
Chapter 3, An Introduction to Python

John M. Morrison

March 11, 2016

Contents

0 Introduction 2

1 What is coming up? 3

1.1 The Nitty-Gritty: Launching Python in Linux or MacOSX 3

1.2 Using Python in Windoze . 4

1.3 All Users . 4

2 Types, Objects and Numbers 5

2.1 Python’s Number Types . 6

2.2 Python’s String Type . 7

2.3 Getting More Information about Strings and Built-in Types . . . 8

2.4 Python’s Boolean Type . 9

2.5 Casting . 10

2.6 Relational Operators and the Boolean Type 11

3 Sequence Types 12

3.1 On the Importance of Type . 15

4 Making your first Python Program hello.py 17

4.1 Creating a Program in IDLE . 18

4.2 A Comparison with Some Other Languages 18

4.3 Running Your Program . 19

1

5 Comments in Python and on Python 20

6 Taking Full Advantage of print 22

7 Variables, Assignment, Operators and Type 25

7.1 Rules for Variable Names . 28

7.2 Language Keywords . 29

8 Expressions and the Symbol Table 29

8.1 The Inside Dope on Assignment 32

8.2 A Shorthand Convenience: Compound Assignment Operators . . 33

8.3 Python is a strongly, dynamically typed language. 33

8.4 Python is a Garbage-Collected Language, or Charles Dickens
Wrote of Orphan Heaven . 34

9 Sequence Operations 36

9.1 Indexing . 36

9.2 Slicing . 37

9.3 The in Keyword . 38

10 Advanced Topic: Understanding the Pointing Relationship 40

11 Mutability and its Dangers 42

12 Advanced Topic: Pooling 46

13 Useful Learning Resources 48

0 Introduction

Now we will begin to learn about a programming language called Python.
Python allows us to teach the computer how to do chores we want it to to.
We must learn about the grammar and structure of the language to use it cor-
rectly. Happily, you can use Python in an interactive mode (or shell) and “talk”
to it directly.

The Python site http://www.python.org has an abundance of useful infor-

2

http://www.python.org

mation. Python is available for Mac, all flavors of UNIX, and ’Doze on this site.
You can program locally on your own box or use a UNIX server. There are com-
plete instructions on the site for installing and using Python on any platform.
We will emphasize using Python in a UNIX environment in this book.

Python is available in two versions, currently 2.7 and 3.2. There are impor-
tant differences between the two versions. We will primarily use Python 3 this
book, but will point out features of Python 2 as we go along, so you may use
either version. However, it is best to write new code in Python 3

1 What is coming up?

The purpose of this chapter is to introduce you to objects, which are regions of
memory representing data. Objects come in various flavors called data types, or
just types for short.. You will become familiar with several of the basic types
and how to work with them. You will learn how to use Python interactively as
well as how to write simple programs in Python.

Happily Python can be run on just about any computer. We will show you
how to run it on all systems. The next section discusses Python in a UNIX
envitnment; tis covers both Linux ansd MacOSX. The next section discucsses
installing and running Python in Windoze. If you are running Windoze, go back
to the section on running it in UNIX nd try the example shown.

1.1 The Nitty-Gritty: Launching Python in Linux or Ma-
cOSX

To begin an interactive Python session, type

$ python3

at the UNIX prompt and hit enter. You will see something like this

$ python3

Python 3.2 (r32:88452, Feb 20 2011, 11:12:31)

[GCC 4.2.1 (Apple Inc. build 5664)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>>

The >>> is the Python prompt. It indicates that Python is ready to do work.
Python can work as a calculator. Try typing in some expressions and having
them evaluated. Here is a sample session. Replicate it then do some experiments
on your own.

3

>>> 2 + 3 #addition

5

>>> 4*5 #multiplication

20

>>> 2**4 #exponentiation

16

>>> 33/6 #division

5.5

>>> 33//6 #integer division

5

>>> 33 % 6 #mod, or remainder, operator

3

>>>

To quit, type control-d or quit(). The character control-d is the end–of–file
character in UNIX. If Python gets “stuck”, you can type control-C (hang up)
to terminate its present task. This should bring you a fresh Python prompt,
although Python may grumble. If the prompt is showing, Python has no present
task and is ready to receive commands..

1.2 Using Python in Windoze

To install Python, obtain the .msi file from the Python website. Download it
onto your computer and then double-click on it to launch its install shield. Click
through the boxes to install. Once you are done, click on the Start menu and
you should see Python in your menus. You should install Python 3, since this
book is Python 3-centric.

Select Start → Python → IDLE. IDLE is a graphical editor for Python. It
will show you an interactive prompt, and you can use that for the examples here,
just as a UNIX user does. You can obtain useful information about IDLE at
this link, http://docs.python.org/library/idle.html. This freely-available
environment runs on all three major platforms. In Linux, you will have to
download it from your distribution’s repositories using your package manager.

You can also get Python working in PowerShell (You use this, don’t you?)
by consulting the instructions posted at http://learnpythonthehardway.org/
book/.

1.3 All Users

You can find some very useful information at http://learnpythonthehardway.
org/book. Learning Python the Hard Way is an excellent accompaniment to
this book. It is loaded with great exercises.

4

http://docs.python.org/library/idle.html
http://learnpythonthehardway.org/book/
http://learnpythonthehardway.org/book/
http://learnpythonthehardway.org/book
http://learnpythonthehardway.org/book

2 Types, Objects and Numbers

Computing is about the manipulation of data; ll data in Python are represented
by objects. Objects are regions of storage in memory. This most basic informa-
tion about a Python object is its data type or type. Every Python object knows
its type. All objects are stored in an area of memory called the heap. You can
think of the heap as a contiguous chunk of RAM that serves as a warehouse for
the data you are working with..

Three very basic types in Python are int, which represents an integer (whole
number), bool, which holds a value of True or False and str, which represents
a character string, which is simply a glob of text. Hence, Python is able to store
integers, Booleans and text in memory.

Python 2 Notes The type int only represents 32 bit integers in two’s com-
plement notation. Python 2 prevents type overflows by automatically promoting
calculations involving these into the type long, which works just like Python
3’s int.

The division operator / in Python 2 by default performs integer division.
Take note of the following

>>> 33/6 integer division is the default

5

>>> 33.0/6 decimal point triggers floating point arithmetic

5.5

>>> 33//6 the // operator works in Python 2

5

>>>

The moral of the story: Use // to make your intent to do integer division
explicit. If you adhere to this convention, you will have no integer division
problems when using Python 2 or 3.

We now return to our main thread. A computational object has three im-
portant properties: state, identity and behavior.

• The identity of an object is its most basic property: It is what an object
is. Identity refers to an objects physical presence in memory.

• The state of an object refers to the values the object is holding. This is
what an object knows. For example, the state of an integer is simply the
integer the integer object is storing. The state of a string is the character
sequence in its glob of text.

• Objects have behavior this is what an object can do. For instance, the
number types we will meet very soon exhibit the expected useful behavior

5

in the presence of arithmetic operators; you saw this happening in the
first sample Python session we created. Strings have the ability to do
such things as creating a copy of themselves with all alpha characters in
caps or all alpha characters in lower-case. We will demonstrate this after
exploring Python’s number types.

2.1 Python’s Number Types

To get started, we begin with Python’s number types. We will see that objects of
number type are aware of arithmetic operations, and that, like all other Python
objects, they know their type.

• int This is the integer type; its state is simply the integer being stored.
The integer type deals with whole numbers. In Python 2, division of in-
tegers is integer division; in contrast Python 3 automatically interprets
division as floating point by default; use // to trigger integer division in
any version of Python. We encourage you to use // in any Python pro-
gram; then your Python 2 programs will not break when you bring them
into Python 3. On most modern machines, integers are 32 bit integers
stored in two’s complement notation.

• float This is the floating point type; these are decimal numbers. They
may be output with scientific notation. The expression 3.55e5 means
3.55 ∗ 105 or 355000. Floating point numbers in Python are IEEE 754
double-precision floating point numbers. This is the standard used for
floating point numbers in almost all modern programming languages.

• long This is an extended-precision integer. Normally integers are re-
stricted to a range from −232to232 − 1. The long type is only limited by
memory. Try it out by computing something like 2**10000. If an integer
calculation becomes too large, it is seamlessly promoted to a calculation
of long type. Python 3 merges the int and long types.

Python’s number objects share several features. In each case, the state of
the number object is just the number it is storing. Numbers have arithmetic
operators as behaviors, and they know their types.

To learn the type of a Python object, just use the type function as shown
here. We do this on the three number types here.

>>> type(5)

<class 'int'>

>>> type(141213221414122342141)

<class 'int'> #you will see <type 'long'> in Python 2

>>> type(1.414)

<class 'float'>

6

You should create an interactive session and use the type function on a string.

The number types are equipped with a collection of operators. We shall
establish a little terminology here. A binary operator is an operator that takes
two operands. For example + is a binary operator for any number type. A
binary operator takes two objects, and produces a third object. For example,
the result of 2 + 2 is 4. The standard operators +, -, *, /, // and % are all
binary operators.

We will say these arithmetic operators are infix operators because the occur
between their operands. There are prefix operators that occur before their
operands. The operator - that changes the sign of a number is an example of a
prefix unary (one operand) operator. Finally there are postfix operators, which
occur after their operand(s); we will meet some of these later.

Programming Exercises In this set of exercises, you will use Python to do
some scientific unit conversions. This will get you used to using the interactive
prompt and number calculations. If you are using Python 2, Be careful of any
integer divisions that could occur. Be reassured: You may use parentheses to
override the default order of operations. Also, the order of operations you know
and love from Algebra I works just fine.

1. Determine the number of cubic feet of water in a cubic mile of water.

2. If a cubic foot of water weighs 62.4 lbs, figure out the weight of a cubic
mile of water in tons.

3. The earth weighs approximately 6.58e21 tons. Assuming the earth is
spherical and it has a radius of 3960 mi, determine the average density of
the planet in pounds per cubic foot. You will need to look up the formula
for the volume of a ball; you may approximate π with 3.14.

4. Find the surface area of the earth in square miles. Determine the equiva-
lent in acres.

2.2 Python’s String Type

Python string objects hold globs of text. A glob of text can be enclosed in
single or double quotes. You must use the same type of quote on both sides.
We demonstrate this here.

>>> "hello"

'hello'

>>> 'hello'

'hello'

>>> "hello'

File "<stdin>", line 1

7

"hello'

^

SyntaxError: EOL while scanning string literal

>>>

Note the punishment dished out by Python when you place a single quote on
one side and a double-quote on the other.

You can concatenate, or glue together, strings using the + operator. You
can obtain the length of a string using the built-in len function. Examples are
shown here.

>>> "hello" + " there"

'hello there'

>>> len("hello")

5

Exercises In this next set of exercises, you will get a preview of string behav-
iors. Making a string in Python is simple; you just enclose text in double-quotes
or single-quotes. Enter each item at the command line. What happens in each
case? Create your own strings and experiment.

1. "abcABC123".upper()

2. "abcABC123".lower()

3. "abcABC123".capitalize()

4. len("abcABC123")

2.3 Getting More Information about Strings and Built-in
Types

Let us make a first visit to the Python documentation. The Python site contains
a wealth of information that you can begin to explore and use. It also offers
lots of nice examples for you to try in interactive mode. We will visit it for the
purpose of learning about strings.

Begin by going to http://www.python.org. Click on the documentation
link and select the Python 3.x documentation.

You will want to explore this site for tutorials and other information. Now
visit https://docs.python.org/3/library/stdtypes.html; this page gives a
lot of detail on the built-in types. Now go down to Section 4.7.1, String Methods.

It’s time to open an interactive session and for you to experiment. Go
through the exercises shown here and get a guided tour of some very useful
goodies. Experiment with all of these and a few more. Python strings are
smart and they can do a whole lot of work for you.

8

http://www.python.org
https://docs.python.org/3/library/stdtypes.html

Programming Exercises

1. Make a string named s and initialize it with mixed cases. Now use
s.capitalize(). What happens? What if the string’s first character
is a number? a space?

2. Now let us try the endswith method. You will notice that the documen-
tation presents it in this form.

endswith(suffix[, start[, end]])

A suffix such as ”.html” is required. You can see if a string ends with a
given suffix. Can you figure out what is happening here?

>>> x.endswith("bun", 3,len(x)-2)

True

>>> x.endswith("bun", 0,len(x)-2)

True

What role do the last two (optional) arguments play?

3. If there is an endswith, there is a startswith. Experiment with it.

4. What is happening here?

>>> food = "pizza"

>>> food.find("z")

2

>>> food.rfind("z")

3

>>>

5. Make the string

>>> x = " I am very spacy.... "

6. What do rstrip(), lstrip and strip do to it? Why might this be useful
for getting stuff from a user who types in response to an input statement?

7. Try some of these out.

isspace()

isdeciaml()

islower()

isalpha()

What do all of the methods of form isSomething have in common?

2.4 Python’s Boolean Type

A Boolean value is a truth-value with the possible values of True or False. The
tokens True and False are valid Python constants. The exercises shown here
will take you on a guided tour of this type.

9

Exercises

1. At the Python prompt enter type(True) and see the Python name for
the Boolean type.

2. At the Python prompt enter not True and not False. What happens?

3. If b represents a boolean value, what is the relationship between b and
not not b?

4. Since not is an operator, would you describe it as prefix, postfix or infix?
Would you describe it as binary or unary?

5. There is a binary infix operator and for Booleans. Enter all four possible
combinations of True and False with the operator and in between them.
If a and b represent Boolean values, when is a and b true? When is it
false?

6. There is a binary infix operator or for Booleans. Repeat the previous
exercise for or.

2.5 Casting

Casting allows you to ask Python to view the object you are looking at as having
a different type, provided the change makes sense. Here we show show to cast
an integer to a floating-point number.

>>> float(5)

5.0

A common use of casting is to convert a numerical string into a string or a
number into a string. This sample session demonstrates a few simple casts. Try
violating the rule and see how Python reacts.

>>> int("123")

123

>>> float("1.414")

1.4139999999999999

>>> str(2.7818)

'2.7818'

Casting is simple; the syntax is newType(object), where newType is the new
type you want the object to have. Be warned: Python will hiss at casts that
make no sense. Be reassured: Anything can be cast to a string, but the result
might not make much sense or be very useful. Also note that the original objects
type does not change; the cast is a temporary request for a change of context.

10

Programming Exercises

1. Perform the cast int("211", 3). What happened? What is the sig-
nificance of the second integer used? Experiment with other values and
unravel the puzzle. When does this sort of cast throw a surly error mes-
sage?

2. Enter the value 0b11100011 at the Python prompt. What happens?
When does this procedure go sour? Tell exactly what is happening here.

3. What happens when you cast an integer to a bool? What about the other
way around?

4. What happens when you attempt the cast int("cows")?

2.6 Relational Operators and the Boolean Type

Let’s show an example of the Boolean type at work. It is very useful for looking
at comparisons between objects which are done with relational operators. These
are binary infix operators.

The operator > is the greater than operator and == is the isequalto operator.
The operator <=is less than or equal to. Notice that = is not a relational operator.
The operator = is the operator ← described back in Chapter 0. It performs
assignment, which we shall deal with when we discuss variables.

The relational operators are context-sensitive; their behavior depends upon
the types of their operands. You will find no surprises with number operands.
Experiment with these at the Python command line. Here we a list of common
relational operators. All of these are infix binary operators.

• > This compares two numbers, replying with True if the left number is
larger than the right, and False otherwise.

• < This compares two numbers, replying with True if the left number is
smaller than the right, and False otherwise.

• <= This compares two numbers, replying with True if the left number is
smaller than or equal to the right, and False otherwise.

• >= This compares two numbers, replying with True if the left number is
larger than or equal to the right, and False otherwise.

• != This is the not-equals operator.

• == This checks for equality.

Let us show these operators at work.

>>> 5*5 > 6*4

True

11

>>> 5*5 <= 6*4

False

>>> 2 + 2 == 4

True

>>> 2 + 2 = 4

File <stdin>, line 1

SyntaxError: can't assign to operator

>>>

Notice the nastygram issued in response to the last command. It is a common
error to use the assignment operator = instead of == check for equality. Take
note of this error message; it is not the last time you will see it.

Programming Exercises

1. What happens when you cast a Boolean to a string?

2. Enter True + True in an interactive session? What happens? What
about True * 5? Can you state a general principal here?

3. Try casting various strings to a Boolean. Do you ever get False? (You
can if you choose the right string)

4. Try casting various strings to a Boolean. Do you ever get False? (You can
if you choose the right string)

5. Try casting various numbers (floats or ints) to a Boolean. Do you ever get
False? (You can if you choose the right number)

3 Sequence Types

Have you ever had a nocturnal itch to store a bunch of related items together?
Frinstance, if you have a sock drawer in your dresser, you can pull out a (hope-
fully clean) sock out of the drawer without undue rooting around in and under
your dresser amongst the growling dust kittens? At another level of of organiza-
tion, you might even pair matching socks together when are finished laundering
them so you can find pairs easily!

It is often a useful idea to store a group of related things in one place. Your
dresser has drawers; hopefully you actually use them. If you do, you likely
keep socks in one drawer, underwear in another (or in another part of the sock
drawer), shirts in another, etc. We can do the same sort of organizing on Python
objects: this will be accomplished with two new types, tuples and lists.

We have seen how to store a glob of text in a single place; to do this we
use a Python string. As you saw in the exercises, a string is a smart character
sequence the knows its characters and which can perform tasks based on the

12

characters it contains Strings and these two new types are called sequence types;
these store sequences of objects under a single name. You will see that Python
has a simple and elegant interface common to all sequence types.

Sequences are examples of data structures; these are containers for objects
that are organized in various ways. As we progress we will learn about several
types of data structures; for now we will look at lists, tuples and strings. This
little table summarizes the basic properties of these three types.

• str This is the string type, which stores any sequence of characters (a
string). The state of a string is completely specified by this character
sequence. Strings constitute the chief means of storing text in Python.
Once a string object is created in memory, its state cannot be changed;
strings are immutable.

• list This is the list type which stores a sequence of Python objects. This
sequence of objects completely specifies the state of a list. Lists provide
a means of storing a collection of related items under a single name. A
list is mutable; you can change the state of a list object. We will discuss
mutation of lists at the end of the chapter. The objects present in a list
or tuple are called its entries or items. The state of a list includes the
objects present on the list, as well as the order in which they are stored.

• tuple This behaves much like a list, but tuples are immutable. A tuple is
a “frozen list;” you will see that you cannot add elements to it or delete
them from it. It state, as the state of a list is embodied in the collection
of object it contains and the order in which they are stored.

You might ask, “Why have an immutable type; it seems to be a disadvan-
tage?” You will see later that immutability can have many advantages, and
that, on the flip side, mutability can be very dangerous. We will shortly discuss
this topic in its own section.

To get back to our main thread, we begin with a very simple example with
strings. We saw before that we can concatenate strings and find the lengths of
strings as follows.

>>> "hello" + " there"

'hello there'

>>> len("hello")

5

Let’s make some grammatical observations about strings. When you enter
a string such as "hello", you must enclose it in single quotes or double quotes;
Python allows both, but be sure to delimit your string with the same kind of
quote on both sides, or, as you have seen, you will be greeted with a surly error
message.

13

The function len() tells you the length of any object of sequence type; in
particular it tells you the number of characters in a string or the number of
items present in a tuple or list.

You can concatenate (glue together) sequences of the same type using a +
sign, as we just saw with strings and shall see in the next two sample sessions.
Notice how a list is enclosed in square brackets. Each item inside of this list is
a string, so each item must be in quotes. A list can contain Python object of
any types; we say that Python lists are heterogeneous sequences. Notice how
len works here, and how + concatenates sequences.

>>> jayWard = ["moose", "squirrel", "Wattasmatta U"]

>>> chuckJones = ["Bugs Bunny", "Daffy Duck", "Yosemite Sam"]

>>> cartoons = jayWard + chuckJones

>>> cartoons

['moose', 'squirrel', 'Wattasmatta U',

'Bugs Bunny', 'Daffy Duck', 'Yosemite Sam']

>>> len(chuckJones)

3

>>>

Notice how we are able to label the lists we created with the names jayWard,
chuckJones, and cartoons. These names are called variables. We will discuss
variables in greater depth shortly. Varibles are Python’s means of creating the
symbols we discussed in Chapter 0.

We can also do all of this with tuples; notice that tuples are enclosed in
parentheses.

>>> jayWard = ("moose", "squirrel", "Wattasmatta U")

>>> chuckJones = ("Bugs Bunny", "Daffy Duck", "Yosemite Sam")

>>> cartoons = jayWard + chuckJones

>>> cartoons

('moose', 'squirrel', 'Wattasmatta U',

'Bugs Bunny', 'Daffy Duck', 'Yosemite Sam')

>>> len(chuckJones)

3

>>>

Both tuples and lists are sequences. The difference is that we can add items to
lists and modify them; these operations are not possible for tuples. We shall do
a collection of examples later, showing how all of this works. But first, let us
look at the common features of sequences.

Sequence Operations Here are a few useful features for handling sequences.

14

• len() This tells you the length of a sequence. Proper usage: If x is a
string, len(x) is the length, or number of characters in, x. If x is a list or
tuple, len(x) is the number of elements in x. The len construct is actually
an example of a Python function; we will discuss Python functions in the
next chapter.

• in If x and y are strings, the expression y in x evaluates to True when
y is a contiguous substring of x. Otherwise it evaluates to False. The in

keyword checks for membership of an object in a tuple or a list.

• + This concatenates sequences. Beware that, unlike the addition of num-
bers, this operation is not commutative. The sequence being concatenated
must be of the same type, or Python will hiss.

Programming Exercises

1. Make the string x = "foo" and cast it to a list and a tuple. What hap-
pens?

2. Make a list of strings. What happens when you cast it to a string? What
about any list of Python objects?

3. Make a numerical list numbers and then evaluate sum(numbers), max(number)
and min(numbers). What do you see? Do these work for tuples too?

4. What happens if you type y = "cow's"? What about '"cows"? What
general principle can you infer here?

5. Create a string and multiply it by a positive integer. What happens?
What about a tuple or a list?

6. How can you use casts to take a non-negative integer and obtain a list
containing all of its digits in order? Hint. Lists can sort themselves!

3.1 On the Importance of Type

We’ve now seen the action of a variety of operators on numbers. When you
create an expression such as 5 + 3, + is called the operator and 5 and3 are the
operands.

In general, the behavior of these operators is entirely dependent on the types
of the operands. The principle at work here is that type establishes context.

Consider the binary operator +; this operator will take two numbers and
return their sum or take two sequences and concatenate them (glue them to-
gether). If you are adding two numbers and either is a float, everything auto-
matically becomes a float. This is true for -, * and / as well. If you try to add
a number and a string, Python will rebel. Here is an example.

15

>>> "foo" + 5

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: cannot concatenate 'str' and 'int' objects

>>>

You have been unceremoniously informed that Python has encountered a
TypeError and it will have no further congress with your folly. Python will
not concatenate a number and a string. Python will concatenate two strings,
two tuples or two lists. Try mixing types and see Python hiss; by so doing it is
defending the integrity of its type system and protecting you from errors that
could pass silently and return to wreak havoc at some maximally unfortunate
time.

There is an excellent semantic reason for this phenomenon. Remember, the
binary operators are a behavior of numbers. If you use + on number and a string,
you introduce confusion to Python; Python asks, “Shall I use string behavior or
number behavior?” It then realizes it is confronted with a dangerous question.
An ambiguity which should not pass silently is introduced: Python reacts by
ending its activity in an error state. This informs you, the programmer, that
there is a problem and Python will force you to make your intent explicit. You
can achieve this in the example we just saw by casting the number 5 to a string
by using str(5).

The * operator has a useful behavior when it operates on an integer and a
sequence. Look at this session; here we will use Python’s print function. It
evaluates the expression inside of the parentheses and puts the result to stdout,
which as you know from Chapter 1, is the screen.

>>> print("*"*5)

>>> print("*"*5 + "&"*3)

*****&&&

>>> 3*"a"

'aaa'

>>>

>>> "a"*(-5)

''

>>> "a"*0

''

>>> [1,2,3]*3

9

[1, 2, 3, 1, 2, 3, 1, 2, 3]

>>> (1,2,3)*3

(1, 2, 3, 1, 2, 3, 1, 2, 3)

>>>

16

Here is what we surmise: If you multiply a sequence by a positive integer,
that string will be repeated that integer number of times. If you multiply a
sequence by a negative integer or zero, the result is an empty sequence.

Exercises These exercises are important; you will learn about the relational
operators and how they act on strings. Do not skip them!

1. Create several strings with lower-case letters. Compare them with the
relational operators. Repeat this for strings with upper-case letters. What
do you see?

2. You can see the numerical (ASCII) value for any character by placing it
in a string and using the ord function. Here is an example.

>>> ord("a")

97

>>> ord("A")

65

>>> ord("b")

98

>>>

You can do a reverse-lookup with the chr function as follows.

>>> chr(97)

'a'

>>> chr(98)

'b'

>>> chr(65)

'A'

>>>

See what happens when you type in various letters, numerals and symbols.

3. Create several single-character strings with lower and upper case letters.
Compare these with the relational operators. What conclusion can you
draw? Explore the byte-values of various characters and see in particular
how the upper and lower case letters work. See how the digits 0-9 work.

4. Describe the behavior of the comparison operators <=, etc on strings con-
sisting of only letters.

5. How do the order operators (<, <=, >, and <= behave on numerical lists?
Perform an exploration and see if you can write down a simple rule.

4 Making your first Python Program hello.py

If you are using IDLE, look in the next subsection to get started, then come
back here and follow the instructions. Be assured: things work pretty similarly
on all platforms.

17

So far, we have used interactive mode in Python. When our session ends our
stuff evanesces, unless we copy all of the commands and save them somewhere.
Now we will create Python program; this is just a sequence of Python statements.
Here is our first program. Enter it using vi or into an IDLE window; name the
file hello.py

#!/usr/bin/env python3

print("Hello, World!")

In Python 3, we use print(”Hello, World!”); specifically, surround anything
you wish to print with parentheses. This is because in Python 3, print is a
function, much like len. In Python 2, print it is just a simple command. You
can use parentheses in Python 2 for print; this works just fine in both Python
2 and Python 3. This is another way to make your code work in the future if
you are a python 2 user.

The first line of our program looks like gibberish, but shortly you will see it
is useful. The program will run without it, but as we shall see in a few moments,
it does something very cool on UNIX computers.

Whoa! It is crystal clear what the second line is doing! It’s printing out the
phrase "Hello, World". Before we run it we know what our program is going
to do. Now take a little break, look at the next comparison section just ahead,
feel lucky, and we will then run the program.

4.1 Creating a Program in IDLE

From the File menu select File→ New. You will get a new editor window. Select
Save As and save the (empty) contents as hello.py. Then enter your program,
as instructed in the previous paragraphs. Make sure you pick a reasonable
directory to save into; otherwise your stuff will get saved in places where you
do not want it or you cannot later find it.

4.2 A Comparison with Some Other Languages

Here is the Hello World program in Java. You must be sure that it is in a file
named Hello.java.

public class Hello

{

public static void main(String[] args)

{

System.out.println("Hello, World!");

}

}

18

Huh, public?? static??? void?..... And what is this String[] thing? Here
it is in C++:

#include<iostream>

using namespace std;

int main(void)

{

cout << "Hello, World!" << endl;

return 0;

}

We see another traffic jam of arcane language keywords and mysterious nota-
tions. Happily, for us using Python, there is some serous plumbing here we
don’t have to plumb.

4.3 Running Your Program

Now, thank your lucky stars, save the program and exit vi. To run the program,
do this at the UNIX command line

$ python3 hello.py

When you are done you will see this.

$ python3 hello.py

Hello, World!

$

If you are using IDLE Hit F5 to run your program. Its output will appear
in the first window with the Python prompt.

The action of our program is to take the string "Hello World!" and to put
it to the screen. Recall from Chapter 1 that the screen by default is actually
stdout, or standard output.

We do this here. You may, if you wish, redirect standard output to a file as
follows. We show the contents of the file using cat.

$ python hello.py > hugeTextFile.txt

$ cat hugeTextFile

Hello, World!

$

The command python behaves as a UNIX command. It takes as an argument
the name of the file containing the program you wish to run. The use of the

19

.py extension is purely optional, but it does confer an important benefit. Your
editor recognizes this extension and it automatically colors text in ways that
will help you work faster and smarter. It is also configured to automatically
format programs nicely.

If you are using Python 3 (likely) Go into your home directory and open
your .bashrc file and enter this line.

alias python="python3"

Do not put spaces around the = or this will cause problems. When you are done,
type this command at the UNIX prompt.

$ source .bashrc

Now, when you use the python command, you will use Python 3. If you want
to run python2, just use a backslash like so.

$ \python

This will use the unaliased version of the python command.

Now we shall get to the mysterious first line. At the UNIX command line
enter the following while in the directory with your program.

$ chmod u+x hello.py

$./hello.py

Hello, World!

$

The first line of the program tells UNIX how to find the Python interpreter,
so your program automatically runs Python by itself. You can still run your
program by typing python hello.py with the same result. This first magic
line is often called the “shebang line”. The shebang line, if present, must be the
first line of a Python program. Python programs can be executed repeatedly
as needed and can be shared with others. Since they are text files, they occupy
little space in your hard drive.

5 Comments in Python and on Python

Anything after a pound sign (#) on any line of a Python program is ignored
by Python. You can use this feature to document your program. Documenting
programs makes them understandable to you later. You can also use this feature

20

to include any instructions on how to properly run and use your program. In
the professional world, others will often have to read and understand your code;
in this arena good documentation is especially important.

All of the programs you write should have a comment box at the top. Here
is hello.py with a comment box at the top.

#!/usr/bin/env python3

##

#

Author: Morrison

Program Name: hello.py

Date: 15 June 2007

Description: This program puts "Hello, World!" to stdout.

#

##

print("Hello, World!")

Notice the color comments turn in the editor window. Also you should notice
that the shebang line is a comment. It is seen by UNIX but ignored by Python.
You will see comments appear in a special color if you use IDLE. The shebang
line in IDLE will simply be a comment.

A Scolding on Style As you develop your skills bear in mind that programs
should read like well–written technical paper. While it is important that it be
correct for the computer to execute it as specified, it is important for it to be easy
to understand. If you are a programmer, it is vital for your teammates to easily
be able to understand your code so they don’t waste valuable time attempting
to decipher your obfuscatory coding arabesques. Since it costs a company over
$100 an hour in wages, bennies and overhead to keep a programmer at his desk,
you can see that clear coding style and good documentation are essential to a
company’s bottom line. Since, presumably your time is valuable too, you will
want to make best use of it by making your programs clear. You may want to
go back and use them later.

A Further Homily There are three central values in programming: simplic-
ity, clarity, generality. Bear these cardinal virtues in mind as you code. For
a most excellent disquisition on this point of view, type >>> import this at
the Python prompt. Be guided by this wisdom. Do this periodically as your
knowledge advances and more will reveal itself to you.

21

6 Taking Full Advantage of print

Python’s print function in Python 3 has some useful features that will give you
greater control over output. We will mention two basic ones here, end and sep.

Let us begin with end. By default, Python places a newline after each use
of the print function.

>>> print("Example")

Example

>>>

Now let us use end = "" and see the result.

>>> print("Example", end = "")

Example>>>

Here we see the line is ended with an empty string, so no newline is placed
after print. You can tell this because the prompt did not move down to the
next line. To confirm this create the program trafficJam.py

print("a", end = "")

print("b", end = "")

print("c", end = "")

print("d", end = "")

print("e", end = "")

print("f", end = "")

$ python trafficJam.py

abcdef$

All of the print statements are output on a single line. Since the last print
did not create a newline, the prompt did not move down a line. Use end to end
a print statement with anything you like. You can insert a newline by using \n.

Now let us look at sep. You can print several items at once by giving Python
a comma-separated list.

>>> print(2*3, "cows", False)

6 cows False

>>>

By default, items printed out are separated by a space. You can use any sepa-
rator you want by specifying it with sep

22

>>> print(2*3, "cows", False, sep = "|")

6|cows|False

>>>

Use sep = "" if you want no space between the items.

Programming Exercises Now you will have a chance to write some small
programs and try out what you have learned.

1. Write a program that displays the following on the screen.

*

**

2. Write a program that puts this ”Christmas tree” on the screen.

*

3. Google ”ASCII art”; you will find some interesting sites that create art
from keystrokes in a terminal window. You can print out a string contain-
ing many lines using triple quotes like so

#!/usr/bin/env python3

print"""Here is a multiline

string

that goes on forever.

"""

Write a program that prints some ASCII art to the screen. See if you can
make your own creation.

4. Learn about Magic Characters Python has some magic characters, or
metacharacters, that are quite standard amongst modern languages. The
sequence \n of two keystrokes actually represents a single character. So
does \t. Here are two other metacharacters, \" and \\ . Figure out what
these do.

23

5. Now use metacharacters to create a single string that prints this to the
screen.

and this

* * * * *

* * * * *

* * * * *

* * * * *

Refine this and make the strings you use as short as possible. How low
can you go?

6. Make a this list of strings

>>> x = ["abcd", "efgh", "ijkl"]

Now enter x[0][0] at the Python prompt. What happens? Explore this
business of double-subscripts and learn how it works. Does this work for
tuples as well?

7. Python will print out a comma-separated list of items of any types. Try
this.

>>> example = "Mr. Yoda Ears weighs", 11, "pounds. This is", True

>>> print (example)

8. Enter this at the Python prompt

>>> thing = [[1,2], [3, [4, 5], 6, [7, 8, 9]]]

Fiddle around and see if you can get Python to print this out.

0 1 2 3 4 5 6 7 8 9

What kind of object is this thing?

9. Use sep to print out this line from an HTML table. Can you use end,
too?

<tr><td>3.4</td><td>4.5</td><td>5.6</td><td>6.7</td><td>7.8</td></tr>

10. Use print to format this. See if you can make it work at least 3 different
ways. There’s a panoply of ’em. Be as clever as possible.

|0|1|2|3|4|5|

24

|1|2|3|4|5|6|

|2|3|4|5|6|7|

|3|4|5|6|7|8|

7 Variables, Assignment, Operators and Type

Now, we will see how to create the symbols we described in Chapter 0 using
Python. There are two parts to this process. A variable in Python is a name
that points to an object stored in memory; to wit, Python variables know how
to find their objects. Here is a simple way to think of it. Your telephone
number is a separate entity from your telephone. Your telephone number is like
a variable: it is a means by which you can refer to, or send messages to, your
telephone. Your telephone is the object and its number is its variable name. A
phone needs to have a number or it is “orphaned;” it cannot be contacted via
the phone system. A phone can be reprogrammed to a new number.

Variables point to objects; objects are what actually harbor type. We shall
show a simple sample session here, and supply blow-by-blow commentary. As
you read this, open your Python shell, and experiment as you follow along. Do
not be afraid to “break things” and experiment. This is how we learn.

Lets begin by creating a variable named x and printing the value it points
at.

>>> x = 5

>>> print (x)

5

When you see x = 5, do not read, “x equals 5;” read instead, “x gets 5.” The
assignment operator = sets up a pointing relationship. The name on the left, x,
points at the object on the right, 5. Assignment is not a symmetric operation,
as we see in this little Python session.

>>> 5 = x

File "<stdin>", line 1

SyntaxError: can't assign to literal

Python is rebelling, informing us that the constant 5 cannot point at an object.

Useful Terminology Suppose you perform an assignment in this way.

25

leftHandSide = rightHandSide

What can appear on the right-hand side is an expression, which is just a com-
bination of variables, literals and operators such as +, -, * and /. When an
assignment occurs, the right-hand side is evaluated first. The result of this is
called an rvalue. The item on the left must be able to point at an object. So
far, the only things that can point at an object are variables. Things that can
point at objects are called lvalues. Variables are lvalues. List items, since they
can accept assignment, are also lvalues.

Next observe how we do some basic arithmetic. There is one surprise here if
you are a Python 2 user. The division operator does integer division in Python
2 by default.

>>> y = 4

>>> print(x*y)

20

>>> print(x + y)

9

>>> print(x - y)

1

>>> print(x**y)

625

>>> print(x/y)

1.25

>>> print(x//y)

1

The operations +, - *, and / behave exactly as we expect them to. However,
since x and y point at integers, / is integer division. Python has a native
exponentiation operator **.

In Python 2, If you want decimal numbers, you must cast to a the float

type, which handles decimal numbers. Here is how to do it. Of course, this will
work just fine in Python 3 as well.

>>> print float(x)/y

1.25

Using a decimal point will cause Python to view a number as a float. We
could have written

>>> x = 5.0

and Python would view x as pointing at a floating point number. This would
cause division to be floating point division.

26

Here is one nice little feature of ** for floating point numbers. It provides a
cheap way to compute a square root.

>>> w = z**(.5)

2.2360679774997898

>>> w*w

5.0000000000000009

>>>

Notice that floating point numbers do not store exactly. Do not be disturbed
by the presence of a wacky digit or two out in insignficiantdigitville. This
phenomenon is not particular to Python. Rather is is an artifact of the way in
which floating point numbers are stored in computers.

Now let’s point a variable at a string and demonstrate the action of *.

>>> name = "Ada"

>>> name * 5

'AdaAdaAdaAdaAda'

You can check the type of an object attached to a variable by using the
type() function.

>>> type(x)

<class 'int'>

>>> type(y)

<class 'int'>

>>> type(name)

<class 'str'>

>>> z = 5.0

>>> type(z)

<class 'float'>

We should point out here that when we are entering type(x), we are not asking
the variable x its type. What we are asking is, “x, what is the type of object you
are pointing at?” Remember, objects have type, variables are merely names. It
is the object itself that actually tells you its type.

Lists and tuples are also types. We shall show that right here.

>>> moose = [1,2,3]

>>> regalis = (1,2,3)

>>> type(moose)

<class 'list'>

>>> type(regalis)

27

<class 'tuple'>

>>> moose == regalis

False

>>>

<class 'list'>

Observe that a list can never equal a tuple, and vice versa. Objects of different
types are never equal; this is the so-called species test. Two objects of different
species cannot be seen as equal. You can cast a list to a tuple, and vice versa,
as we show here.

>>> moose == regalis

False

>>> goose = tuple(moose)

>>> goose

(1, 2, 3)

>>> hoose = tuple(moose)

>>> hoose = tuple(regalis)

>>> hoose = list(regalis)

7.1 Rules for Variable Names

The first character of a variable name can be a letter or the underscore () char-
acter. Subsequent characters may consist of numbers, letters or . In principle,
there is no length limit on a variables name, but you should try to be reason-
able. The name of a variable must not start with a number. It cannot have a
space or punctuation symbols in it. Avoid using underscores at the beginning
and end of variable names; these are often used for special names with special
interpretations which can cause surprises.

We recommend the camel notation for variable names requiring more than
one word for a good description. You can also separate words with underscores if
you wish like so: is even. In this notation, words are separated by underscores
instead of capitalization. Pick one scheme and stick with it; consistency is
helpful to programmers.

Here are examples of legal variable names.

numberOfTrials

firstName

lastName

socialSecurityNumber

isRejected

number_of_cackles

Here is rogue’s gallery of illegal variable names, and the reason why they are

28

taboo.

2BorNotToB starts with a number

period.piece presence of a period

semi;colon illegal punctuation mark

space cadet spaces are NOT allowed

7.2 Language Keywords

Certain words are reserved by Python for critical functions; never use these for
variable names or you will get mysterious error messages. An example of such
a keyword is print. If you type print in a .py file in vi, it turns a special color
(depending on your system). Note that color; any word turning that color when
typed is a Python keyword. Keywords also come out in a special color in IDLE.
You will be alerted to keywords as we proceed.

and del for is raise
assert elif from lambda return
break else global not try
class except if or while
continue exec import pass yield
def finally in print

8 Expressions and the Symbol Table

Python keeps track of variables and objects via a mechanism called the sym-
bol table. You should think of the symbol table as a dictionary containing all
variables as their “words” and the objects they point at as “definitiions.”

Recall that an expression is any combination of variables and operators. For
example, if x and y are variables, x/y is an expression. A variable by itself is
an lvalue i.e. , it is capable of pointing at an object, because it can have a value
assigned to it. Most expressions are not lvalues; for example, it makes no sense
to write x/y = 5. Expression that are lvalues include such things as list items.

When an expression is encountered in Python, it is evaluated. In this process,
the values pointed at by each operator are looked up in the symbol table, and
they are combined as the expression dictates. For example, suppose that we
have a variable x pointing at 5 and a variable y pointing at 2. In this case, the
symbol table includes the following entries.

x → 5

y → 2

29

When we evaluate x + y, Python looks up, or fetches the value 5 is fetched
from the symbol table for x and the value 2 from the symbol table for y. Then,
5 is substituted in for x and 2 for y. The result of evaluating x + y is 5 + 2 =

7.

For objects of numerical type, the standard order of operations you learned
in Algebra applies: first come parentheses, then exponents, then multiplication
and division occur from left to right, and finally, addition and subtraction occur
from left to right.

The assignment operator = has lower precedence than any of these. Let’s
see some examples of this at work. Notice that when an expression entailing
variables is evaluated, the variables do not change. We merely fetch their values
from the symbol table.

The assignment operator works in the reverse order from other operators.
Things in an assignment statement are processed from right to left (Arabic style
reading). So, in an assignment such as this one

x = x + y

the evaluation process works as follows. The value for x + y is found. Then
the result is assigned to x.

Let’s begin another Python session and illustrate this

>>> costello = 6

>>> abbott = 45

>>> moe = "chucklehead"

>>> joe = "nitwit"

>>> schempp = "dim bulb"

Making these assigments results in the following symbol table.

costello 6
abbott 45
moe "chucklehead"

joe "nitwit"

schempp "dim bulb"

Now watch this code. A complex sequence of events occurs.

>>> abbott = abbott * costello

>>> print abbott

270

Python always begins by looking at the right-hand side of the assignment and
it works to the left.

30

abbott = abbott * costello

It fetches the values for abbott and costello from the symbol table and
evaluates abbott * costello. The result of this evaluation, 270, overwrites
abbott’s entry on the symbol table. Now the symbol table looks like this. The
old value, 45, for abbott is orphaned ; it is still in memory for a while, but it
has no variable referring to it. We show the updated symbol table.

costello 6
abbott 270

moe "chucklehead"

joe "nitwit"

schempp ”dim bulb"

Let’s watch the evolution of the symbol table as we move along here.

>>> costello = (abbott - costello)*3

>>> costello

792

You might wonder what happens to orphaned values in Python. Do they must
pile up, cluttering memory? The answer to this is no. Python has a facility
called a garbage collector. The garbage collector lurks in the background,
patrolling memory and freeing up the space occupied by orphans so it can be
used for other purposes.

Coming back to our main thread, we see that abbott is pointing at 270 and
that costello is pointing at 6. We evaluate the expression

(abbott - costello)*3

and the result is 792. This value overwrites costello’s old value and the symbol
table looks like this.

costello 6
abbott 792

moe "chucklehead"

joe "nitwit"

schempp "dim bulb"

Next, we will alter moe’s entry.

>>> moe = joe + schempp

>>> print moe

nitwitdim bulb

31

During this process, the values of joe and schempp are fetched from the
last symbol table. They are concatenated and moe is redirected to point at by
"nitwitdim bulb". Here is the new symbol table.

costello 6
abbott 792

moe "chucklehead"

joe "nitwit"

schempp "nitwitdim bulb"

Finally we see that joe and schempp are unaltered.

>>> print joe

nitwit

>>> print schempp

dim bulb

>>>

8.1 The Inside Dope on Assignment

You would likely do this without thinking.

>>> a = b = 5

>>> a

5

>>> b

5

>>>

Let’s take a look inside and see what happens. First of all, when you evaluate
something such at 5 + 2 and get 7 you are completely unsurprised. What is
actually happening here is that + is actually a mathematical function. It takes
its two operands add them, and returns the result (evaluation).

But, this is deception. Try this

>>> 5 == (x = 5)

File "<stdin>", line 1

5 == (x = 5)

^

SyntaxError: invalid syntax

>>>

So, the value 5 is not, in fact, returned by the assignment. However, Python
does support chained assignments such as

32

>>> b = c = d = 5

Python also supports simultaneous assignment. Take note of this little ses-
sion.

>>> x = 1

>>> y = 2

>>> x,y = y, x

>>> print(x)

2

>>> print(y)

1

>>>

8.2 A Shorthand Convenience: Compound Assignment
Operators

Python offers a shorthand that makes expressions cleaner and more succinct.
If you have a binary infix operator op, which can be +, -, *, /, %, or **, you
can write x op= y for x = x op y. These work for numbers and += works for
sequences. This little session show compound assignment at work.

>>> x = 5

>>> y = 2

>>> z = "foo"

>>> x += y

>>> x

7

>>> z += "goo"

'foogoo'

>>> z *= 3

z

'foogoofoogoofoogoo'

You should experiment with these operators and deliberately do illegal stuff.
See and learn how to recognize the surly error messages that will result. Do
not put a space in a compound assignment operator, or you break it and you
will get an error message. Note that the item appearing on the left side of a
compound assignment operator must be an lvalue.

8.3 Python is a strongly, dynamically typed language.

Variables are typeless: the objects they point at actually have type. The type
of a variables object is determined when the program runs, hence the term

33

“dynamically typed.” By using the assignment operator =, you can make any
variable point at a Python object of any type.

Python is strongly typed because it enforces rules about object type when
expressions are evaluated. Python objects themselves have a keen awareness
of their identity. The object 5 knows, “I am an integer.” This is important
because, when you use operators such as +, the types of the operands determine
the action of the operators.

Pythons typing system is sometimes referred to as “duck typing.” Suppose
you have a variable x pointing at an object. If x has a behavior foo(), we would
trigger that behavior by typing x.foo() If you trigger the behavior x.foo(),
Python checks at run time to see if xs object has a foo() behavior available
to it. If it does, the foo() action is triggered. If it does not, an error message
is generated and your program dies an ignominious death in an error state. In
other words, Python reasons that if “it quacks like a duck”, “it’s a duck”.

In contrast, other languages such as C, C++, and Java are statically typed.
This means that a variable knows its type before the program is run and that
it can only point at objects of its type. In such languages, type is determined
at compile time, i.e. at the time the executable is built. This little example is
quite informative

>>> x = 4

>>> x.upper()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

AttributeError: 'int' object has no attribute 'upper'

>>> x = "flimflam"

>>> x.upper()

'FLIMFLAM'

At first, we make x point at the integer 4. When we try to obtain upper()

behavior from x, we get a nastygram from Python, saying, upper()? No such
anniemule! Next we point x at a string. Since a string has behavior upper(),
Python happily complies with our wish.

8.4 Python is a Garbage-Collected Language, or Charles
Dickens Wrote of Orphan Heaven

Consider the fate of the string object "George" in this little session.

>>> name = "George"

>>> print name

George

34

>>> name = "John"

>>> print name

John

In the beginning, Python creates the string "George" and makes the variable
name point at it. On the second line, we use print to see this; Python cheerfully
echoes back "George". In the next line, name now points at "John". If you have
been paying close attention, you would now ask indignantly, “Wait a minute,
string objects are immutable? You cannot change name!”

What happened? Behind the scenes, you will see that "George" has been
orphaned; "George" is an object with no variable pointing at it. There is no
way for us to retrieve "George", once we orphan him. Objects are orphaned
when they no longer have any variable pointing at them. Hence, we did not
change the state of "George"; we just abandoned him to electronic oblivion.

Do orphaned objects just pile up in RAM, occupying space? Happily, the
answer to this is no. We previously pointed out before that Python has has
the garbage collector; this lurks in the background and it reclaims the memory
that orphaned objects occupy. This memory is then freed for your program to
use. You just worry about creating objects; Pythons garbage collector destroys
them for you after you are finished with them.

Objects of types int, float, long and bool all work this way. All are
immutable and when you do an assignment, the old value is orphaned, unless
another variable is pointing at it. For example, this code

x = 5

x = x + 1

causes the following to happen. The integer object 5 is created in memory, and
the variable x points at it. On the next line an assignment occurs. The value
5 is fetched from the symbol table under the name x. The righthand side is
evaluated to 6. Then x now points at the value 6, and the object 5 is orphaned.

Java is also garbage-collected; C and C++ are not. In C an C++, you must
manually destroy many of the objects you create. Failure to do this is often a
source of memory leaks which can plague C/C++ programs. You can see this
if you run a web browser for a long time. As a web browser runs a long time, it
often gets slow and crotchety. This is because of memory leaks. Restarting the
browser wipes the old browser process and all of its unused objects that piled
up like cyberplaque, slowing your session to an infuriating crawl. Restart gives
you a clean process with no leftover objects.

35

9 Sequence Operations

There are a variety of operators for sequences that are extremely helpful. When
you write programs that process data, sequences play a prominent role, so meth-
ods that handle sequences help us to keep from reinventing the wheel. Let’s first
show a sample session, then explain their action in detail.

9.1 Indexing

You are given access to the entries a sequence with the []operator. In the
example below, a string is treated as a sequence of characters. The integer
inside the [] is called an index. Python uses 0 for the first index of a sequence.
We show this for a list and a string; it works the same for a tuple. Try it!

All of these indexing operations give you a copy of a part of a sequence.
Since you get a copy, slicing and item access do not change the object they are
applied to. Notice that Python begins counting at 0.

>>> x = "abcdefghijklmnopqrstuvwxyz"

>>> y = ["aardvark", "bat", "cerval"]

>>> x[0]

'a'

>>> y[0]

'aardvark'

>>> x[1]

'b'

>>> y[1]

'bat'

>>> x[25]

'z'

Python will hiss is you attempt to use an index that is out-of-bounds. Here
is a very common n00b mistake.

>>> x[26]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

IndexError: string index out of range

You will get the same message if you try to gain access to y[3].

Python has a clever feature for counting from the end of a sequence.

>>> x[-1]

'z'

36

>>> y[-1]

'cerval'

>>> x[-2]

'y'

>>> y[-2]

'bat'

>>> x[-26]

'a'

>>> y[-3]

'aardvark'

Don’t go too far!

>>> x[-27]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

IndexError: string index out of range

Python’s indexing system makes a lot more sense if you think of indices as
living between the elements of a sequence. For example in the string "hello"

you should have this mental picture

*-- -5-- -4-- -3-- -2-- -1

| h | e | l | l | o |

0----1----2----3----4----5

The indices lurk between the items in the sequence. The positive indices are
“normal;” they point to the character immediately to their right. The negative
indices are “sinister;” they point to the character to their left. This is extremely
handy when we talk about taking slices from a sequence.

9.2 Slicing

You can get pieces of sequence using a feature called slicing. Here we can get
the all of the string entries before index 5 or staring at index 5.

>>> x[:5]

'abcde'

>>> x[5:]

'fghijklmnopqrstuvwxyz'

We can obtain the length of a sequence using len().

37

>>> len(x)

26

>>> len(y)

3

You can also specify where to start and where to end before in a string slice.
Here we get the slice of x starting at index 5 and ending before index 7.

>>> x[5:7]

'fg'

Notice how the design of indices make things spiffy.

>>> x[:5] +x[5:]

'abcdefghijklmnopqrstuvwxyz'

9.3 The in Keyword

The keyword in is actually a binary infix operator. Here we show it where both
operands are strings.

>>> "abc" in x

True

Yeah, "abc" is in "abcdefghijklmnopqrstuvwxyz"; the in feature checks and
sees if the its left operand is a contiguous substring of the operand on the right.

>>> "abc" in x[5:]

False

We see that "abc" is not in "fghijklmnopqrstuvwxyz".

>>> "abe" in x

False

The characters "abe" appear in order in x. They, however, are not contiguous!
Hence the False. Oops! Hence the False.

The behavior of the in operator is different for lists and tuples; in this case,
it a check for membership in the tuple or list. This mechanism works identically
for tuples or lists; here we show it working on a tuple. The left operand here is
an object and the right operand is a list or tuple.

38

>>> cows = ("guernsey", "brahmin", "texas longhorn")

>>> "siamese" in cows

False

>>> "brahmin" in cows

True

>>> 56 in cows

False

>>>

A Formal Description of Sequence Operators We gather what we have
learned so far all in one handy place. You will notice that things work very
similarly for strings, tuples and lists. This sort of parallelism makes for some
pleasing economy of thought.

Entry Accesss [] The square bracket operator allows us to extract a sub-
sequence or a single item in a sequence. If x is a sequence and a and b are
integers, then

• x[a:b] is the string starting at index a of x and ending at index b. If
a >= b, then the result is an empty string. It is an error to try to use
indices that are out of bounds.

• x[:b] is the string starting at the beginning x and ending at index b. It
is an error to use a value for b that is out of bounds.

• x[a:] is the string starting at the ath character of x x and ending at the
end of x. It is an error to use a value for a that is out of bounds.

String and Tuple Immutability All of the slicing methods hand you a copy
of the indicated subset of a string or tuple. Strings in Python are immutable;
once you create a string object, you cannot change it!

>>> x = "moo"

>>> x[0] = "f"

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: 'str' object does not support item assignment

>>>

Python does not allow you to alter the entries of strings. Hence we say that
a string is an immutable sequence type. Strings are sequences of characters that
are “written in ink.” Once you create them, you cannot change their entries.

However, you can create a new string object and orphan an old one; it is
common to “frankenstring” new strings from existing ones using the [] operator.

39

Here is a simple example continuing on the last Python session. The symbol
table for as of now is

x → "moo"

>>> x = x + " cow"

>>> print x

moo cow

In this process here is what is happening. In the line

x = x + " cow"

we fetch the value "moo" from the symbol table for x and x + "cow" eval-
uates to "moo cow". We then tell x to point at this new string. The symbol
table becomes

x → "moo cow"

The object "moo" is now orphaned. It awaits the coming of the garbage
collector. It is no longer accessible to you.

It is useful to point out that float, bool, and int are all immutable Python
objects. As a result, when you have a piece of code like

x = 5

x = x + 1

the following happens. The integer object 5 is created in memory, and the
variable x points at it. On the next line an assignment occurs. The value 5

is fetched from the symbol table under the name x. The right–hand side is
evaluated to 6. Then x not points at the value 6, and the object 5 is orphaned.

So far the only mutable type we have encountered is list. When you slice
a list, you are handed the actual sequence of objects. You can, for instance,
assign an empty list to a slice of a list and that slice will be deleted from the
original list. You can assign a list to an empty slice and it will be spliced into
your list. You can read about this in the section entitled “Mutability and its
Dangers.”

10 Advanced Topic: Understanding the Point-
ing Relationship

We have said that “variables point at objects.” We need to elaborate on this
relationship to fully understand what it means for us when we program from

40

a practical standpoint. Full understanding of this phenomenon makes some
seemingly confusing issues that will crop up later crystal clear. You should
think of a variable as a name. Variables are brought into existence with some
kind of assignment statement. For example x = 42 causes the variable x to
point at the integer object 42. In C or Java, you would have to say

int x = 42;

In the C language, this creates an integer variable holding the bytes for the
number 42. An integer on a standard computer today is 32 or 64 bits. That
size is not changeable.

In Python we could subsequently say x = "In the beginning

(the whole Bible)...". We know the Bible is huge; as a text file is several
megabytes. In C or Java, assigning x to such a thing is an error. How can you
expect to cram an entire Bible into a space of 32 or 64 bits? You cannot! How
does Python circumnavigate this seemingly impossible problem? The solution
relies in the magical process of indirection, which we are about to meet.

What follows is an incomplete model, but it provides an excellent insight
into how Python actually works. You should recall that your RAM is divided
into bytes, each of which have an address. Every program that runs on your
box gets a virtual address space. This is a “sandbox” of memory the operating
system gives to your program. The memory in RAM is not necessarily a con-
tiguous block of addresses. However, in a beautiful feat of abstraction, the OS
gives your program virtual addresses, which appear to your program to be con-
tiguous. The OS handles the ugly problem of translating the virtual addresses
into real hardware addresses. It controls all processes (running programs) on
your machine and manages their virtual address spaces. Your processes’s vir-
tual address space is like a little, private computer for your process that other
process may not see or tamper with.

All access of values via variables is accomplished by the miracle of indirection.
What a variable stores is not an actual value. What is stores is a virtual memory
address where the object it is pointing at can be found. This behaves much like
the telephone system. Your cell phone has a number, which is its address.
Calling that phone causes it to ring and to (hopefully) cause you to answer
it. Your physical phone, in this analogy is the object. The caller might be
your mother, who could send you messages via your phone you are prepared
to understand, such as “come home” or “tell me what time to expect you for
dinner.” Your phone is the object here; you receive on and act upon the message.
Your mother gets access to you via your phone number. In fact, there are three
levels of indirection here: your mother uses her phone (level 1) to dial your
phone (level 2) to send a message to you (level 3).

The act of assigning a variable triggers a complex of events. Room for its
object is allocated in your program’s memory and its object (string, list, number,
etc.) is created. The variable stores the object’s virtual memory address. This

41

is how it points at its object. Virtual memory addresses are just integers that
are displayed in hex code. When you point the variable at another object, you
cause it to store the new object’s address. If you have no variable pointing at
the old object, the old object is orphaned.

Objects are quite complex. They have data (like the characters in a string)
and they know how to do things to themselves. Objects are smart in that they
are aware of their type and identity and they have the code they need to carry
out the tasks entailed in messages sent them.

So let’s go back to the example of x being 42 and then being a string with
the entire Bible in it. In the beginning, the value 42 is an integer object stored
in memory. When we point x at the bible, Python makes space for the string
containing the Bible and places it it memory. It then gives x the memory address
where we can find the Bible.

So far the only mutable type we have encountered is list. When you slice
a list, you are handed the actual sequence of objects. You can, for instance,
assign an empty list to a slice of a list and that slice will be deleted from the
original list. You can assign a list to an empty slice and it will be spliced into
your list. To wit, a slice of a list is an lvalue or any entry in a list is an lvalue.

An integer is a very simple object; it remembers its datum (such as the
number 42) and its type. Now when we assign the variable x to the string with
the Bible in it the following happens.

1. The Bible is placed into the virtual address space of your Python session.
If your session runs out of space, then Python will request more room
from the OS; if this is not granted you will get some horrid memory error
(unlikely in this case).

2. The code that makes a string smart is placed right next to it.

3. x stores the first memory address of this whole leviathan.

4. The old object, 42 is left behind.

You can think of this complex process very simply. Variables know where
to find their objects. They do not know anything about their objects. The
specification of an objects location is just a memory address, which is just an
integer. So, variables only really store integers. The magic is in the indirection:
the integer tells you where a complex object that is very smart is located. What
is nice for you to know is that you do not have to understand the inner workings
of a smart object to get it to do work for you.

11 Mutability and its Dangers

Consider this innocent little act.

42

>>> cats = ["bermese", "siamese", "russian blue"]

>>> meowers = cats

>>> cats

['burmese', 'siamese', 'russan blue']

>>> meowers

['burmese', 'siamese', 'russan blue']

>>>

Now, what is interesting is that a list is mutable. Entries and slices of lists
are lvalues; we can assign lists to them, and thereby change items. Here, let’s
change burmese cats to calico.

>>> cats[0] = "calico"

>>> cats

['calico', 'siamese', 'russan blue']

>>>

Prepare yourself. . .

>>> meowers

['calico', 'siamese', 'russan blue']

>>>

Both lists changed! What happened? What we see here is a phenomenon
called aliasing. The seemingly innocent step cats = meowers provides the clue.
Remember: variables store the address of objects. We actually access those
objects via indirection. What we did here is make cats and meowers point
at the same object; this is so because both store the same memory address.
Since lists are mutable, any variable pointing at a list can change its state.
This can be dangerous and can produce unexpected and undesired results. The
perils multiply in the next chapter when we begin using functions. Nonetheless,
mutability can be very convenient and can add to performance. We must respect
is power and its perils, much as we do any powerful tool.

Programming Exercises In these exercises, you will explore the world of
sequences. These exercises convey some important information we will use later.

1. . Create an empty list named dogs by entering

>>> dogs = []

Now enter this command.

>>> dogs.append("standard poodle")

What does this do? Use it to populate the list with more breeds. The dot
(.) says, “Object dog, append the object I give you to yourself.”

43

2. If you type

>>> dogs.sort()

what happens to the list dogs? What message are you sending the list?

3. Make a tuple and try to use append and sort on it. Explain what happens.
Try these operations on a string and take note of the results.

4. Create an list named l, a string named s and a tuple named t; make sure
these contain at least ten elements. Then enter l[::2] at the command
line. Does it modify l? Try placing numbers between the two colons.
What happens. Try this for tt s and t as well. Does doing this modify
any of l, s, or t?

5. Now enter l[len(l) - 1, -1, -1]. What happens? What else can you
do?

6. You can cast anything to a string. What does casting a list or a tuple to
a string do? What happens if you cast a string to a list or a tuple?

7. Create a string as follows.

>>> x = "abcdefghijklmnopqrstuvwxyz"

>>> x = x + "ABCDEFGHIJKLMNOPQRSTUVWXYZ,.!@#$1234"

Send a string the messages lower() and upper() by using the dot notation,
x.lower() and x.upper() Do they affect the original string? What do you
see? What can you say a string knows how to do from what you have seen
here?

8. . What happens if you assign an empty list to a slice of a list? Can you
assign a list to a slice of a list? What is the result? What happens for a
tuple?

The Operator += for Sequences, the Keyword is, Pooling, and Mu-
tability We said earlier that an object has state, identity and behavior. We
have == to check for equality. Can we check for equality of identity? The an-
swer is “yes;” to do so use the keyword is. If you have variables x and y, x is
y returns True if x and y both point at the same object. Let us illustrate with
a simple example. We create a string and assign it to another variable. There
are no surprises here.

>>> x = "some"

>>> y = x

>>> x is y

True

>>>

Here is where we see something interesting. Strings are immutable, so
the code on the first line x = x + "thing" causes x to point at the string

44

"something". The string y is unaffected. Since strings are immutable, Python
cannot modify the object that x is pointing it. Instead, it creates a whole new
string, "something" and has x point at it. The variable y is still pointing at
"some".

>>> x = x + "thing"

>>> x

'something'

>>> y

'some'

>>> x == y

False

>>> x is y

False

>>>

In Python, the += operator appends sequences to sequences. Here we show
it working on strings. This operator had the same action as

x = x + "thing".

>>> x = "some"

>>> y = x

>>> x is y

True

>>> x += "thing"

>>> x

'something'

>>> y

'some'

>>> x == y

False

>>> x is y

False

>>>

Now we examine this behavior on a list and a tuple. A list, in contrast to
a string, is a mutable sequence type. A tuple, in like a string, is an immutable
sequence type.

>>> xlist = [1,2,3]

>>> xtuple = (1,2,3)

>>> ylist = xlist

>>> ytuple = xtuple

45

>>> xlist is ylist

True

>>> xtuple is ytuple

True

We see no surprises. Now we will use += to tack on a new element for each.
Note that a singleton tuple requires the comma after the value to be recognized
as a tuple.

>>> xlist += [4]

>>> xtuple += (4,)

You see that xlist and ylist still point to the same object.

>>> xlist is ylist

True

>>> xlist

[1, 2, 3, 4]

>>> ylist

[1, 2, 3, 4]

Contrast this to the fate of xtuple and ytuple.

>>> xtuple is ytuple

False

>>> xtuple

(1, 2, 3, 4)

>>> ytuple

(1, 2, 3)

A new object is constructed for xtuple and ytuple is unaffected. No aliasing
occurs here. The compound assignment operator += works for all types of
sequences. Its action, however is affected by the mutability of the sequence.

12 Advanced Topic: Pooling

Certain types of objects in Python are pooled, or cached in memory. An example
of this is string objects. Here is how it works. Python maintains a set of
all reasonably small strings used in the lifetime of your program. Instead of
orphaning them, it keeps them in an area of memory called the string intern

pool. A string is never included in the pool twice. The pool is an area of
memory organized for the strings you program uses. These objects get recycled.
To see evidence of this observe the following contrast of list and string behavior.
We begin by making a string and a list.

46

>>> pool = ["swimsuit", "sunscreen", "rubber duck"]

>>> spool = "fishing line"

Now if we take a slice, we know we should get a copy of each sequence.

>>> poolcopy = pool[:]

>>> spoolcopy = spool[:]

But when we test for equality of identity, we are in for a surprise!

>>> pool is poolcopy

False

>>> spool is spoolcopy

True

The lists pool and poolcopy are separate. This must be done, since a list is
mutable. Were they to point at the same object, they would become alias for
each other. This would violate the requirement that slices return copies of their
segment of a sequence!

Since strings are immutable, no second copy is needed. Python is very clever;
it just tells spool and spoolcopy to point at the same string! Since neither can
modify this object, its perfectly save and it saves memory. Mutable objects may
never be pooled.

There is an added bonus here. If two strings are pooled, checking string
equality is simple: Python just has to check for equality of identity (this is an
integer comparison). It does not have to move through each string, checking
the equality of characters. Since this operation of comparing all characters in a
string is proportional to the length of the string, you can see that considerable
economies are achieved here.

Strings are pooled because nearly every program traffics in them. Python
gains efficiency from this feature. Below, you will check out other types and see
if they are pooled. What types make the most sense for pooling?

Programming Exercises

1. You saw how to test if a type of objects is pooled; so far we only know
strings are pooled. What about bool, int, long and float?

2. How about tuples?

3. What is the largest number of Boolean objects Python will ever actually
store?

47

13 Useful Learning Resources

The best source of information on Python is on the Python site, http://www.
python.org. The documentation can be found at http://docs.python.org.

Wikipedia has an article on string pooling at http://en.wikipedia.org/

wiki/Stringinterning. The Java and Ruby languages also pool strings. Since
strings are mutable in C++, they are not pooled in that language. You can
download the complete documentation to Python and store it on your box. The
documentation provides a complete guide to all of the Python language features,
libraries and modules.

48

 http://www.python.org
 http://www.python.org
 http://docs.python.org
 http://en.wikipedia.org/wiki/String interning
 http://en.wikipedia.org/wiki/String interning

	Introduction
	What is coming up?
	The Nitty-Gritty: Launching Python in Linux or MacOSX
	Using Python in Windoze
	All Users

	Types, Objects and Numbers
	Python's Number Types
	Python's String Type
	Getting More Information about Strings and Built-in Types
	Python's Boolean Type
	Casting
	Relational Operators and the Boolean Type

	Sequence Types
	On the Importance of Type

	Making your first Python Program hello.py
	Creating a Program in IDLE
	A Comparison with Some Other Languages
	Running Your Program

	Comments in Python and on Python
	Taking Full Advantage of print
	Variables, Assignment, Operators and Type
	Rules for Variable Names
	Language Keywords

	Expressions and the Symbol Table
	The Inside Dope on Assignment
	A Shorthand Convenience: Compound Assignment Operators
	Python is a strongly, dynamically typed language.
	Python is a Garbage-Collected Language, or Charles Dickens Wrote of Orphan Heaven

	Sequence Operations
	Indexing
	Slicing
	The in Keyword

	Advanced Topic: Understanding the Pointing Relationship
	Mutability and its Dangers
	Advanced Topic: Pooling
	Useful Learning Resources

