
Chapter 4, Power Programming Tools

John M. Morrison

October 30, 2019

Contents

1 Introduction 2

1.1 A Helpful Tool: Raw Strings . . . . . . . . . . . . . . . . . . . . 2

2 Introducing the sys module 3

2.1 This Way to the Egress! . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 How can I change Python’s Recursion Limit? . . . . . . . . . . . 6

3 Python File IO 7

3.1 File Opening Modes . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Writing to a File . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 Reading from a File . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.4 A Bigger Example: copy.py . . . . . . . . . . . . . . . . . . . . . 9

4 Some Useful Techniques for File Input 13

4.1 Methods of Traversing Files with for loops . . . . . . . . . . . . 14

5 Introducing the re module 15

5.1 Characterclassese . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.2 Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.3 Escape now! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.4 Special Character Classes . . . . . . . . . . . . . . . . . . . . . . 18

5.5 Regexese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1



5.6 “And then immediately” . . . . . . . . . . . . . . . . . . . . . . . 19

5.7 Repetition Operators . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.8 Using or . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1 Introduction

In this chapter we shall introduce some new modules and features that will
make Python a far more useful applications programming tool. You can go to
the Python site and find any of these module’s documentation in the Global
Module Index. This is the place to look for information about any module
you would like to learn about. The major topics in the section are largely
independent of one another. It pays to begin peeking at this chapter early in
your Python programming experience, as some of the tools here do not require
much knowledge of Python.

We begin by introducing raw strings, which are a real convenience when
working with fileIO and regular expressions. We then show a couple of useful
features in the sys module.

The first major topic is regular expressions, a powerful pattern-matching
language that eliminates a great deal of tedious conditional and looping logic.
Regular expressions (or regexes for short) take some effort to learn, but they
are a powerful work–saving tool. Languages such as PHP, Java, Ruby and
JavaScript all use regexes, so you may as well learn them early.

We then will study the os and os.path modules, which allow you to interact
with your computer’s operating system and do system calls from Python, and
which grant access to and control over your file system.

In this chapter we shall see how Python can be used to create professional–
looking programs that perform useful tasks. We will begin to look at programs
that consist of a small number of functions that work together to perform a
specific task. Pay attention to the case studies created in the exercises; these
are meant to help you build some useful utilities.

1.1 A Helpful Tool: Raw Strings

Python supports a version of strings called raw strings. To make a raw string
literal, just prepend with an r. When Python encounters a raw string, all
backslashes are read literally. No special meaning is given them by the language.
This interactive session shows how it works.

>>> path = ’C:\nasty\mean\oogly’

>>> print (path)

2



C:

asty\mean\oogly

>>> path = r’C:\nasty\mean\oogly’

>>> print (path)

C:\nasty\mean\ugly

>>>

Notice that in the raw string, the \n did not expand to a newline; it was a
literal backslash-n. This is a great convenience when dealing with file paths in
Windoze and for writing regular expressions.

Warning! You may not end a raw string with a \. This causes the close-quote
to be escaped to a literal character and causes a string-delimiter leak. Think
for a moment: there is an easy work-around for this!

2 Introducing the sys module

Recall that a UNIX command has three parts, name, options, and arguments.
So far, we have created Python programs and simply run them. If we have a
program foo.py, we type

$ python foo

at the UNIX command line to run the program. We have used the raw input

feature to obtain information from the user.

The disadvantage to this appears when you want to automate a process that
involves running a Python program. You need to tell the script running your
program all the information it needs; there is no one to type the input for it. The
first new feature we will look at allows Python programs to accept command
line arguments. Place this program in a file called cl.py.

#!/usr/bin/python3

import sys

for k in sys.argv:

print (k)

We will use the shebang line and make this file executable. Observe what
happens in the following UNIX session.

$ chmod u+x cl.py

$ ./cl.py a b c d e f

./cl.py

3



a

b

c

d

e

f

$

What we see here is that the list sys.argv of strings is put to stdout by the for
loop in the program. This list of strings is a list of command–line arguments.
You can gain access to these by using the [] operator. For example sys.argv[1]
evaluates to a. The value sys.argv[0] evaluates to ./cl.py, the name of the
command that invoked it.

A Command Line for Windoze Users You also have access to this tool
in Windows. You need to edit your environment variables, and add the Python
executable to your search path. Having done this, you can invoke Python from
a cmd window just as we have done in this section. You will find this interface
to be very useful.

Be reminded if you want to use the command–line arguments as numbers,
you must cast them to the appropriate type. Here is an example of this at work.

Enter the following in a file named f2c.py, save, quit and make the file
executable.

#!/usr/bin/python3

import sys

Fahrenheit = float(sys.argv[1])

print (farenheit, "degrees farenheit is equal to", )

print (5.0/9*(farenheit - 32), "degrees Celsius.")

Then run it like so.

$ ./f2c.py 212

212.0 degrees farehheit is equal to 100.0 degrees celsius.

2.1 This Way to the Egress!

Suppose some silly end-user decides to enter a foolish command-line argument,
or that some other dissaster occurs and you just want to bail out. The function
sys.exit("error message") gives you an expeditioius route to escape. Here
is an elaboration on our temperature scale converter example. Place it in a file
named safef2c.py

4



#!/usr/bin/python3

import sys

farenheit = sys.argv[1]

if farenheit.count(".") > 1:

sys.exit("Malformed number: Two or more decimal points")

for k in farenheit:

if not (k in "0123456789."):

sys.exit("Malformed number: non-numerical character")

farenheit = float(farenheit)

print("%s degrees farenheit is equal to %s degrees centigrade"% (farenheit, 5.0/9*(farenheit - 32)))

Now we run our shiny new program. Look at the nasty, inelegant snarl of
code we wrote to safeguard our innocent comand–line argument from evil end-
users with foul intent. Next see how it works nicely to prevent problems and
graceless uninformative surly error messages.

$ chmod u+x safef2c.py

$ ./safef2c.py 212

212.0 degrees farehheit is equal to 100.0 degrees celsius.

$ ./safef2c.py 4.55

4.55 degrees farenheit is equal to -15.25 degrees Celsius.

$ ./safef2c.py 4.55.23

Malformed number: Two or more decimal points

$ ./safef2c.py cowpie

Malformed number: non-numerical character

$

We an improve this slightly by adding two functions. By so doing, our
code becomes easier to read. The main routine is no longer puncuated by error
and conversion code. The main routine is playing “conductor,” orchstrating
the actions of the functions that do much of the actual work. The code for
isLegalFloat is a nice, reusable item for a variety of situations.

This is good abstraction at work. The main routine simply delegates the
work of checking validity of input and of conversion of the temperature to the
functions.

#!/usr/bin/python3

import sys

def convert(x):

"""converts x in farenheit to centigrade"""

return 5.0/9*(x - 32)

def isLegalFloat(x):

"""ends program if x is not a legal float.

Otherwise it returns True"""

5



if x.count(".") > 1:

sys.exit("Malformed number: Two or more decimal points")

for k in farenheit:

if not (k in "0123456789."):

sys.exit("Malformed number: non-numerical character")

return True

farenheit = sys.argv[1]

if isLegalFloat(farenheit):

farenheit = float(farenheit)

print (farenheit, "degrees farehheit is equal to",)

print (convert(farenheit), "degrees celsius.")

Here we see that the program has all of its original functionality.

$ ./betterf2c.py 45.3

45.3 degrees farenheit is equal to 7.38888888889 degrees Celsius.

$ ./betterf2c.py 212

212.0 degrees farehheit is equal to 100.0 degrees celsius.

$ ./betterf2c.py 45.6.7

Malformed number: Two or more decimal points

$ ./betterf2c.py 56a

Malformed number: non-numerical character

$

2.2 How can I change Python’s Recursion Limit?

If you have been fooling around with recursion, you probably have notice that
Python limits the call stack to a height of 1000. The recursion limit prevents
runaway function calls that can give your box some pretty serious agita. Here is
a sample interactive session with getrecursionlimit and setrecursionlimit

at work.

>>> import sys

>>> sys.getrecursionlimit()

1000

>>> sys.setrecursionlimit(5002)

>>> def factorial(n):

... if n in [0,1]: return 1

... return n*factorial(n - 1)

...

>>> print (factorial(5000))

4228577926605543522201064 ..... 0000000

Use this feature judiciously. This kind of stack overflow can be indicative

6



of a serious bug in your program. However, here, we are fully aware that the
factorial function needs sufficient depth of the call stack to do its job.

3 Python File IO

File operations in Python are handled by the built-in function open. This
function opens a pipe between your program and a file. You can specify the file
using a relative or absolute path. It is an error to attempt to do operations on
a file or into a directory for which you do not have permission. For example,
you can open a file for reading if you have read permissions. You cannot open
a file for writing if you lack have write permission.

3.1 File Opening Modes

The open function has two arguments: a filename (a string) and a mode (string).
We will concentrate on three modes for opening files. We show them in the table
here.

Python File Open Modes
Mode Explanation
a This mode will open a file for writing and append that which you

write to the end of the file. If the file does not exist, it is created
for you. It is an error for you to attempt to write in a directory in
which you do not have write permissions. It is an error to attempt
to append to a file for which you lack write permissions.

w This mode will open a file for writing and overwrite the file you
specify if it exists and it will create it otherwise. Be warned:
opening an existing file for writing means it will be clobbered. It
is an error for you to attempt to write to a file in a directory in
which you do not have write permissions.

r This mode will open a file for reading; it is an error to attempt to
read a nonexistent file or to read from a file for which you do not
possess read permissions.

Usage In what follows the file name and mode are both strings. The syntax
for opening a file is as follows.

filePipe = open(filename, mode)

7



3.2 Writing to a File

You will often see the name outFilePipe for a file to write or append to and
inFilePipe for a file we are reading into our programs. Think of the pipe as
a one–way connection between your program and the file. The write method
sends the characters you write down the pipe and into the file. The read method
will hoover up the characters from a file into your program. We shall begin by
working with the write mode.

outFilePipe = open("out.txt", "w")

outFilePipe.write("Hello")

outFilePipe.write("World")

outFilePipe.close()

When you open the resulting file out.txt, you will see that it contains this text.

HelloWorld

Notice that there is no newline placed by the write method. If you want newlines,
you must put them yourself! The write method just pushes the new bytes into
the file. We now revise our program as follows

outFilePipe = open("out.txt", "w")

outFilePipe.write("Hello\n")

outFilePipe.write("World\n")

outFilePipe.close()

and you will now have the newlines you wanted. Do not fail to close the file or
it may never write and your work will be lost!

Danger! If you open a file for writing which already exists, it is clobbered.
Later, when we learn about the os module, we will see how to prevent this.
Recall that such clobbering can occur in recipient files when invoking the mv

and cp commands. This feature is present because the destructive overwrite is
often a desired side effect of the command.

3.3 Reading from a File

Suppose we have a file named in.txt with this Haiku stored in it.

I know am an innie

I therefore collect lint daily

It is my lot in life.

8



Now we show how to open it for reading using the "r" mode.

inFilePipe = open("in.txt", "r")

stuff = inFilePipe.read();

inFilePipe.close()

print (stuff)

print ("len(stuff) = " , len(stuff))

The read() method reads the file in as one giant string. This string will contain
the newlines necessary to reconstruct the original structure of the file.

$ python read.py

I know am an innie

I therefore collect lint daily

It is my lot in life.

len(stuff) = 72

If you count the characters with spaces, you will come up short characters. Do
not forget that there are invisible ’\n’s that act as end-of-line characters.

The object returned by open is a file object; you can check in an interactive
session. Calling the type() function on a file pipe results in the reply

type<’file’>

It is best to think of a file object as a pipe to a file; this pipe is outgoing
if we are writing or appending and incoming if we are reading. You can have
as many file objects present in your program as you wish, each slurping from
and spewing data into different places. These file objects can open and close as
needed throughout the lifetime of your program.

3.4 A Bigger Example: copy.py

We shall now produce an example of a program that emulates the action of
the UNIX command cp for files. Recall that the cp command needs a donor
file, which is the file being copied, and a recipient file, the destination of the
data being copied from the donor. We begin by specifying the behavior of our
program. We want something like this

$ ./copy.py source sink

The file source should exist. We do not yet have the ability to check this, but
that will change before the end of the chapter. The file sink will be overwritten

9



by the contents of source if it exists. Otherwise it will be created and the
contents of source will be placed in it.

Create a file named copy.py and put this outline of comments in it. In this
file, we see the broad details of what we need to do to accomplish our stated
task. If you run this program (clearly) it will do nothing.

#get the name of the donor file

#get the name of the recipient file

#read in the donor file

#print its contents to the recipient

#make sure all is closed when we are done or else.

Let’s start at the beginning. We shall begin by just getting the file names
from stdin. Let us add the shebang line and make the file executable too.

#!/usr/bin/python3

#get the name of the donor file

#get the name of the recipient file

donor = raw_input("Enter a donor file: " )

recipient = raw_input("Enter a destination file: ")

#read in the donor file

#print its contents to the recipient

#make sure all is closed when we are done or else.

Run the program we have so far and see the donor and recipient file getting
requested. So far, nothing has really happened, other than the garnering of the
file names.

$ chmod u+x copy.py

$ ./copy.py

Enter a donor file: foo.txt

Enter a destination file: goo.txt

$

Next, we open the file for reading, get everything and get out.

#!/usr/bin/python3

#get the name of the donor file

#get the name of the recipient file

donor = raw_input("Enter a donor file: " )

recipient = raw_input("Enter a destination file: ")

#read in the donor file

10



inFilePipe = open(donor, "r")

buf = inFilePipe.read()

inFilePipe.close()

#print its contents to the recipient

#make sure all is closed when we are done or else.

Run the program again to check our progress.

$ python copy.py

Enter a donor file: in.txt

Enter a destination file: noplace.txt

Since we are doubting Thomases here, we will put in some temporary code to
print buf to stdout and to verify that all is in good order. Now let’s write it
all into the recipient file.

#!/usr/bin/python3

#get the name of the donor file

#get the name of the recipient file

donor = raw_input("Enter a donor file: " )

recipient = raw_input("Enter a destination file: ")

#read in the donor file

inFilePipe = open(donor, "r")

buf = inFilePipe.read()

inFilePipe.close()

#print its contents to the recipient

print (buf) ##temporary code to test file open.

#make sure all is closed when we are done or else.

All is working so far.

$ python copy.py

Enter a donor file: in.txt

Enter a destination file: nowhere.txt

I know am an innie

I therefore collect lint daily

It is my lot in life.

$

Notice the extra line at the end; it is the \n at the end of the last line of the
file that is doing this. Now we will get rid of the temporary code and go for the
real thing. Notice how we remembered to open the recipient file for writing.

#!/usr/bin/python3

11



#get the name of the donor file

donor = raw_input("Enter a donor file: " )

#get the name of the recipient file

recipient = raw_input("Enter a destination file: ")

#read in the donor file

inFilePipe = open(donor, "r")

buf = inFilePipe.read()

#open to write to the recipient file (can’t forget this)

outFilePipe = open(recipient, "w")

#print its contents to the recipient

outFilePipe.write(buf)

#make sure all is closed when we are done or else.

inFilePipe.close()

outFilePipe.close()

Here is a shell session that shows all.

$ ./copy.py

Enter a donor file: in.txt

Enter a destination file: nowhere.txt

$ more in.txt

I know am an innie

I therefore collect lint daily

It is my lot in life.

$ more nowhere.txt

I know am an innie

I therefore collect lint daily

It is my lot in life.

$

We will do one more thing to add polish: we will use the command–line
argument feature to give this program a professional look.

#!/usr/bin/python3

import sys

#get the name of the donor file

donor = sys.argv[1]

#get the name of the recipient file

recipient = sys.argv[2]

#read in the donor file

inFilePipe = open(donor, "r")

buf = inFilePipe.read()

#open to write to the recipient file (can’t forget this)

outFilePipe = open(recipient, "w")

#print its contents to the recipient

outFilePipe.write(buf)

12



#make sure all is closed when we are done or else.

inFilePipe.close()

outFilePipe.close()

Our program has all of the slickness of a nice UNIX command.

$ ./copy.py in.txt nowhere.txt

$ cat in.txt

I know am an innie

I therefore collect lint daily

It is my lot in life.

$ cat nowhere.txt

I know am an innie

I therefore collect lint daily

It is my lot in life.

$

4 Some Useful Techniques for File Input

We begin by showing some useful methods for file objects. Each method is
shown with the modes for which it applies.

The file reading mechanism has a file pointer, which keeps track of how much
of the file has been read. As the file read, the file pointer advances.

13



Python File Open Methods
Method Mode Explanation
read() r This reads in the entire file in a giant string. The

newlines in the file will be embedded in this string.
The file pointer will advance to the end of the file.

read(size) r This reads size bytes in as a string. The file pointer
will then be advanced to the end of the bytes re-
turned.

readlines() r This reads in the entire file into a giant list of strings.
Each line in the file constitutes an item.

readline() r This reads one line from the file then points at the
next one. The file pointer winds up at the end of the
file.

seek(size) r This moves the file pointer to the sizeth byte of the
file. If size is 0, it resets the file pointer to the begin-
ning of the file.

write(string) w This writes in the string passed it into the file. If you
want a newline, you must explicitly put it in.

close w, a, r This closes the file pipeway and cleans up. Do it as
soon as you finish with the file, as it conserves system
resources.

You can traverse a file all at once, a line at a time, a character at a time, or
in pieces of any size you specify.

4.1 Methods of Traversing Files with for loops

Here is a basic technique for traversing a file opened for reading.

f = open("foo.txt", "r")

for k in f:

##do something with each line in the file

This for loop concludes its business when it reaches the end of the file. It
works on a file a line at a time. The for loop thinks of the file as a collection
of strings, each line in the file being a string. It iterates through those strings
in a natural order, the order in which they are present in the file.

Python 2/3 note This next loop is ideal for large files in Python 2. The
xreadlines() method reads the lines in seriatum and it terminates when the file
ends. In Python 3, this is actually what happens.

for k in open("foo.txt").xreadlines():

##do stuff to each line

14



5 Introducing the re module

Python supports a powerful feature called regular expressions, which allow you
to quickly and easily match textual patterns. Witness the ungainliness of the
code for isLegalFloat in the last section. Can we accomplish this without a
lot of error–prone complex looping and forking? In short, the answer is, “yes.”
However, you will need to expend a substantial effort to learn two new languages:
Characterclassese and Regexese.

This effort is one you will want to make

Characterclassese enables you to create wildcards for representing a single
character. Character classes are the “bricks” of regular expressions. Regexese is
the “building;” it controls what happens when character classes are assembled
together to recognize patterns . This section will be a quick–and–dirty intro-
duction to regular expressions that will allow you to accomplish a wide variety
of routine tasks.

5.1 Characterclassese

This is the language spoken inside of character classes. These are examples of
classes of characters we might like to represent. A character class is a character
wildcard that can stand for one or more characters. We might like to create
wildcards to represent these types of classes.

• an alphabetical character

• a punctuation mark

• a numeral

• lower–case letters

• upper–case letters

• an octal digit

• a hex digit

• any old list of characters you’d like to create

• any whitespace character

The simplest character class is just a character by itself. For example, the
character a is the character class standing for the character a. This is called a
literal character class.

The the next simplest character class shows an explicit list of characters.
For example

[aeiou]

15



represents any of the lower–case letters a, e, i, o or u. Notice how this character
class lives in a “house” made of []. The characters ] and [ are metacharacters
or “magic characters.” They play the role of being the exterior walls of a
character class’s house. We will make a complete list of metacharacters in
Characterclassese later in this section.

A lone character class is a regex, so we can test it in Python. This will
return True any line that contains any of a, e, i, o or u. To use Python’s regex
capabilities, you must first import the library re.

>>> import re

>>> seeker = re.compile("[aeiou]")

>>> bool(seeker.search("syzygy"))

False

>>> bool(seeker.search("sheck"))

True

>>> bool(seeker.search("EYEBALL"))

False

The seeker using the character class [aeiou] is seeking a lower-case regu-
lar vowel. You can see that ”syzygy” lacks these and that ”Sheck” has one.
However, ”EYEBALL” fails, because all of its letters are upper-case.

The code

seeker = re.compile("[aeiou]")

creates the seeker, which is a Python regular expression object. To get the
seeker to work, you use its search method. This returns a match object, which
is a fairly complicated creature. However, you can cast a match to a bool and
see if the seeker found the quarry it sought. The seek method returns a match
object casting to False if it does not see the characters a, e, i, o, or u in the
string it is searching.

You can put any list of characters inside of [....] and use it to to create a
match object. For instance,

[aWybe05]

will match any of the characters a, W, y, b, e, 0 or 5. Be warned, however
that Characterclassese has some magic (meta-) characters. We shall address
this issue here so you know what to do.

16



[ begin a character class formed with a list of charac-
ters

] end a character class formed with a list of characters
- produces a range (see below)
\ defangs any magic character (ex: \[ for a [ charac-

ter)
^ special “not” character This is only magic at the

start of a list character class

5.2 Ranges

The metacharacter - creates a range of characters. The ordering of characters is
determined by ASCII values. A character class can contain zero or more ranges.
Let’s begin with a simple example.

[a-z]

represents the lower case alphabetical characters. Range is keyed on ASCII
value. If you are unsure about the ASCII value of a character, use Python’s ord
function.

>>> ord("a")

97

>>> ord("z")

122

>>> ord("A")

65

You can represent any alphabetical character with

[A-Za-z]

and any hex digit with

[0-9A-Fa-f]

Any octal digit may be represented with

[0-7]

You can include the - character in a character class by using

[\- ({\it and any other characters you want})]

17



Let’s be exclusionary and sNOTty! We can write “negative” character
classes with the exclusion operator.

The not character ^ must appear FIRST, right after [. This example repre-
sents any character that is not a lower case alpha.

[^a-z]

5.3 Escape now!

We can toggle magic with the escape character

\

This turns magic off for magic characters and turns it on for certain non-
magic characters. For example, n is not magic, but \n is the newline metachar-
acter.

5.4 Special Character Classes

Some character classes exist that take the form \someCharacter. Here we
present a short table of the most useful ones.

\s This stands for any single whitespace character.
\S This stands for any single non-whitespace character.
\d This stands for any single decimal numeral.
\D This stands for any character that is NOT a single

decimal numeral.
\w This stands [a-zA-Z_0-9]; this represents the char-

acters allowed for Python identifiers in the positions
beyond the first.

5.5 Regexese

Be warned: The rules for Regexese are different from Characterclassese! This
is because Regexese is a whole new language. When in character classes, speak
Characterclassese, when outside, speak Regexese. Context is everything! Let
us begin with the metacharacters of Regexese.

18



Basic Metacharacters (One Keystroke)
Metacharacter Action
[ begin delimiting a character class
] end delimiting a character class
^ beginning-of-line charcter
$ end-of-line charcter
| or
\ escape character The escape character can make

other characters into metacharacters, or it can re-
move magic from a metacharacter.

( left delimiter
) right delimiter
. any single character except for a newline
* + ? repetition metacharacters (later)

To turn off any magic character, precede it with the escape character \. This
rule is exactly the same as the corresponding rule in Characterclassese.

5.6 “And then immediately”

We shall now see our first regex for matching a sequence of characters. Juxta-
position in a regex means “and then immediately”. The the regex

[a-iA-I][1-9]

matches a string that contains of a letter a-i and then a digit 0-9. The digit
must immediately follow the letter. For example, baaa5 matches and Q3 does
not.

Battleship! In the game of Battleship, we specify coordinates with letters a-i
and digits 0-9. The regex

^[a-iA-I]\d$

matches any string that is a legit Battleship coordinate. For example it will
match a5, A9 or B3, but not Q4. This regex demands the following: begining-of-
line andthenimmediately a-i or A-I andthenimmediately a decimal digit andthen-
immediately an end-of-line.

String Literals The character ’a’ is the same as the character class [a]. The
regex

CUSIP[0-9]

19



contains the string literal "CUSIP"; this portion of the string requires an exact
match of a the substring "CUSIP". Therefore the regex here matches CUSIP5,
but not CUSIp5, CUSIP55 or CUSIP. Read it as CUSIP andthenimmediately a
digit.

5.7 Repetition Operators

There are repetitions operators for regular expressions. These are all postfix
operators.

Repetition Operators
Operator Action
? expression appears 0 or 1 times
+ expression appears at one or more times consecu-

tively
* expression appears at zero or more times consecu-

tively
{n} expression appears exactly n times
{m,n} expression appears at least m but not more than n

times

To match a social security number, you needs three digits, followed by a
dash, two more digits and then a dash and then four digits. This is an easy job
when you use the repetition operators.

^[0-9]{3}-[0-9]{2}-{0-9}{4}$

Observe that - is not a magic character in Regexese. Now we will bring the
delimiters (...) into the picture. The regex

^([a-c][0-9])+$

matches any string containing a character a-c followed by a digit any number
of times. Here are some matches

>>> import re

>>> seeker = re.compile("^([a-c][0-9])+$")

>>> bool(seeker.search("a3b2c5")

True

>>> bool((seeker.search(""))

True

>>> bool(seeker.search("b4"));

False

20



Notice that the multiplicity operators have a higher order of precedence that
juxtaposition. Hence the need for parentheses when having a regex with more
than one character class being acted on by a multiplicity operator.

5.8 Using or

The operator — means ”or”. When using it, ALWAYS enclose the things you
are “orring” in parens! This is a strict style expectation; adhere to it. It protects
you from all manner of stupidity. The or operator is piggy and if you do not
use parens, you do not control its ardor.

Let’s plunge in with an example. Notice how we escape the magic character
. to defang its magic (any character).

>>> import re

>>> seeker = re.compile("^(Morrison|Sheck) is a nut\.$")

>>> bool(seeker.search("Morrison is a nut")); ##no period.

False

>>> bool(seeker.search("Morrison is a nut."));

True

>>> bool(seeker.search("Sheck is a nut."));

True

Two-Keystroke Metacharacters There are some characters that can be
preceded by a to give a special interpretation. Here is table of some of them.

Two-Keystroke Metacharacters
Metacharacter Matches
\d any decimal integer
\D Any character not a decimal integer
\s any whitespace character
\S any non-whitespace character

For example the regex

^\s*-?[0-9]+\s*$

matches any string that has an integer in it that may or may not be surrounded
by whitespace.

Turbo! Repetition operators can be applied to regexes, not just character
classes. This is accomplished by using parentheses.

21



This regex will do a case-insensitive (note i after /) check and return true
if the string passed it alternates a letter a-c followed by a digit zero or more
times. Note: it must start with a letter and end with a digit. Enter this into a
file named reg.py.

import re

seeker = re.compile("^([a-c]\d)*$", re.IGNORECASE)

print (bool(seeker.search("c4")), ", expected: True")

print (bool(seeker.search("poop")), ", expected: False")

print (bool(seeker.search("A5b4")), ", expected: True")

Notice the second argument to re.compile; it causes the case of the string
being scanned to be ignored. Running this program we see

$ python reg.py

True , expected: True

False , expected: False

True , expected: True

$

22


	Introduction
	A Helpful Tool: Raw Strings

	Introducing the sys module
	This Way to the Egress!
	How can I change Python's Recursion Limit?

	Python File IO
	File Opening Modes
	Writing to a File
	Reading from a File
	A Bigger Example: copy.py

	Some Useful Techniques for File Input
	Methods of Traversing Files with for loops

	Introducing the re module
	Characterclassese
	Ranges
	Escape now!
	Special Character Classes
	Regexese
	``And then immediately''
	Repetition Operators
	Using or


