
Chapter 5, Python Classes and Objects

John M. Morrison

October 30, 2019

Contents

1 Introduction 2

2 Creating A Class 2

3 A Case Study: Playing Cards 6

3.1 A Design Decision . 6

3.2 Getting to Know our Number . 7

3.3 Adding Regular Methods to the Class 10

4 Resolving our Identity Crisis 11

5 Using our Card Class 12

6 Shouldn’t a Deck of Cards be an Object? 12

7 Case Study: Fractions 14

7.1 An Algorithmic Interlude . 17

7.2 Creating a gcd function . 18

7.3 Now Back to Fractions . 18

7.4 Static Methods . 19

7.5 Giving Fractions Relational Operators 21

7.6 Adding Arithmetic . 23

8 Case Study: A Calendar Date Class 25

1

1 Introduction

Python has yet another level of organization we have not yet explored: the class.
A class is a blueprint for creating objects; these are computational units which
know things about themselves and which exhibit various behaviors when sent
messages. The objects we create from the class are called instances of the class.
This apparatus is baked right into the Python language.

Classes allow us to use a wealth of code created by others. Many authors
of code enclose their work in classes; this makes it easier and less confusing to
use. We will later learn how to program with a graphical user interface using
the QT4 framework of classes.

You have already made liberal use of Python objects. For example, the
built-in str type features methods such as upper(), lower(), and contains().
The class mechanism allows you to create new types and to make the “smart.”
You can write code to handle messages sent to objects created with your classes.

2 Creating A Class

You can create a Python class at the interactive prompt. Here is how

>>> class First(object):
... pass
...
>>> f = First()
>>> f
<__main__.First object at 0x20c3250>

At this stage, this class is rather useless. It knows nothing and does nothing.
The line

>>> f = First()

creates an instance of this class. An object is made according to the specifica-
tions we placed in our class and now f is pointing at that object.

Now let us make another instance of our class

>>> g = First()

We now have objects f and g floating around. We can attach a variable to an
object as follows.

>>> f.x = "This is x"

2

This attaches x to tt f but not to g, as we see here.

>>> g.x
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AttributeError: 'First' object has no attribute 'x'

Now let’s create a class with some degree of usefulness. We will represent
vectors in the plane with integer coördinates. Here we begin by creating an
empty class.

class intVector(object):
pass

Our question is How do we endow the vector with two components? Python
has a special method called a hook for this. All hooks have this appearance
__hookName__. The hook we shall use is the init hook. This hook runs right
after an object is first created. We can use it to attach coördiantes to our vector.

class intVector(object):
def __init__(self):

self.x = 0
self.y = 0

All of our vectors are now born with an x and a y that are both 0. You notice
the use of the argument self. This symbol refers to the object itself (hence
the name). All functions (methods) created inside of a class must have self as
their first argument. We can improve our class further by doing this.

class intVector(object):
def __init__(self, x, y):

self.x = x
self.y = y

We now drive it as follows.

class intVector(object):
def __init__(self, x = 0, y = 0):

self.x = x
self.y = y

p = intVector()
print("p = {0}i + {1}j".format(p.x, p.y))
q = intVector(3, 4)
print("q = {0}i + {1}j".format(q.x, q.y))

3

Now run it.

$ python IntVector.py
p = 0i + 0j
q = 3i + 4j

The next question is: Can we get it to print nicely? The __str__ hook
comes to the rescue. While you are a it define the __repr__ hook so it looks
nice in an interactive session.

class intVector(object):
def __init__(self, x = 0, y = 0):

self.x = x
self.y = y

def __str__(self):
out = "" + str(self.x) + "i"
if self.y < 0:

out += " - " + str(-self.y) + "j"
else:

out += " + " + str(self.y) + "j"
return out

def __repr__(self):
out = "" + str(self.x) + "i"
if self.y < 0:

out += " - " + str(-self.y) + "j"
else:

out += " + " + str(self.y) + "j"
return out

print(p)
q = intVector(3, 4)
print(q)
r = intVector(3, -4)

Now run this and see the pretty result.

$ python IntVector.py
0i + 0j
3i + 4j
3i - 4j
$

We will now make a regular method called magnitude that computes the
vector’s magnitude.

4

import math
class intVector(object):

def __init__(self, x = 0, y = 0):
self.x = x
self.y = y

def __str__(self):
out = "" + str(self.x) + "i"
if self.y < 0:

out += " - " + str(-self.y) + "j"
else:

out += " + " + str(self.y) + "j"
return out

def __repr__(self):
out = "" + str(self.x) + "i"
if self.y < 0:

out += " - " + str(-self.y) + "j"
else:

out += " + " + str(self.y) + "j"
return out

def magnitude(self):
return math.hypot(self.x, self.y)

q = intVector(3, 4)
print("q.magnitude() = {0}".format(q.magnitude()))
r = intVector(3, -4)
print("r.magnitude() = {0}".format(r.magnitude()))

Now run this.

$ python IntVector.py
q.magnitude() = 5.0
r.magnitude() = 5.0
$

You may add as many regular methods to your class as you wish. Python
has a rich collection of hooks for overriding the behavior of operators such as
+, -, *, / and **.

paragraphProgramming Exercises

1. Implement the hook
def __add__(self, other):

so a vector will add itself to the vector other.
2. Implement the hook

def __sub__(self, other):

5

so a vector subtract other from itself and return the result

3. Implement the hook

def __eq__(self, other):

and have a the the vector self report if it is equal to the vector other.

3 A Case Study: Playing Cards

Let us imagine that we are writing a game involving playing cards. Using the
class apparatus, we can create a new data type that represents a playing card.

We will adopt the Java naming convention: each class we create will reside
in a file with the same name as our class. Also, we will capitalize all class names.

We begin by creating an empty class like so.

class Card(object):
pass

Observe that the class statement is a boss statement, and therefore has a colon
at the end. It owns a block of code. Recall that if you want to have an empty
block of code, you must place a pass statement in it.

3.1 A Design Decision

What does a card need to know to be a card? We will deal with the standard
Bridge deck of 52 cards here. Each card is determined by a rank of 2, 3, 4, 5,
6, 7, 8, 9, 10, Jack (J), Queen (Q), King (K) and Ace (A). We have listed the
ranks in ascending order here. There are four suits, Clubs, Diamonds, Hearts
and Spades. A card’s identity is determined completely by its suit and its rank.

What does a card need to know? We could keep track of cards by recording
their ranks and suits. However there is a simpler and nicer way to do this. What
we shall do here is to connect each card to an integer in range(0,52). This is
an implementation detail; we will enable our cards separately to tell their ranks
and suits. We will call this integer number.

You can accomplish this task several ways; the one shown here is nice and
compact. However, you can try using another way to keep track of cards. You
have the freedom to choose here!

What should a card be able to do? A card needs to be able to tell us its
suit and rank. A card should know whether or not it outranks another card. We

6

should be able to make a card either by specifying its number or by specifying
nothing and getting a random card.

In a class we specify state variables, which constitute the things objects
created from the class know and methods, which constitute what instance of
the class can do.

This kind of design process occurs in all object-oriented languages including
Ruby, Python, Java and C++.

3.2 Getting to Know our Number

Our Card class will have a state variable named number and it will know the
ranks and suits of cards. Since we are coding inside of the Card class, we “are”
a card. Our name inside the class is self. This is a special Python language
keyword.

When a Card is first created, a special method called __init__ swings into
action; we use this to teach the class what it needs to know. First let us teach
the class its number.

class Card(object):
def __init__(self, number):

self.number = number

This worked but the default method of printing out an instance of a class is
pretty uninformative. In the session below we created an instance of Card
number 5, but not much shows when we try to print it.

>>> from Card import *
>>> c = Card(5)
>>> print c
<Card.Card instance at 0xb7eacf4c>
>>>

Now we will add a the string hook to our class, which will create a string
representation of a Card object.

class Card(object):
def __init__(self, number):

self.number = number
def __str__(self):

return "Card#" + str(self.number)

Whenever we use print, we will see this string representation put to stdout.

7

>>> from Card import *
>>> c = Card(5)
>>> print c
Card#5
>>> c
<Card.Card instance at 0xb801af4c>
>>>

It is also nice to have a card print nicely right at the interactive prompt. To
do this, implement the __repr__ method just as you did __str__. Whatever
you print should be a valid Python expression. Here we will show our card as a
string literal. We show the implementation here.

def __repr__(self):
return "\"Card#" + str(self.number) + "\""

Here is the result.

>>> from Card import *
>>> c = Card(5)
>>> c
"Card#5"
>>>

Implementing the Card Class Now let us make instances of of our class
cognizant of ranks and suits. We will also “show our cards” about our imple-
mentation.

class Card(object):
def __init__(self, number):

self.ranks = ['2', '3', '4', '5', '6', '7', '8', '9',
'10', 'J', 'Q', 'K', 'A']
self.suits = ['clubs', 'diamonds', 'hearts', 'spades']
self.number = number

def __str__(self):
return self.ranks[self.number % 13] + " of "
+ self.suits[self.number//13]

def __repr__(self):
return "' + self.ranks[self.number % 13] + " of "
+ self.suits[self.number//13] + "'"

Notice that our cards are determined by an integer and how this simple
arabesque with lists make it quick and easy to print out a card’s name.

8

>> from Card import *
>>> c = Card(5)
>>> print c
7 of clubs
>>> c = Card(44)
>>> c
"7 of spades"
>>>

Now that we have a simple working class, let us make some observations.
When a card is created, the __init__ method is called. The code

c = Card(5)

causes a card to be created and its number to be set to 5. The variable self
inside of the class represents the card’s identity. So, self.number means self’s
number. The variable number is just a parameter for the __init__ method.

Also, you should notice that self is a required argument in all of the class’s
methods. Syntactically, notice that all method headers below the class state-
ment are indented; this reflects the class’s ownership over all of its methods.

We shall take advantage of default arguments to give a default method for
creating instance of Card. It will choose a card at random.

import random
class Card(object):

def __init__(self, number = -1):
random.seed()
self.ranks = ['2', '3', '4', '5', '6', '7', '8', '9',
'10', 'J', 'Q', 'K', 'A']
self.suits = ['clubs', 'diamonds', 'hearts', 'spades']
self.number = number if number >= 0 else random.randint(0,51)

def __str__(self):
return self.ranks[self.number % 13] + " of "
+ self.suits[self.number/13]

def __repr__(self):
return "\"" + self.ranks[self.number % 13] + " of "
+ self.suits[self.number/13] + "\""

if __name__ == '__main__':
for k in range(1,10):
c = Card()
print c

Running this program results in the following. If you run this yourself, you
will very likely get ten cards different from those shown here.

9

$ python Card.py
K of clubs
J of diamonds
J of hearts
K of hearts
10 of spades
4 of diamonds
10 of clubs
K of hearts
2 of diamonds
$

3.3 Adding Regular Methods to the Class

Now we add in methods for displaying suit and rank of a Card. These are
regular methods which we name and define ourselves. You can add as many
regular methods as you wish to a class. The rules for naming methods are
exactly the same as they are for variables or regular functions.

import random
class Card(object):

def __init__(self, number = -1):
random.seed()
self.ranks = ['2', '3', '4', '5', '6', '7', '8', '9',
'10', 'J', 'Q', 'K', 'A']
self.suits = ['clubs', 'diamonds', 'hearts', 'spades']
self.number = number if number >= 0 else random.randint(0,51)

def __str__(self):
return self.ranks[self.number % 13] + " of "
+ self.suits[self.number/13]

def __repr__(self):
return "\"" + self.ranks[self.number % 13] + " of "
+ self.suits[self.number/13] + "\""

def rank(self):
return self.ranks[self.number % 13]

def suit(self):
return self.suits[self.number/13]

This interactive session provides a simple test of our work.

>>> from Card import *
>>> c = Card(51)
>>> print c
A of spades
>>> c.rank()

10

’A’
>>> c.suit()
’spades’
>>>

4 Resolving our Identity Crisis

Here is a surly little problem.

>>> d = Card(51)
>>> c == d
False
>>> print c
A of spades
>>> print d
A of spades
>>>

However, this problem is akin to the problem we had with printing. By default,
when we create a class, the operator == checks for equality of identity, not of
value. We fix this with the __eq__ hook.

import random
class Card(object):

def __init__(self, number = -1):
random.seed()
self.ranks = ['2', '3', '4', '5', '6', '7', '8', '9',
'10', 'J', 'Q', 'K', 'A']
self.suits = ['clubs', 'diamonds', 'hearts', 'spades']
self.number = number if number >= 0 else random.randint(0,51)

def __str__(self):
return self.ranks[self.number % 13] + " of " +
self.suits[self.number/13]

def __eq__(self, other):
return self.number == other.number

def rank(self):
return self.ranks[self.number % 13]

def suit(self):
return self.suits[self.number//13]

We now have the makings of a new, general–purpose type for programming
with playing cards. Now you will perform some simple tasks with this class.

11

5 Using our Card Class

This little sample program shows how to program with the class. Place this
code in a file called exercise.py.

from Card import Card
c = Card()
print("c = {0}".format(c))
d = Card(23)
print("d = {0}".format(d)
print("c.rank() = {0}".format(c.rank()))
print("d.suit() = " + str(d.suit()))

This is what happens when we run the code.

$ python exercise.py
c = Q of hearts
7
d = Q of diamonds
c.rank() = 7
d.suit() = diamonds
$

Programming Exercises

1. Make a list containing a full deck of cards. Look in the random library
and figure out how to shuffle the deck.

2. A poker hand is a sample without replacement of five cards from a bridge
deck. Make a function dealHand() that generates a poker hand (5 cards).

3. Make a function isFlush() that checks if a poker hand contains cards all
of the same suit.

4. Make a function isStraight() that checks if a poker hand contains cards
with five consecutive ranks.

5. Make a function isPair() that checks if a poker hand contains cards two
cards of equal rank and three other cards of different ranks.

6 Shouldn’t a Deck of Cards be an Object?

The short answer is: yes. When card games are played in casinos, several decks
are combined to create a reservoir of cards called a shoe. We will create a class
for shoes of cards and have the shoe deal cards (in a list).

12

The main information we need is the number of decks in the shoe, and the
order of the cards in the decks.

import random
from Card import Card

class Shoe:
def __init__(self, howMany = 1):

self.howMany = howMany
self.cards = []
for k in range(howMany):

for j in range(51):
self.cards.append(Card(j))

We will now see how this creates a shoe of cards. We begin by making our shoe
know how many decks it contains. That is done by this line of code.

self.howMany = howMany

The programmer using this code will say something like

deck = Shoe(2)

and this will create a two-deck shoe. If no value is given to Shoe(), it will create
by default a one-deck shoe.

Now we make our shoe of cards.

self.cards = []
for k in range(howMany):

for j in range(51):
self.cards.append(Card(j))

Our shoe is learning its cards. At first it is empty. The loop populates it with the
appropriate number of decks. At the end of this code, all of the cards are sorted
in numeric order. That is not desirable and could get us shot in a less than
friendly card game. To shuffle the deck using random’s shuffle mechanism, we
create a method shuffle.

def shuffle(self):
random.shuffle(self.cards)

We now have a shoe of cards with the specified number of decks, nicely shuffled
and ready for the dealer’s table.

13

Now we are going to have the shoe deal cards from itself. We will return the
cards (even one card) in a list of cards. The list method pop() comes in handy.
It takes an item off the list, removes it from the list and returns the item. This
comes in very handy here.

def deal(self, n = 1):
cardsToBeGiven = []
for k in range(n):

cardsToBeGiven.append(self.cards.pop())
return cardsToBeGiven

Programming Exercises It is useful to know if a card is a face card (J, K,
Q) or if it is an ace. This is true if you wish to write a blackjack game. Knowing
a card’s color is important for solitaire games. Add these methods to your card
class.

1. Implement a method isFace that returns True if a card is a face card and
False otherwise.

2. Implement a method isAce that returns True if a card is an ace and False
otherwise.

3. Implement a method isRed that returns True if a card is a red card (hearts
or diamonds) and False otherwise.

4. Implement a method isBlack that returns True if a card is a black card
(spades or clubs) and False otherwise.

7 Case Study: Fractions

Python has a built-in class for these but we will create an example class here
to do extended–precision rational arithmetic and use it do do some interesting
things such as producing very close rational approximations of roots of numbers.

To begin we ask: what does a fraction need to know? It needs to know its
numerator and denominator. So we might begin like so.

class Fraction(object):
def __init__(self, num = 0, denom = 1):

self.num = num
self.denom = denom

def __str__(self):
return "%s/%s" %(self.num, self.denom)

def __repr__(self):
return "\"%s/%s\"" %(self.num, self.denom)

14

f = Fraction(1,2)
print(f)

Now run this.

$ python Fraction.py
1/2
$

Now we see an irritation coming. Add more cases.

class Fraction(object):
def __init__(self, num = 0, denom = 1):

self.num = num
self.denom = denom

def __str__(self):
return "%s/%s" %(self.num, self.denom)

def __repr__(self):
return "\"%s/%s\"" %(self.num, self.denom)

f = Fraction(1,2)
print(f)
g = Fraction(5,10)
print(g)
print(f == g)
h = Fraction(1,-2)
print(h)

Now run this.

$ python Fraction.py
1/2
5/10
False
1/-2
$

Notice how 5/10 is not equal to 1/2. Then notice the ugliness of having a
negative in the denominator. We get the clue. All fractions must be born fully
reduced and with any negative in the numerator. This means some work.

It is easy to fix the negative sign problem in the __init__ method. We do
this as follows.

def __init__(self, num = 0, denom = 1):
if denom < 0:

15

num = -num
denom = -denom

self.num = num
self.denom = denom

Et Voila! One headache is gone.

$ python Fraction.py
1/2
5/10
False
-1/2
$

Now we have another problem: getting fractions reduced. It’s time for a trip
back to Mrs. Wormwood’s classroom and computing prime factorizations. To
do this, we compute the greatest common divisor (gcd) of the numerator and
denominator, then divide this out. Consider the fraction

128

44.

We create factor trees.

128 44
/ \ / \

16 8 4 11
/ \ / \ / \

4 4 4 2 2 2

From these we see that 128 = 27 and 44 = 22 · 11. The largest power of 2 that
is a common factor to both numbers is 4. There is no common power of 11,
so gcd(128, 44) = 4. The gcd function is the greatest common divisor for two
integers.

Thus we have
128

44
=

128/ gcd(128, 44)

44/ gcd(128, 44)
=

32

11
.

Another interesting observation to make is that changing signs does not
affect divisibility, so for any integers a and b that are not both zero,

gcd(±a,±b) = gcd(a, b).

Take note that all integers divide 0 evenly, so if a 6= 0, gcd(a, 0) = |a|. This
function is not defined if a = b = 0. To wit, the domain of gcd is the set of
all ordered pairs of integers save for (0, 0). Finally, by the symmetry of this
definition, it is easy to see that gcd(a, b) = gcd(b, a) provided a and b are not
both 0.

16

7.1 An Algorithmic Interlude

The Wormwood method for reducing fractions is costly and slow. Its fault lies
in the computation of the gcd. There is a faster way. If you don’t see the flaw
yet, consider this problem. Find

gcd(39803419043890, 34198913098105).

That looks mighty ugly. It is time to fade back and try another strategy. Here
is the key idea.

Theorem. Let a, b, q, and r be any integers. Then if b = aq + r, gcd(b, a) =
gcd(a, r).

Before we discuss why this works, let us deploy it. You have

128 = 44(2) + 40,

so
gcd(128, 44) = gcd(44, 40).

Observe that we now have a smaller problem. Hey, if this works once, let us
this again. You have

44 = 40(1) + 4,

so
gcd(44, 40) = gcd(40, 4).

One more time . . .
40 = 4(10) + 0,

so
gcd(40, 4) = gcd(4, 0) = 4.

We now have
gcd(128, 44) = 4.

This appears to be a process that is readily controllable be a loop. We can
grid this down until r is 0 in a while loop.

Before we do this, let us learn why the theorem works. If a and b are integers,
we will write a | b if a divides b evenly, i.e if there is some integer a so that b = aq.

Suppose that d is common divisor of a an b and that b = aq + r. Since d is
a common divisor of a and b there are integers s and t so a = sd and b = td.
Then

r = b− aq = td− sdq = d(t− sq).

But t − sq is an integer, so d | r. We have just show that ever common divisor
of a and b is a common divisor of a and r.

17

Now suppose that d is a common divisor of a and r. Then we can choose
integers u and v so a = ud and r = vd. Then

b = aq + r = udq + dv = d(uq + v).

We see that d is a common divisor of a and b.

Since a and b have exactly the same common divisors as a and r, our result
follows.

7.2 Creating a gcd function

Let us look at our previus calculation in tabular form. Since we will use q = b
// a, we never really need to know about q. In the end we use the bottom row
to see that gcd(128, 44) = gcd(4, 0) = 4.

b a r
128 44 40
44 40 4
40 4 0
4 0 0

So, while r is not 0, keep going. At the end return a. Before we begin, we
discard information about signs so everything stays positive.

def gcd(b,a):
if b < 0: #discard signs

b = -b
if a < 0:

a = -a
r = 1 ##fool the loop into running
while r > 0:

r = b % a
b, a = a, r

return b

7.3 Now Back to Fractions

Let us now insert our gcd function and avail ourselves of it. Our fractions will
now be born fully reduced and with any negative in the numerator.

def gcd(b,a):
if b < 0:

b = -b

18

if a < 0:
a = -a

r = 1 ##fool the loop into running
while r > 0:

r = b % a
b, a = a, r

return b
class Fraction(object):

def __init__(self, num = 0, denom = 1):
if denom < 0:

num = -num
denom = -denom

#do not forget to use // not /
self.num = num//gcd(num, denom)
self.denom = denom//gcd(num,denom)

def __str__(self):
return "%s/%s" %(self.num, self.denom)

def __repr__(self):
return "\"%s/%s\"" %(self.num, self.denom)

f = Fraction(1,2)
print(f)
g = Fraction(5,10)
print(g)
print(f == g)
h = Fraction(1,-2)
print(h)
print(gcd(128,44))

Now run this. All of the problems with the negative and reduction are gone,
save for the lingering problem of equality.

$python Fraction.py
1/2
1/2
False
-1/2
4
$

7.4 Static Methods

It would probably would be better if our gcd function were are part of our class.
Notice that is makes no use of the state of a Fraction object. It would be silly
to have self as an argument.

19

Were we to do so, a copy of this function’s code would have to be included
in every instance of Fraction. Can we create just once instance of this resource
and share it among all instances of Fraction? Happily, the answer is “yes.”

What we do is use the @staticmethod declaration. So, we modify our class
as follows. Notice how we use the @staticmethod declaration just before the
static method (gcd) and that we preface all calls to gcd with the class name
Fraction.

class Fraction(object):
def __init__(self, num = 0, denom = 1):

if denom < 0:
num = -num
denom = -denom

#do not forget to use // not /
##include a Fraction. before calls to gcd
self.num = num//Fraction.gcd(num, denom)
self.denom = denom//Fraction.gcd(num,denom)

def __str__(self):
return "%s/%s" %(self.num, self.denom)

def __repr__(self):
return "\"%s/%s\"" %(self.num, self.denom)

@staticmethod
def gcd(b,a):

if b < 0:
b = -b

if a < 0:
a = -a

r = 1 ##fool the loop into running
while r > 0:

r = b % a
b, a = a, r

return b
f = Fraction(1,2)
print(f)
g = Fraction(5,10)
print(g)
print(f == g)
h = Fraction(1,-2)
print(h)
print(Fraction.gcd(128,44))

Note that if you use the @staticmethod declaration, you cannot use self as
an argument in the method. Class state variables cannot be visible to static
methods.

20

7.5 Giving Fractions Relational Operators

There is a Python 2/3 fork in the road here. In Python 2, you would define a
special method __cmp__ to define the relational operators. This method would
have this appearance.

def __cmp__(self, other):
return a negative number if self<other
return a positive number if self >other
return a 0 if self and other are equal

We will, instead, do things the Python 3 way. Here are the hooks for the
relational operators. We will implement all of these in our fraction class.

__lt__ This defines the < operator
__gt__ This defines the > operator
__le__ This defines the <= operator
__ge__ This defines the >= operator
__ne__ This defines the != operator
__eq__ This defines the == operator

Suppose we have fractions a/b and c/d and we wish to compare them. Our
Fraction class puts the negative in the numerator, so we can assume that b > 0
and d > 0. If we wish to test for

a

b
<

c

d
,

we multiply both sides by bd and simply test for

ad < bc

So if we are implementing < we do so as follows. Using a = self.num, b =
self.denom, c = other.num, and d = other.num, we get this implementation.

def __lt__(self, other):
return self.num*other.denom < self.denom*other.num

Now we implement all of the relational operators. Note how we do this for
equality and inequality. No cross-multiplication is required for these. We also
inserted test code for our relational operators.

class Fraction(object):
def __init__(self, num = 0, denom = 1):

if denom < 0:
num = -num

21

denom = -denom
#do not forget to use // not /
##include a Fraction. before calls to gcd
self.num = num//Fraction.gcd(num, denom)
self.denom = denom//Fraction.gcd(num,denom)

def __str__(self):
return "%s/%s" %(self.num, self.denom)

def __repr__(self):
return "\"%s/%s\"" %(self.num, self.denom)

def __lt__(self, other):
return self.num*other.denom < self.denom*other.num

def __gt__(self, other):
return self.num*other.denom > self.denom*other.num

def __le__(self, other):
return self.num*other.denom <= self.denom*other.num

def __ge__(self, other):
return self.num*other.denom >= self.denom*other.num

def __eq__(self, other):
return self.num == other.num and self.denom == other.denom

def __ne__(self, other):
return self.num != other.num or self.denom != other.denom

@staticmethod
def gcd(b,a):

if b < 0:
b = -b

if a < 0:
a = -a

r = 1 ##fool the loop into running
while r > 0:

r = b % a
b, a = a, r

return b
##main routine with test code
if __name__ == "__main__":

f = Fraction(1,2)
g = Fraction(5,10)
h = Fraction(1,3)
print("%s < %s: %s" % (f, g, f < g))
print("%s > %s: %s" % (f, g, f > g))
print("%s <= %s: %s" % (f, g, f <= g))
print("%s >= %s: %s" % (f, g, f >= g))
print("%s == %s: %s" % (f, g, f == g))
print("%s != %s: %s" % (f, g, f != g))
print("%s < %s: %s" % (f, h, f < h))
print("%s > %s: %s" % (f, h, f > h))
print("%s <= %s: %s" % (f, h, f <= h))

22

print("%s >= %s: %s" % (f, h, f >= h))
print("%s == %s: %s" % (f, h, f == h))
print("%s != %s: %s" % (f, h, f != h))

Now run this code at the command line.

$ python Fraction.py
1/2 < 1/2: False
1/2 > 1/2: False
1/2 <= 1/2: True
1/2 >= 1/2: True
1/2 == 1/2: True
1/2 != 1/2: False
1/2 < 1/3: False
1/2 > 1/3: True
1/2 <= 1/3: False
1/2 >= 1/3: True
1/2 == 1/3: False
1/2 != 1/3: True
$

7.6 Adding Arithmetic

Next, we insert code for the arithmetic hooks. Let us begin with addition. Mrs
Wormwood tells us that for fractions a/b and c/d, we have

a

b
+

c

d
=

ad+ bc

bd
.

So, when implementing __add__, we proceed as follows.

def __add__(self, other):
return Fraction(self.num*other.denom + self.denom*other.num, self.denom*other.denom)

While we are here, can define += using __iadd__.

def __iadd__(self, other):
self.num, self.denom = self.num*other.denom + self.denom*other.num, self.denom*other.denom
return self

We proceed similarly for subtraction

def __sub__(self, other):
return Fraction(self.num*other.denom - self.denom*other.num, self.denom*other.denom)

23

While we are here, can define += using __iadd__.

def __isub__(self, other):
self.num, self.denom = self.num*other.denom - self.denom*other.num, self.denom*other.denom
return self

You will also want the unary prefix operator - to work.

def __neg__(self):
return Fraction(-self.num, self.denom)

We then add in multiplication and division

def __mul__(self, other):
return Fraction(self.num*other.num, self.denom*other.denom)

def __imul__(self, other):
self.num, self.denom = self.num*other.num, self.denom*other.denom
return self

def __truediv__(self, other):
return Fraction(self.num*other.num, self.denom*other.denom)

def __itruediv__(self, other):
self.num, self.denom = self.num*other.num, self.denom*other.denom
return self

Finally, we add powers.

def __pow__(self, n):
if n < 0:

n = -n
return Fraction(self.denom**n, self.num**n)

Fraction(self.num**n, self.denom**n)
def __ipow__(self, n):

if n < 0:
n = -n
self.denom, self.num = self.num*n, self.denom**n

self.num, self.denom = self.num*other.num, self.denom*other.denom
return self

Programming Exercises

1. You can control how a Fraction casts to an integer using the hook
__int__(self). See how floats cast to integers and implement this hook
in a similar manner.

24

2. We define the harmonic numbers Hn as follows.

Hn =

n∑
k=1

Hk.

Write a static method harmonic(n) that computes the nth harmonic num-
ber. Can you compute H1000? H5000?

3. How might you create a __float__ method to convert a Fraction to a
floating point number? This is not as easy as it looks. For example, if
both numerator and denominator of a Fraction have a very large number
of digits, attempting to cast numerator and denominator to floats and
dividing will not do, since this cast will return infinity for both? You
will also have to decide when to return 0 and when to return infinity.
Floating point numbers carry about 17 digits of precision. Look up the
standard and understand how big a floating point number can be. Test
the result mercilessly.

8 Case Study: A Calendar Date Class

This is of interest because it will have a wide variety of hooks and special
methods. First we ask, “What should a date know?” It should know a day,
month, and year. We will force the user to specify all three when specifying
Date. No defaults will be used

class Date(object):
def __init__(self, day, month, year):

self.day = day
self.month = month
self.year = year

Next, we add a method so we can see a date get printed. Note the addition of
tuples to represent month names and the names of the days of the week.

class Date(object):
def __init__(self, day, month, year):

self.monthNames = ("", "January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November")
self.dayNames = ("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday")
self.day = day
self.month = month
self.year = year

def __str__(self):
return "%s %s %s" % (self.day, self.monthNames[self.month], self.year)

print(Date(22, 10, 2015))

25

Now run this program and see our shiny new date print out.

$ python Date.py
22 October 2015

Next, we make enable out Date objects to tell us their ordinal position in the
year (Feb 12 is the 43rd day of the year), and how many days are left in the year.
While we are under the hood, let us also create a static method that checks a
year to see if it leaps. Recall the rule.

1. A leap year occurs in years divisible by 4, EXCEPT
2. when a year is divisible by 100 when it does not, EXCEPT
3. when a year is divisible by 400 it does!

class Date(object):
def __init__(self, day, month, year):

self.monthNames = ("", "January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November")
self.dayNames = ("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday")
self.day = day
self.month = month
self.year = year

@staticmethod
def isLeap(y):

out = 0
if y % 4 == 0:

out += 1
if y % 100 == 0:

out -= 1
if y % 400 == 0:

out += 1
return out

def __str__(self):
return "%s %s %s" % (self.day, self.monthNames[self.month], self.year)

def dayInYear(self):
monthLengths = (0, 31, 28 + self.isLeap(self.year), 31, 30, 31, 30, 31, 31, 30, 31, 30, 31)
return self.day + sum(monthLengths[:self.month])

def daysLeftInYear(self):
return 365 + self.isLeap(self.year) - self.dayInYear()

print(Date(22, 10, 2015))
print(Date(26,5,2015).dayInYear())

We will now create a “service function” that computes for any given date its
number of days since the fictitious date 1 January 1. If this bugs you a whole
lot, you can base the calculation on 1 January 1753; this marks the first whole
year on the modern calendar.

26

Let us sketch out our thinking. Suppose today is 23 October 2015. To begin
we compute the number of days from 1 January 1 to 31 December 2014. Here
is what we do.

Non leap days 2015*365 735475
Years divisible by 4 2015//4 500
Years divisible by 100 -2015//100 -20
Years divisible by 400 2015//400 4
Total 735955

We now see how to write this function. To get to the current date, we just
add dayInYear() to this result.

def dayIndex(self):
y = self.year - 1
out = 365*y
out += y//4 - y //100 + y//400 #leap adjustments
out += self.dayInYear()
return out

We now will computer the dayIndex for 26 October 2015 and mod out by 7.
This date is a Monday (authoritative, since this is being typed on 26 October
2015). Running this produces a result of 1. So, if we compute the day index of
a date and mod out by 7, a 1 gives a Monday, a 2 gives a Tuesday, etc. We can
now write dayInWeek().

def dayInWeek(self):
self.dayNames[self.dayIndex()%7]

Next, we will define subtraction for two dates. The difference will be the number
of days from one date to the other. The dayIndex method makes this simple

def __sub__(self, other):
return self.dayIndex() - other.dayIndex()

Here is the complete code.

class Date(object):
def __init__(self, day, month, year):

self.monthNames = ("", "January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November")
self.dayNames = ("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday")
self.day = day
self.month = month
self.year = year

@staticmethod
def isLeap(y):

27

out = 0
if y % 4 == 0:

out += 1
if y % 100 == 0:

out -= 1
if y % 400 == 0:

out += 1
return out

def __str__(self):
return "%s %s %s" % (self.day, self.monthNames[self.month], self.year)

def __sub__(self, other):
return self.dayIndex() - other.dayIndex()

def dayIndex(self):
y = self.year - 1
out = 365*y
out += y//4 - y //100 + y//400 #leap adjustments
out += self.dayInYear()
return out

def dayInYear(self):
monthLengths = (0, 31, 28 + self.isLeap(self.year), 31, 30, 31, 30, 31, 31, 30, 31, 30, 31)
return self.day + sum(monthLengths[:self.month])

def dayOfWeek(self):
return self.dayNames[self.dayIndex()%7]

def daysLeftInYear(self):
return 365 + self.isLeap(self.year) - self.dayInYear()

print(Date(22, 10, 2015))
print(Date(26,5,2015).dayInYear())
print(Date(26,10,2015).dayIndex())
print(Date(26,10,2015).dayIndex()%7)
print(Date(26, 5, 1957).dayOfWeek())
print(Date(26,10,2015) - Date(4,7,1776))

Programming Exercise

1. Add a method tomorrow() that returns the date for the next day.

2. Add a method yesterday() that returns the date for the previous day.

3. Add a method nextWeekDay() that returns the date for the next weekday
day.

4. Add a method yesterday() that returns the date for the previous weekday
day.

5. Here is an ugly challenge. Add a static method

def index2Date(index):
return Date()

28

which returns the date corresponding to the index passed it

6. Now define + for a Date and an integer n as follows.

def __add__(self, index, n):
return Date()

Have this return the date n days from self.

29

	Introduction
	Creating A Class
	A Case Study: Playing Cards
	A Design Decision
	Getting to Know our Number
	Adding Regular Methods to the Class

	Resolving our Identity Crisis
	Using our Card Class
	Shouldn't a Deck of Cards be an Object?
	Case Study: Fractions
	An Algorithmic Interlude
	Creating a gcd function
	Now Back to Fractions
	Static Methods
	Giving Fractions Relational Operators
	Adding Arithmetic

	Case Study: A Calendar Date Class

