible are the data internal to that function, and global
symbol table.

The function can see its private symbol table and its instruction pointer that
knows what instruction it is currently executing. When a function returns, its
return value (if any) is returned to the caller and its frame is popped o� the top
of the stack.

The next lower function on the stack gets control of the program and resumes
right where it left o�; a record of this is embodied in the frame's instruction
pointer.

The call stack is a LIFO (last in �rst out) system. When a function call is
made, we say the stack is building ; when one returns the stack is unwinding.
If a function has no return statement, it automatically returns when its code
reaches an end; otherwise, A function's control terminates as soon as it encoun-

ters a return statement. Throughout the lifetime of a program, the call stack
may build and partially unwind many times. It is only when the main routine
returns that the program's life ends.

8.2 A Terminology Roundup

There are some terms we use for functions; we will list them here for your
convenience.

pass When you call a function as we did with hypot(5,12), you are said to
be passing the values 5 and 12 to the function. You can pass literals, as we did
here, variables, or more generally, you can pass expressions to functions. For
instance hypot(2 + 2, 4 - 1) will return 5.0. These expressions can contain
variables. Everything is evaluated before it is passed to the function; that is the
value ultimately passed to a function.

This includes variables; as a result, a function gets a copy of the value a
variable holds passed it as an argument, not a copy the object the variable
points at. What is passed, is in fact, the memory address of the object. In
programming language terminology, Python is a purely pass�by�value language.

27

Do not confuse this with the Python keyword pass, which is the do-nothing
statement.

argument list The argument list for a function is just the comma-separated
list of stu� that appears in the parentheses after the def declaration. Each item
in the list, needless to say, is called an �argument.� The names given arguments
are called parameters or formal parameters. The arguments supplied by the
caller are passed to the parameters in the callee.

call You are calling a function when you use it. If you do something with
hypot(5,12) you are said to be calling the hypot function.

8.3 The Python Ternary Operator

This is a convenience that can make the writing of very simple if-else progressions
very succinct. You will see it in OPC (other peoples' code) so you need to be
aware of it. You may even acquire a taste for it yourself.

We show the absolute value function written in this style

def absoluteValue(x):

return x if x >= 0 else -x

what you see here is the Python ternary operator at work. Its general form is

exprTrue if predicate else exprFalse

The predicate must be... a predicate, i.e. a boolean valued expressoin. If the
predicate evaluates to true, the expression evaluates to exprTrue. Otherwise,
it evaluates to exprFalse.

Programming Exercises Try wrting these with if-else and with the ternary
operator. Use the Mean Teacher technique to create these functions. Make sure
you test each branch of execution and any border cases.

1. Write this function.

def parroty(n):

"""Precondition: n is a nonnegative integer

Postcondition: returns the string "EVEN" if n is even and "ODD"

otherwise. """

return TODO

28

2. Consider the function

f(x) =

−(x+ 4) if x < −4
0 if −4 ≤ x < 4

x− 4 if x ≥ 4.

Code it with simple ifs and possibly an else. Can you implement it using
the ternary operator?

9 Some Types are Smarter than Others

For objects of all Python types, a variable stores its object's location in memory.
It does not store the object itself. Being aware of this will make some seemingly
confusing issues very clear later on.

All variables in Python point at objects in memory. An object has three
attributes:

� identity An object is a well�de�ned region of memory. It is. Variables
can point at objects; if an object is not pointed at by any variable, it is
said to be orphaned. Memory occupied by orphaned objects is reclaimed
by Python's garbage collector.

� state An object has a current state; for a string, the state is just the
sequence of characters stored by the string. Objects often hold data;
these data re�ect the state of the object. The state of an object is what
the object �knows.�

� behavior We saw in the exercises that a string can return a copy of
itself with all alphabetical characters capitalized. This is achieved by a
string method. Methods are functions that are attached to objects that
can accomplish tasks. An object of a given type can have zero or more
methods. The minimal behavior of any object is that it knows its type.
The methods that an object can perform constitute is behaviors.

Let's show a concrete example with a brief interactive Python session. We
shall discuss some of the methods which strings have. Suppose you have a
string named stringName. The proper usage for invoking any string method on
stringName is

stringName.methodName(arguments....)

In an earlier exercise, we saw that strings have two methods named upper

and lower; these methods respectively, return a copy of the string with all
alphabetical characters to upper or lower case. Non-alphabetical characters are
ignored. These methods do not change the string they are called upon.

29

>>> x = "Zolyvars"

>>> x.upper()

'ZOLYVARS'

>>> x.lower()

>>> 'zolyvars'

'zolyvars'

>>> "EwrEW###@##".upper()

'EWREW###@##'

>>> x = "Zolyvars"

Zolyvars

Grammatically the x. is x in the genitive case: you can parse it as �x's�.
Hence, when you say x.lower(), you are saying, �Call x's method lower.� Since
x is a string, its lower method returns a copy of the string in lower�case letters.

It is important to remember that methods are functions that are attached to
objects; this explains the empty parentheses after lower and upper. Forgetting
the parentheses leads to ugly-looking output; try it for yourself and see! Since
no further information is required for these functions to do their jobs, they have
empty argument lists. Since they are invoked by typing x., you know that these
methods have complete access to the state of x. Methods provide a means by
which you can send a message to an object. You call methods on an object via
the object's name; that is, you use the variable name currently pointing at the
object.

Let us now look at another string method, find which allows you to search
for one string inside of another. The find method returns an integer that is the
index of the location of the sought substring. If it does not �nd the substring,
it returns a -1. We begin with a little interactive session.

>>> x = "abcdefghijklmnopqrstuvwxyz"

>>> x.find("p") #call x's find method for "p"

15

Observe that find takes an argument that is a string. Since it found the
string "p" starting at index 15 in x, it returned a 15. Now we will send find

snark-hunting.

>>> x.find("1")

-1

We got back a -1 since we did not �nd the numerical character 1 in the string
x. Next we �nd the string "ijk" starting at index 8 of x.

>>> x.find("ijk")

8

30

A substring must be contiguous. It is not enough just for its characters to
appear in order. Here we are told that "aeg" is not found.

>>> x.find("aeg")

-1

The find method is quite a bit richer than its sibling methods upper and
lower. The find method requires a string be passed it as an argument. The
call x.find("p") says, "Hey x, �nd the index in yourself at which the string 'p'
starts." Since the string "p" is present in x at index 15, that index is returned
to the caller (your interactive session). On the next line we attempt to �nd the
numerical character "1" in the string x; since it is not present, find returns the
sentinel value -1 to tell the caller it did not �nd the requested string in x. The
call x.find("ijk") found the string "ijk" inside of x at location 8. When you
ask find to �nd, it looks for a contiguous substring. The call x.find("aeg")
returns the sentinel value -1, because "aeg" is not a contiguous substring of x.

There are numerous methods for strings. To see them all, visit the Python
site �nd §3.6.1, String Methods. You will need to to this to work the program-
ming exercises given below.

Programming Exercises Open the String Methods documentation and an
interactive Python session. Write the functions described below by using the
String Methods class. Develop test cases before placing any code in the function.
Give each function a method stub. Remember to compile as you go make it easy
to �nd and squash errors. Some test cases are provided for you.

def countCharsIn(c, someString):

"""precondtion: c is a one-character string, someString is

a string.

postcondition: returns the number of times c appears in

someString"""

def hasExtension(fileName, ext):

"""precondition: filename is a string that is a file name

and ext is a file extension.

postcondition: return True if fileName ends with a period (.),

then the extension. Returns false if fileName contains any

spaces in it regardless of its suffix."""

def chompEnds(c, someString:

"""precondition: c is a one-character string that appears

at least twice in someString.

postcondition: returns the substring of someString beginning

after the first instance of c and ending before the last

instance of c in someString. """

31

print ("countChars(\"a\", \"alabaster\") = ",

countChars("a", "alabaster"), "expected: 3")

print ("hasExtension(\"cat.cpp\", \"cpp\") = ",

countChars("cat.cpp", "cpp"), "expected: True")

print ("hasExtension(\"siamese cat.cpp\", \"cpp\") = ",

countChars("siamese cat.cpp", "cpp"), "expected: False")

10 Format Strings

Format strings can give your test code a simpler and cleaner appearance. We
show an example then deconstruct.

>>> x = "f(%d) = %d " %(10, 10*10)

>>> print(x)

f(10) = 100

>>> import math

>>> y = "sin(%5.4f) = %5.4f" %(math.pi, math.sin(math.pi))

>>> print(y)

sin(3.1416) = 0.0000

The variable x winds up pointing at a string. The construct %d is called a format

speci�er ; in this case we use %d for an integer (or long). The format speci�er
is a a placeholder that says, �expect a decimal (base 10) integer here.� After
the close quote on the string, you put a % sign then a tuple. The length of the
tuple must match the number of format speci�ers. The items in the tuple are
dropped into place in order. The tuple may contain objects of various types.
The whole thing is formatted as a string in the end. If you are using only one
format speci�er, you may use a single variable after the outer %. How do you
make a %? Use %%.

In the string y, we used format speci�er %5.4f. The f means, �Expect a
�oating point number.� the 5.4 means give the number a minimum width of 5
and show 4 �gures after the decimal. Format speci�ers begin with a %. Then
you can place a �ag which can be any of the following.

Use alternate form.
0 Pad with zeroes for numerical

values
+ Put a + or a - in front of numer-

ical values
- Left justify within width.

You can then specify a minimum width (an integer) and then for numbers
with decimals, use a .(integer) to specify how many places to show beyond the

32

decimal point. Finally you specify the type of datum to expect. This table
shows the most common ones.

d base 10 (decimal) integer
o base 8 (octal) integer
x base 16 (hex) integer, 0x pre�x, lower case
X base 16 (hex) integer, 0x pre�x, upper case
e, f Floating point decimal number, lower case e
E Floating point decimal number, upper case E
g Floating point decimal number, lower case e, if sci-

enti�c notation is used
G Floating point decimal number, upper case E, if sci-

enti�c notation is used
c a single character
s a string

33

	Introduction
	OK, TI89, Time to Sweat!
	How do I Import a Module?
	Exploring the math Module

	Reading Python Documentation
	Creating your own Modules
	Preconditions, Postconditions, and Documentation
	Integrated Testing of Modules
	An Example

	A Chinese Wall
	Stack Frames and the Function Call Stack
	A Summary
	A Terminology Roundup
	The Python Ternary Operator

	Some Types are Smarter than Others
	Format Strings

