Preface

John M. Morrison

July 29, 2015

Open-source technologies have greatly democratized computing and put vast
volumes of knowledge and a bounteous wealth of learning opportunities in easy
grasp. Todays modern computing environments make learning to program eas-
ier, more exciting and more fun than ever. Even a fairly old PC can be equipped
with a distribution of LINUX and it can become a powerful tool for learning
programming and for creating working applications.

There are many good LINUX distributions available; Ubuntu, Fedora and
Linux Mint are all excellent and are all freely available. You are strongly en-
couraged to look into these.

The reservoirs of resources available on the web are vast. This book aims to
be a starting point for the budding computer scientist,, or for any bright and
curious person who wants to know more about computing. We assume you are
curious about computing and interesting in furthering your knowledge. As you
progress, you will learn about on-line resources and how to use them to your
advantage.

The reason for choosing the Python language is that Python is a sophisti-
cated language that makes programming for beginners simple. Its simple gram-
mar and dynamic typing make it a nearly ideal language for someone wanting
to embark on a study of computing. Python is a good medium to use to acquire
the fundamental ideas of computer science. Mastering the ideas in this book
will ready the reader for usefully reading and learning from the avalanche of re-
sources available on the Web, as well as tackling more sophisticated treatments
available in dead-tree format.

At the same time, Python is a very powerful tool which is used by orga-
nizations such as NASA, Google, and YouTube as a rapid-development tool.
Python has many extensions: numpy, wxPython, scipy, ipython and pygame
that allow someone who understands the core ideas laid out in this book to do
sophisticated computational exploration of data, scientific phenomena, as well
as a means to create graphical applications.



What this book is not This book is not an encyclopaedia of Python. It is
not a reference on LINUX or on HTML5 and CSS for that matter. It is not
an exhaustive technical reference of any ilk. It is unabashedly designed as a
learning tool.

Absolute completeness of coverage is not the goal here. This book is meant
to blaze a trail through the world of computing. We make a concerted effort
to keep the conceptual spoor compact and easy to follow. It is intended to be
a good tool for selfstudy. If you acquire the ideas in this book, you can then
profitably read many of the references listed here to advance your study. This
book is meant to open many doors for you to furthering your knowledge.

We do not promise to inject the ideas of programming into your brain without
some serious effort on your part. This is not possible. You will need to write lots
of code, break it, and fix it. You should work the exercises as they arise; they
are designed to give you an opportunity to apply new ideas and they sometimes
actually teach new ideas. Some of these exercises (gasp!) require you to take
out a pencil and paper and fool with numbers. Dont skip these! You must be
an active participant in the enterprise. You will need to learn how to browse
various sources of documentation on the web. Making aggressive use of these
will greatly enhance your experience as you work through the material.

For whom this book is written This book is for you if you are an open-
minded inquiring person who finds problem solving fun and exciting. Unapolo-
getically, we have the goal of this book being a learning tool; it was conceived
and designed with that goal in mind from the very beginning. The ideas in this
book have been inflicted on a wide field of students from the North Carolina
School of Science and Mathematics.

No prior knowledge of computing or programming languages is assumed.
However, it is a good idea to be proficient in the basics of using a modern
computer before you begin. Said proficiency is very modest; it includes such
things as being able to open, manage and save files. The completely uninitiated
could master it in an afternoon with a little effort and a simple book on using
their PC.

Approach Chapters 0, 1, and 2 constitute a unit of preliminaries that help
gently introduce the ideas of computer science. Chapter 0 explains very sim-
ply the inner workings of a computer that are helpful to understanding the the
significance of basic operations we all perform on a daily basis on our comput-
ers. It also introduces the idea of algorithm, and uses algorithms to study the
representation of numbers.

Chapter 1 introduces the LINUX operating system. Learning about and
using the commandline interface for computing is an exercise all new program-
mers should experience. This interface is simple and powerful, and it is very



frequently used in the professional programming world. Learning a comman-
dline interface will yield new insight into using graphical interfaces like Mac
or Windoze. Mac users who read this book will find themselves using their
terminal tool more often after reading this book.

Today, obtaining access to Linux is simple. If you do this you can have a
graphical desktop and create terminal sessions directly on this desktop. There
is a distribution of Linux, Xubuntu, which can be obtained from the Ubuntu
website, which can give new life to an older computer you may have sitting idle
because it wont run the latest version of Windows. This software is entirely free;
you are encouraged to explore the Ubuntu website, http://www.ubuntu. com.
Ubuntu runs very well on a most desktops and notebooks. You can download a
live CD, which is bootable, and from which you can test-drive a Linux desktop.
Windoze users can also do a speical install of Ubuntu that is quick and easy.

Chapter 2 introduces the creation of well-formed HTML5 web sites. This
introduction brings to the reader some of the core ideas of programming and
problem-solving without all of the complexities. Browsers respond visually to
the code they read; this gives the reader a way to engage in the problem-solving
process visually.

Tags in HTMLS5 introduce the idea of delimitation; determining where things
begin and end and how they begin and end relative to other objects is important.
The use of the HTMLS5 validator in this process is an important one. Ferreting
out errors raised by the validator requires developing the thinking techniques of
a good debugger. This activity teaches the participant how to intelligently read
and use error messages to fix problems in code, without dealing with the full
complexity of a computing language at the same time. Here the reader learns
how to trace the origin of an error to its roots and eradicate it.

The use of CSS shows the reader how to make maintenance of web pages
simpler by eliminating duplicate code. The separation of document structure
and document style achieved by this system shows a good example of modern
thinking in computing. This discipline and this gentle introduction to the ideas
of debugging, delimitation and grammatical discipline prepare the beginning
programmer for what is ahead.

We encourage the reader as his study progresses to look at documentation
on the web and to experiment with it. It is important experiment and to color
outside the lines!

Chapters 3-6 deal with the core of a modern programming language in an
object-based imperative setting. The notion of object as a smart, selfaware
datum is introduced early. Abstraction and modularization are emphasized.

In chapter 3, basic features of Python are introduced and the importance
of type as an establisher of context is emphasized. The various operators of
Python are introduced, and their relationship to the types of the operands is
emphasized. All of this is done using Pythons interactive mode. Then the



creation of free-standing programs is introduced.

Variables and their relationship to objects is discussed. The notion that vari-
able are typeless labels is emphasized. Here the earliest ideas of object-oriented
programming are introduced. You learn how to send an object a message via a
variable to evoke some desired behavior. At the end of the chapter, the idea of
a visible table of symbols is introduced and discussed in an extended example.
The discussion of sequences at the end of the chapter is intended to accustom
you to using objects to accomplish tasks.

In Chapter 4, we begin to study the boss statements of Python. All state-
ments in Chapter 3 are worker statements. Worker statements are grammtically
complete and syntactically correct sentences. They are self-contained com-
mands. Boss statements are gramatically incomplete clauses. They require a
group of zero or more worker statements to become complete commands. For
example, the clause, “if age ; 21,” is a grammatically incomplete subordinating
clause. The command “pour a beer” is a grammatically complete (imperative)
sentence. Glue them togeter and get, “if age ; 21, pour a beer.” and you
have a complete command. Boss and worker statements are present in all im-
perative programming languages, which includes Python. Chapter 4 addresses
conditional execution and Python functions at the same time.

We reinforce the idea to the student that the the basic unit of Python code
is the function. A function should do a single task in a focused way. Looping is
deferred becaue we look at recursion as a repetition mechanism first.

The capabilities learned in chapter 3 become the grist for writing functions
in Chapter 4. Early on, the idea of placing related functions in a single file and
creating a module with it is demonstrated. The purpose of a namespace is then
established, as a last name for functions.

Chapter 4 introduces an important principle of extreme programming: when
developing modules, develop the documentation and test code for the functions
first. This tells you that you have done enough thinking to know what the func-
tions you are writing are to do. Then write code to test them. Running the test
code causes your students (functions) to fail. As the functions are implemented
correctly, they pass the tests. Your faith in the integrity of your module is
thereby bolstered. In Chapter 4 we cheat and use the if name == " main ":
construct to keep test code invisible when using the module but visible when the
module is run directly. The test code is part of the modules documentation: it
shows what vulnerabilities have been contemplated and tested by the developer
of the module.

At the end of the chapter, we introduce the random module and demonstrate
its functionality. Here the reader sees again that the purpose of modules is
to create code that can be used to handle specific situations. The reader is
encouraged to explore Pythons documentation and to see that there is a panoply
of modules in Pythons libraries that accomplish a wide array of tasks. This
chapter has two discussions of the call stack and the issue of scope. The first



discussion indicates the rules of scope. The second reinforces this discussion
by showing how the call stack enforces the rules for visibility of symbols in
Python. The chapter ends with yet another preparatory discussion revealing
the importance of the intelligent use of objects via a discussion of the Python
string type.

Chapter 6 begins with an exploration of recursion as a tool to perform rep-
etition. We then do a detailed study of lists and their methods, and apply the
tools of functional programming manipulate lists. All this is deliberately staged
before the presentation of looping. Also, Python dictionaries are introduced in
this chapter.

The while loop is explained as an indefinite loop and the for loop is show
to be the tool for working with a collection: in this way, the for loop is a
definite loop.

All of this brings us to a Turing-complete language which gives us all of the
capabilities of a universal computer.

Chapter 7 contains a repository of useful tools. These can be introduced
as appropriate. FilelO can be introduced when doing looping. Regular expres-
sions can be introduced very early; these can be used with the UNIX grep -e
command on a file. The os and os.path modules are natural accompaniments
to FilelO. They too, can be introduced fairly early in the game.

Chapter 8 is an introduction to Python classes and the creation of custom
Python objects. This is done via a case study involving playing cards.



