
Contents

0 Introduction 1

1 Representing Curves 1

2 Getting Started on the Application 3

3 Deciding State in the Application 6

4 Getting the Curves to Draw: Getting Curve.java ready 10

5 Getting the Curves to draw: Enabling the Panel 12

6 Creating and Enabling the Color Menus 15

7 Consructing the Width Menu 18

8 Graphics2D 21

9 FileIO for Objects and Serialization 31

0 Introduction

During this chapter we will create a program named UniDraw, which will be a
simple drawing program with a color pen whose color and width are controlled
by menus. The user will draw by dragging the mouse in the drawing panel,
thereby creating a mark on the drawing.

We will be able to save our resulting creations for later viewing or editing.
What is new here is that we will learn how to serialize, or pack away, objects into
files and how to reconstitute them and restore the program’s state at the time
it was saved. This will be a full-featured event-driven graphical application.

1 Representing Curves

Let us begin by sketching in a bare-bones shell for our program. We will create
two classes. We need a means with which to represent a curve in the drawing. To
decide how to do this, let’s be more specific about the application’s functionality.

1

When the user presses the mouse, that triggers a MouseEvent; if the name of
the event is e, we get the point at which it occurred by calling e.getPoint().
So, when the mouse is pressed, we should create a new curve and it should begin
at the point we retrieved.

Now the user drags the mouse to draw. As this occurs, the mouse is polled
and it periodically fires off a MouseEvent. Each event can tell us where it
occurred; we will need to store all of those points in our curve.

Finally, when he mouse is released, the drag is over. We add the point where
it is released, and then we wait for the next pressing of the mouse. Notice that
every curve is guaranteed to have at least two points.

What does a curve need to know? It needs to know the list of points it accrues
during the press/drag/release sequence. It also needs to know, according to our
specification, its width and its color.

There is a vary natural way to achieve this. Let us make our curve class
extend ArrayList<Point>. This class has an add method that will easily add
points to the class. We will also make the curve capable of drawing itself in a
graphical window. So we begin like so. Observe that a curve’s color and width
will never change, so we make these state variables final.

import java.awt.Color;

import java.awt.Point;

import java.util.ArrayList;

public class Curve extends ArrayList<Point>

{

final Color color;

final int width;

}

Next we add a constructor to intilaize the state variables.

import java.awt.Color;

import java.awt.Point;

import java.awt.Graphics;

import java.util.ArrayList;

public class Curve extends ArrayList<Point> //implements Serializable

{

final Color color;

final int width;

public Curve(Color color, int width)

{

super();

this.color = color;

2

this.width = width;

}

}

Finally, we will place a draw method in our Curve class.

import java.awt.Color;

import java.awt.Point;

import java.awt.Graphics;

import java.util.ArrayList;

public class Curve extends ArrayList<Point> //implements Serializable

{

final Color color;

final int width;

public Curve(Color color, int width)

{

super();

this.color= color;

this.width = width;

}

public void draw(Graphics g)

{

}

}

We now have a starting point for the Curve class. Place this code in a file
named Curve.java and compile it. The remarks we made in this session about
the mouse will help us to write the mouse event handlers needed to make the
application work.

2 Getting Started on the Application

We will begin with a standard shell for a graphical application.

import javax.swing.JFrame;

public class DrawFrame extends JFrame implements Runnable

{

public DrawFrame()

{

super("UniDraw: Untitled");

}

public void run()

{

3

setSize(600,600);

setVisible(true);

}

public static void main(String[] args)

{

DrawFrame df = new DrawFrame();

javax.swing.SwingUtilities.invokeLater(df);

}

Place this code in a file named DrawFrame.java. Compile it and then run it.
You should see a window appear on the screen with a title in the title bar.

Now it is time to think about what we want. We need a space for draw-
ing. To do this, we need to subclass JPanel and then override public void

paintComponent(Graphics g) to tell the drawing area how to render itself.

The drawing area must respond to the pressing and releasing of the mouse,
so it must be a MouseListener. It must respond to the dragging of the mouse,
so it must be a MouseMotionListener.

Communication will flow in ths way. The user will have selected a back-
ground color, a pen color and a width using the menus; these will all be given de-
fault values to start. These values need to be known by the application and will
be determined by menu choices. The panel will need to have access to these val-
ues, so it is a good idea to make the panel an inner class. So our panel will have
to extend JPanel and implement MouseListener and MouseMotionListener.
We will need to implement the methods in the two interfaces so our class will
compile. Now our code will look like this. We will add in the menu items, too,
and make the JMenuBar a state variable so that we can separate the making of
the various menus into separate functions. This will make managing our code
simpler. We placed a paintComponent method in the draw panel so it would
be easy to see that is got placed in the content pane.

import javax.swing.JFrame;

import javax.swing.JPanel;

import javax.swing.JMenu;

import javax.swing.JMenuBar;

import javax.swing.JMenuItem;

import java.awt.event.MouseEvent;

import java.awt.event.MouseListener;

import java.awt.event.MouseMotionListener;

import java.awt.Color;

import java.awt.Graphics;

public class DrawFrame extends JFrame implements Runnable

{

private DrawPanel dp;

4

private JMenuBar mbar;

public DrawFrame()

{

super("UniDraw: Untitled");

dp = new DrawPanel();

mbar = new JMenuBar();

setJMenuBar(mbar);

}

public void run()

{

setSize(600,600);

makeFileMenu();

makeColorMenu();

makeBackgroundMenu();

makeWidthMenu();

getContentPane().add(dp);

setVisible(true);

}

public void makeFileMenu()

{

JMenu fileMenu = new JMenu("File");

mbar.add(fileMenu);

}

public void makeColorMenu()

{

JMenu colorMenu = new JMenu("Pen Color");

mbar.add(colorMenu);

}

public void makeBackgroundMenu()

{

JMenu backgroundMenu = new JMenu("Background");

mbar.add(backgroundMenu);

}

public void makeWidthMenu()

{

JMenu widthMenu = new JMenu("Width");

mbar.add(widthMenu);

}

public static void main(String[] args)

{

DrawFrame df = new DrawFrame();

javax.swing.SwingUtilities.invokeLater(df);

}

class DrawPanel extends JPanel

5

implements MouseListener, MouseMotionListener

{

public DrawPanel()

{

addMouseListener(this);

addMouseMotionListener(this);

}

public void mouseEntered(MouseEvent e){}

public void mouseExited(MouseEvent e){}

public void mousePressed(MouseEvent e){}

public void mouseReleased(MouseEvent e){}

public void mouseClicked(MouseEvent e){}

public void mouseMoved(MouseEvent e){}

public void mouseDragged(MouseEvent e){}

@Override

public void paintComponent(Graphics g)

{

g.setColor(new Color(0xabcdef));

g.fillRect(0,0,getWidth(), getHeight());

}

}

}

If you run this you should see the menus in the menu bar and a Carolina blue
square in the content pane.

3 Deciding State in the Application

If we think about the user experience, figuring out state should be fairly easy.
Lurking in the future is the issue of what we need to store in a file to reconstitute
our drawing session. This informatoin needs to be included in the state variables.

We will begin by focusing on the mechanism of drawing in the draw panel.
To draw the panel it seems we need to know the color for the background and
the color the pen is now coloring. Hence we create these variables.

private Color background;//color of background

private Color foreground;//color of current curve

We also need to know the width of the pen. We create that variable too.

private int width;

6

Finally, we must deal with the drawing. We will record it as an array list of
curves. We declare it as follows.

private ArrayList<Curve> drawing;

Once we create these variables, they must be initialized in the constructor.

public DrawFrame()

{

super("UniDraw: New File");

dp = new DrawPanel();

mbar = new JMenuBar();

setJMenuBar(mbar);

background = new Color(0xabcdef);

foreground = new Color(0x228800);

width = 1;

drawing = new ArrayList<Curve>();

}

When we do this, let us update the paintCompoent method in the DrawPanel

as follows. We want the chosen background color to color the background, not
just 0xabcdef.

@Override

public void paintComponent(Graphics g)

{

g.setColor(background);

g.fillRect(0,0,getWidth(), getHeight());

}

Drawing the drawing is simple. Since the Curve class has a draw method,
we just tell each curve to draw itself using a collections for loop like so.

@Override

public void paintComponent(Graphics g)

{

g.setColor(background);

g.fillRect(0,0,getWidth(), getHeight());

for(Curve c:drawing)

{

c.draw(g);

}

}

Finally add this to your imports

7

import java.util.ArrayList;

and your progam will compile and run. It, however will not render curves in the
drawing because we have not told the curves how to draw themselves. Our call
to s.draw(g) does nothing. Here is the current state of our DrawFrame class.

import javax.swing.JFrame;

import javax.swing.JPanel;

import javax.swing.JMenu;

import javax.swing.JMenuBar;

import javax.swing.JMenuItem;

import java.awt.event.MouseEvent;

import java.awt.event.MouseListener;

import java.awt.event.MouseMotionListener;

import java.awt.Color;

import java.awt.Graphics;

import java.util.ArrayList;

public class DrawFrame extends JFrame implements Runnable

{

private DrawPanel dp;

private JMenuBar mbar;

private Color background;//color of background

private Color foreground;//color of current curve

private int width;

private ArrayList<Curve> drawing;

public DrawFrame()

{

super("UniDraw: New File");

dp = new DrawPanel();

mbar = new JMenuBar();

setJMenuBar(mbar);

setJMenuBar(mbar);

background = new Color(0xabcdef);

foreground = new Color(0x001a57);

width = 1;

drawing = new ArrayList<Curve>();

}

public void run()

{

setSize(600,600);

makeFileMenu();

makeColorMenu();

8

makeBackgroundMenu();

makeWidthMenu();

getContentPane().add(dp);

setVisible(true);

}

public void makeFileMenu()

{

JMenu fileMenu = new JMenu("File");

mbar.add(fileMenu);

}

public void makeColorMenu()

{

JMenu colorMenu = new JMenu("Pen Color");

mbar.add(colorMenu);

}

public void makeBackgroundMenu()

{

JMenu backgroundMenu = new JMenu("Background");

mbar.add(backgroundMenu);

}

public void makeWidthMenu()

{

JMenu widthMenu = new JMenu("Width");

mbar.add(widthMenu);

}

public static void main(String[] args)

{

DrawFrame df = new DrawFrame();

javax.swing.SwingUtilities.invokeLater(df);

}

class DrawPanel extends JPanel

implements MouseListener, MouseMotionListener

{

public DrawPanel()

{

addMouseListener(this);

addMouseMotionListener(this);

}

public void mouseEntered(MouseEvent e){}

public void mouseExited(MouseEvent e){}

public void mousePressed(MouseEvent e){}

public void mouseReleased(MouseEvent e){}

public void mouseClicked(MouseEvent e){}

public void mouseMoved(MouseEvent e){}

9

public void mouseDragged(MouseEvent e){}

@Override

public void paintComponent(Graphics g)

{

g.setColor(new Color(0xabcdef));

g.fillRect(0,0,getWidth(), getHeight());

for(Curve c: drawing)

{

c.draw(g);

}

}

}

}

4 Getting the Curves to Draw: Getting Curve.java

ready

Open the file Curve.java; here is its current state

import java.awt.Color;

import java.awt.Point;

import java.awt.Graphics;

import java.awt.Graphics2D;

import java.util.ArrayList;

public class Curve extends ArrayList<Point>

{

final Color color;

final int width;

public Curve(Color color, int width)

{

super();

this.color= color;

this.width = width;

}

public void draw(Graphics g)

{

}

}

Notice that the draw method is unimplemented. Here is what we propose to do.
For now we will sidestep the question of controlling width. The default width
is 1; we shall begin by getting curves to draw on the screen.

10

1. Set the pen color to the color of the curve.

2. Connect each dot in the curve to its successor.

Our curve is an array list. This means it can learn its size by calling size().
We gain access to the points via the method Point get(int index). Let us
declare the following.

int n = size();

Now supppose k iterates through the list. We need to connect get(k) to
get(k+1). How do we do this? You must ask who is doing it. The pen has that
job an it is an object of type Graphics, so go to the Graphics API page. Here
is the method detail for lineTo

drawLine

public abstract void drawLine(int x1,

int y1,

int x2,

int y2)

Draws a line, using the current color, between the points (x1, y1) and (x2,

y2) in this graphics context’s coordinate system.

Parameters:

x1 - the first point’s x coordinate.
y1 - the first point’s y coordinate.
x2 - the second point’s x coordinate.
y2 - the second point’s y coordinate.

Now we begin to code our loop to draw the cure. We change the color of the
pen to our color and then we connect each dot to its successor. Note the use of
the n -1. Failure to do that will cause the endpoint to connect to a nonexistent
sucessor. The result of that mistak would be an ugly IndexOutOfBoundsException

being thrown.

public void draw(Graphics g)

{

int n = size();

g.setColor(color);

for(int k = 0; k < n - 1; k++)

{

11

g.drawLine(get(k).x, get(k).y, get(k+1).x, get(k+1).y);

}

}

Also, notice that there is no provision for connecting points so we had to break
out each coördinate separately. Compile and run now. To finish, we must now
make the panel’s mouse methods work. The action of the mouse is not yet
populating our curves or our drawings.

5 Getting the Curves to draw: Enabling the
Panel

This is the current state of our DrawPanel.

class DrawPanel extends JPanel

implements MouseListener, MouseMotionListener

{

public DrawPanel()

{

addMouseListener(this);

addMouseMotionListener(this);

}

public void mouseEntered(MouseEvent e){}

public void mouseExited(MouseEvent e){}

public void mousePressed(MouseEvent e){}

public void mouseReleased(MouseEvent e){}

public void mouseClicked(MouseEvent e){}

public void mouseMoved(MouseEvent e){}

public void mouseDragged(MouseEvent e){}

@Override

public void paintComponent(Graphics g)

{

g.setColor(new Color(0xabcdef));

g.fillRect(0,0,getWidth(), getHeight());

for(Curve c: drawing)

{

c.draw(g);

}

}

}

Let’s step through what we had said before about the mouse and carefully
outline what is to happen. Note that we will ignore most of the mouse methods.

12

1. When the user presses the mouse, create a new curve and add the point
to it where the press occurred. Also, add the curve to the drawing.

2. When the mouse is dragged, accumulate the points where the mouse events
are being fired during the polling process. As each mouse event is fired,
repaint the panel so it stays up to date.

3. When the mouse is released, add the point of release to the curve, and
repaint.

This means we will use the methods mousePressed, mouseReleased and mouseDragged.
The rest get ignored. Let us begin with mousePressed. We must make a new
curve and then add the point of the press to it. Remember, a mouse event has
a getPoint() method that does the job.

public void mousePressed(MouseEvent e)

{

Curve c = new Curve(color, width);

c.add(e.getPoint());

drawing.add(c);

}

When the mouse is released, we get the point, add it to the curve, and repaint.

public void mouseReleased(MouseEvent e)

{

c.add(e.getPoint());

repaint();

}

When the mouse is dragged, we get the point and repaint.

public void mouseDragged(MouseEvent e)

{

c.add(e.getPoint());

repaint();

}

Now compile. You will get this.

$ javac *.java

DrawFrame.java:87: error: cannot find symbol

Curve c = new Curve(color, width);

^

symbol: variable color

location: class DrawFrame.DrawPanel

13

DrawFrame.java:92: error: cannot find symbol

c.add(e.getPoint());

^

symbol: variable c

location: class DrawFrame.DrawPanel

DrawFrame.java:97: error: cannot find symbol

c.add(e.getPoint());

^

symbol: variable c

location: class DrawFrame.DrawPanel

3 errors

$

That is ugly indeed. What happened? The variable c we created to point at
the curve is local to mousePressed. Lift it up and make it a state variable and
all will work. Now your class will look like this.

class DrawPanel extends JPanel

implements MouseListener, MouseMotionListener

{

Curve c; // c is now a state varible

public DrawPanel()

{

addMouseListener(this);

addMouseMotionListener(this);

c = null; //initialize

}

//ignored mouse events

public void mouseEntered(MouseEvent e){}

public void mouseExited(MouseEvent e){}

public void mouseClicked(MouseEvent e){}

public void mouseMoved(MouseEvent e){}

//active mouse events

public void mousePressed(MouseEvent e)

{

//remove "Curve" on this first line.

c = new Curve(foreground, width);

c.add(e.getPoint());

drawing.add(c);

}

public void mouseReleased(MouseEvent e)

{

c.add(e.getPoint());

repaint();

}

public void mouseDragged(MouseEvent e)

14

{

c.add(e.getPoint());

repaint();

}

@Override

public void paintComponent(Graphics g)

{

g.setColor(background);

g.fillRect(0,0,getWidth(), getHeight());

for(Curve c: drawing)

{

c.draw(g);

}

}

}

6 Creating and Enabling the Color Menus

Next we need to get the background and foreground color menus working. We
shall give each menu the Roy G. Biv colors; you will see that other colors caan
be added easily; each new color can be added with a single line of code! We
will also meet the JColorChooser widget, which will allow the user to pick a
custom 24-bit color. It has the addional feature of allowing the user to choose
alpha, or opacity of colors.

Alpha is determined by a numerical scale of 0 through 0xff. The alpha value
of 0 gives a perfectly transparent (non-)color. The alpha value of 0xff gives a
totally opaque color. Intermediate values yield transparaent layers of color. All
colors are completely determined by a 32 bit integer, one byte for red, another
for green, another for blue, and one for alpha.

Now we resume our main thread. We will create innner classes for the pen
color menu items and the background color menu items. We begin with the pen
color menu, making each menu item know its color.

public class PenColorItem extends JMenuItem

{

private final Color color;

public PenColorItem(Color _color, String colorName)

{

super(colorName);

color = _color;

}

}

15

We will also attach an action listener which will set the pen color to the menu
item’s color. Note that the changing of the pen color does not require an update
of the DrawPanel, so we do not have to repaint the panel.

public class PenColorItem extends JMenuItem

{

private final Color color;

public PenColorItem(Color _color, String colorName)

{

super(colorName);

color = _color;

addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

foreground = color;

}

});

}

}

Now add these two lines and compile

import java.awt.event.ActionListener;

import java.awt.event.ActionEvent;

Now let’s build the pen color menu. We go into the pen color menu and
populate it thusly with a red menu item. We will test this before proceeding
with the rest.

public void makeColorMenu()

{

JMenu colorMenu = new JMenu("Color");

mbar.add(colorMenu);

colorMenu.add(new PenColorItem(Color.red, "red"));

}

Drag the mouse in the window and see the red color drawn. We will now
complete Roy G. Biv; note the hex codes used for indigo and violet.

public void makeColorMenu()

{

JMenu colorMenu = new JMenu("Color");

mbar.add(colorMenu);

colorMenu.add(new PenColorItem(Color.red, "red"));

16

colorMenu.add(new PenColorItem(Color.orange, "orange"));

colorMenu.add(new PenColorItem(Color.yellow, "yellow"));

colorMenu.add(new PenColorItem(Color.green, "green"));

colorMenu.add(new PenColorItem(Color.blue, "blue"));

colorMenu.add(new PenColorItem(new Color(0x2E0854), "indigo"));

colorMenu.add(new PenColorItem(new Color(0x7D26CD), "violet"));

}

We still have 16,777,209 colors to go. How do we get them? We use a
JColorChooser to choose a custom color. We will avail ourselves of its static
showDialog method to do the job. The constructor needs three arguments, a
JComponent, a message (a string will do), and a default color. We will use our
draw frame as the component, "Choose Pen Color" as our message, and the
foreground color as our default color. By default, the color does not change.
This is in keeping with minimizing user surprise.

Since there is some ad hoc procedure here, we will attach an anonymous inner
class as a listener. The JColorChooser is goof-proof and requires no exception
handling. Begin with an import.

import javax.swing.JColorChooser;

Now add the listener. at the end of the menu.

JMenuItem custom = new JMenuItem("Custom...");

colorMenu.add(custom);

custom.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

foreground = JColorChooser.showDialog(DrawFrame.this,

"Choose Background Color", background);

}

});

Select the new item from the menu and watch the (very cool) color chooser
dialog pop up and offer you all of those choices.

Now wwe show the code for the background color. It is very similar, except
that we must repaint when we change its color.

public void makeBackgroundMenu()

{

JMenu backgroundMenu = new JMenu("Background");

mbar.add(backgroundMenu);

backgroundMenu.add(new bgMenuItem(Color.red, "red"));

backgroundMenu.add(new bgMenuItem(Color.orange, "orange"));

17

backgroundMenu.add(new bgMenuItem(Color.yellow, "yellow"));

backgroundMenu.add(new bgMenuItem(Color.green, "green"));

backgroundMenu.add(new bgMenuItem(Color.blue, "blue"));

backgroundMenu.add(new bgMenuItem(new Color(0x2E0854), "indigo"));

backgroundMenu.add(new bgMenuItem(new Color(0x7D26CD), "violet"));

JMenuItem custom = new JMenuItem("Custom...");

backgroundMenu.add(custom);

custom.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

background = JColorChooser.showDialog(DrawFrame.this,

"Choose Background Color", background);

repaint();

}

});

}

Now we add the needed inner class to drive this.

class BackgroundMenuItem extends JMenuItem

{

final Color color;

public BackgroundMenuItem(Color _color, String colorName)

{

super(colorName);

this.color = _color;

addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

background = color;

dp.repaint();

}

});

}

}

7 Consructing the Width Menu

We will construct the width menu and get it to change the state variable width,
but we will also have to look at how curves draw themselves to get proper
performance out of this menu. As of now, our pen only draws a path one pixel
wide.

The inner class needed has one small surprise.

18

class WidthMenuItem extends JMenuItem

{

final int width;

public WidthMenuItem(int _width)

{

super("" + _width);

width = _width;

addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

DrawFrame.this.width = width;

}

});

}

}

Note the use of DrawFrame.this to specify that we want the ennclosing class’s
width variable to have a new value assigned to it.

We then turn to constructing the menu. Begin by doing this import

import javax.swing.JOptionPane;

Now modify makeWidthMenu() as follows.

public void makeWidthMenu()

{

JMenu widthMenu = new JMenu("Width");

mbar.add(widthMenu);

widthMenu.add(new WidthMenuItem(1));

widthMenu.add(new WidthMenuItem(2));

widthMenu.add(new WidthMenuItem(5));

widthMenu.add(new WidthMenuItem(10));

widthMenu.add(new WidthMenuItem(20));

widthMenu.add(new WidthMenuItem(50));

JMenuItem custom = new JMenuItem("custom...");

widthMenu.add(custom);

custom.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

width = JOptionPane.showInputDialog(DrawFrame.this,

}

}

});

}

19

Extreme Danger! What happens if the user types in something that is not
a valid integer. Let’s see what happens when the user types in "cows". We get
this horrid thing.

Exception in thread "AWT-EventQueue-0" java.lang.NumberFormatException:

For input string: "cows"

at java.lang.NumberFormatException.forInputString

(NumberFormatException.java:65)

at java.lang.Integer.parseInt(Integer.java:492)

at java.lang.Integer.parseInt(Integer.java:527)

at DrawFrame$3.actionPerformed(DrawFrame.java:117)

.

.

(much horrid stuff)

.

.

at java.awt.EventDispatchThread.pumpEvents(EventDispatchThread.java:139)

at java.awt.EventDispatchThread.run(EventDispatchThread.java:97)

It is not acceptable for a user goof to produce this. We see that an unhandled
NumberFormatException has bubbled up and caused havoc. We remedy this
by placing an appropriate catch-try sequence in the listener as follows.

custom.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

String buf = JOptionPane.showInputDialog(DrawFrame.this,

"Specify width");

try

{

width = Integer.parseInt(buf);

}

catch(NumberFormatException ex)

{

JOptionPane.showMessageDialog(DrawFrame.this,

"String \"" + buf + "\" is not an integer.");

}

}

});

No action will be taken in the draw panel, but the user will be alerted to his
mistake. The menu does what it is supposed to, but we still have no control of
the pen’s actual width. For this, we must learn about a new and helpful class.

20

8 Graphics2D

If you scour the page for java.awt.Graphics, you will find no facility for con-
trolling the pen’s width. So, when we get desperate what do we do? We look in
the ancestor classes. These are barren of anything useful. Where now? We look
in some child classes. The Graphics class has child class Graphics 2D, which
will help solve our problem.

If you scroll down on the API page, you will see a section entitled “Default
Rendering Attributes. It says this.

Paint

The color of the Component.
Font

The Font of the Component.
Stroke

A square pen with a linewidth of 1, no dashing, miter segment
joins and square end caps.

Transform

The getDefaultTransform for the GraphicsConfiguration of the
Component.

Composite

The AlphaComposite.SRC OVER rule.
Clip

No rendering Clip, the output is clipped to the Component.

What is important to us is that the stroke of the pen has a line width of 1.
It also says there are “miter segment joins” and “square end caps.” We also see
that there is a setStroke method. Here is its method detail.

public abstract void setStroke(Stroke s)

Sets the Stroke for the Graphics2D context.
Parameters:

- the Stroke object to be used to stroke a Shape during the
rendering process
See Also:

BasicStroke, getStroke()

We see that the classes Stroke and BasicStroke might also be of impor-
tance. We learn that Stroke is an interface, and that BasicStroke is a class
that implements it. We can create a BasicStroke and use the setStroke

method for the Graphics2D pen to obtain a pen whose with is larger than 1.

Inside of a Graphics lurks a Graphics2D You are guaranteed to be able to
make the cast

21

(Graphics2D) g

if g is a Graphics object. You always have access to a Graphics2D if you are
rendering inside of a Swing object. This is the type of object the Swing paint
engine uses.

Now go to the BasicStroke constructor list. There is a constructor that
will accept a float, and therefore which accepts our width. We will now use
this to upgrade the draw method of the Curve class. We begin by inserting the
needed cast.

public void draw(Graphics g)

{

Graphics2D g2d = (Graphics2D) g;

g2d.setColor(color);

int n = size();

for(int k = 0; k < n - 1; k++)

{

g2d.drawLine(get(k).x, get(k).y, get(k+1).x, get(k+1).y);

}

}

Compile and run. You will see that nothing has changed. We will now call g2d’s
setStroke method and feed it a BasicStroke with width.

public void draw(Graphics g)

{

Graphics2D g2d = (Graphics2D) g;

g2d.setStroke(new BasicStroke(width));

g2d.setColor(color);

int n = size();

for(int k = 0; k < n - 1; k++)

{

g2d.drawLine(get(k).x, get(k).y, get(k+1).x, get(k+1).y);

}

}

Now let’s draw in the window. Choose a width of 20. The result looks like this.

22

The fat curve looks as if it were painted by watery, spattery paint. You can
see where we drew a dot; it shows a square pen tip. We are not happy with this
result and need to improve it.

How do we improve its appearance? This is where we need to look at the
static constants in the BasicStroke class.

BasicStroke.CAP BUTT This ends a path with a semicircle.
BasicStroke.CAP ROUND This ends a path with a semicircle.
BasicStroke.CAP SQUARE This ends a path with a half a square.
BasicStroke.JOIN SQUARE This joins path segments by connecting the outer

corners of their wide outlines wiht a straight segment.
BasicStroke.JOIN MITER This joins path segments by extending their outside

edges until they meet.
BasicStroke.JOIN ROUND This joins path segments by rounding off the corner

at a radius half of line width.

Use them in the constructor BasicStroke(float width, int cap, int join).
You will select one CAP constant and one JOIN constant. We will use BasicStroke.CAP ROUND

23

and BasicStroke.JOIN ROUND. Here is the new appearance for our draw method
in the Curve class.

public void draw(Graphics g)

{

Graphics2D g2d = (Graphics2D) g;

g2d.setColor(color);

int n = size();

g2d.setStroke(new BasicStroke(width, BasicStroke.CAP_ROUND,

BasicStroke.JOIN_ROUND));

for(int k = 0; k < n - 1; k++)

{

g2d.drawLine(get(k).x, get(k).y, get(k+1).x, get(k+1).y);

}

}

Now run again and compile. Notice the spiffy appearance of the fat curve. Also
notice that clicking in a spot yields a circular blob of Dook-blue ink. The use
of the cap and join parameters cleans things up and gets rid of the splatter.

24

Let us now collect the current state of the files. First, Curve.java.

import java.awt.Color;

import java.awt.Point;

import java.awt.Graphics;

import java.awt.Graphics2D;

import java.awt.BasicStroke;

import java.util.ArrayList;

public class Curve extends ArrayList<Point>

{

final Color color;

final int width;

public Curve(Color color, int width)

{

super();

this.color= color;

this.width = width;

}

public void draw(Graphics g)

{

Graphics2D g2d = (Graphics2D) g;

g2d.setColor(color);

int n = size();

g2d.setStroke(new BasicStroke(width, BasicStroke.CAP_ROUND,

BasicStroke.JOIN_ROUND));

for(int k = 0; k < n - 1; k++)

{

g2d.drawLine(get(k).x, get(k).y, get(k+1).x, get(k+1).y);

}

}

}

Next, DrawFrame.java.

import javax.swing.JFrame;

import javax.swing.JPanel;

import javax.swing.JMenu;

import javax.swing.JMenuBar;

import javax.swing.JMenuItem;

import javax.swing.JColorChooser;

import javax.swing.JOptionPane;

import java.awt.event.MouseEvent;

import java.awt.event.MouseListener;

25

import java.awt.event.MouseMotionListener;

import java.awt.event.ActionListener;

import java.awt.event.ActionEvent;

import java.awt.Color;

import java.awt.Graphics;

import java.util.ArrayList;

public class DrawFrame extends JFrame implements Runnable

{

private DrawPanel dp;

private JMenuBar mbar;

private Color background;//color of background

private Color foreground;//color of current curve

private int width;

private ArrayList<Curve> drawing;

public DrawFrame()

{

super("UniDraw: New File");

dp = new DrawPanel();

mbar = new JMenuBar();

setJMenuBar(mbar);

setJMenuBar(mbar);

background = new Color(0xabcdef);

foreground = new Color(0x001a57);

width = 1;

drawing = new ArrayList<Curve>();

}

public void run()

{

setSize(600,600);

makeFileMenu();

makeColorMenu();

makeBackgroundMenu();

makeWidthMenu();

getContentPane().add(dp);

setVisible(true);

}

public void makeFileMenu()

{

JMenu fileMenu = new JMenu("File");

mbar.add(fileMenu);

}

26

public void makeColorMenu()

{

JMenu colorMenu = new JMenu("Color");

mbar.add(colorMenu);

colorMenu.add(new PenColorItem(Color.red, "red"));

colorMenu.add(new PenColorItem(Color.orange, "orange"));

colorMenu.add(new PenColorItem(Color.yellow, "yellow"));

colorMenu.add(new PenColorItem(Color.green, "green"));

colorMenu.add(new PenColorItem(Color.blue, "blue"));

colorMenu.add(new PenColorItem(new Color(0x2E0854), "indigo"));

colorMenu.add(new PenColorItem(new Color(0x7D26CD), "violet"));

JMenuItem custom = new JMenuItem("Custom...");

colorMenu.add(custom);

custom.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

foreground = JColorChooser.showDialog(DrawFrame.this,

"Choose Background Color", foreground);

}

});

}

public void makeBackgroundMenu()

{

JMenu backgroundMenu = new JMenu("Background");

mbar.add(backgroundMenu);

backgroundMenu.add(new BackgroundMenuItem(Color.red, "red"));

backgroundMenu.add(new BackgroundMenuItem(Color.orange, "orange"));

backgroundMenu.add(new BackgroundMenuItem(Color.yellow, "yellow"));

backgroundMenu.add(new BackgroundMenuItem(Color.green, "green"));

backgroundMenu.add(new BackgroundMenuItem(Color.blue, "blue"));

backgroundMenu.add(new BackgroundMenuItem(new Color(0x2E0854), "indigo"));

backgroundMenu.add(new BackgroundMenuItem(new Color(0x7D26CD), "violet"));

JMenuItem custom = new JMenuItem("Custom...");

backgroundMenu.add(custom);

custom.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

background = JColorChooser.showDialog(DrawFrame.this,

"Choose Background Color", background);

repaint();

}

});

}

public void makeWidthMenu()

{

JMenu widthMenu = new JMenu("Width");

27

mbar.add(widthMenu);

widthMenu.add(new WidthMenuItem(1));

widthMenu.add(new WidthMenuItem(2));

widthMenu.add(new WidthMenuItem(5));

widthMenu.add(new WidthMenuItem(10));

widthMenu.add(new WidthMenuItem(20));

widthMenu.add(new WidthMenuItem(50));

JMenuItem custom = new JMenuItem("custom...");

widthMenu.add(custom);

custom.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

String buf = JOptionPane.showInputDialog(DrawFrame.this,

"Specify width");

try

{

width = Integer.parseInt(buf);

}

catch(NumberFormatException ex)

{

JOptionPane.showMessageDialog(DrawFrame.this,

"String \"" + buf + "\" is not an integer.");

}

}

});

}

public static void main(String[] args)

{

DrawFrame df = new DrawFrame();

javax.swing.SwingUtilities.invokeLater(df);

}

/**

*

* Width Menu Items

*

**/

class WidthMenuItem extends JMenuItem

{

final int width;

public WidthMenuItem(int _width)

{

super("" + _width);

width = _width;

addActionListener(new ActionListener(){

28

public void actionPerformed(ActionEvent e)

{

DrawFrame.this.width = width;

}

});

}

}

/**

*

* Color Menu Items

*

**/

public class PenColorItem extends JMenuItem

{

private final Color color;

public PenColorItem(Color _color, String colorName)

{

super(colorName);

color = _color;

addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

foreground = color;

}

});

}

}

class BackgroundMenuItem extends JMenuItem

{

final Color color;

public BackgroundMenuItem(Color _color, String colorName)

{

super(colorName);

this.color = _color;

addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

background = color;

dp.repaint();

}

});

}

}

/**

29

*

* The Draw Panel

*

**/

class DrawPanel extends JPanel

implements MouseListener, MouseMotionListener

{

Curve c; //now a state varible

public DrawPanel()

{

addMouseListener(this);

addMouseMotionListener(this);

c = null; //initialize

}

//ignored mouse events

public void mouseEntered(MouseEvent e){}

public void mouseExited(MouseEvent e){}

public void mouseClicked(MouseEvent e){}

public void mouseMoved(MouseEvent e){}

//active mouse events

public void mousePressed(MouseEvent e)

{

//remove "Curve" on this first line.

c = new Curve(foreground, width);

c.add(e.getPoint());

drawing.add(c);

}

public void mouseReleased(MouseEvent e)

{

c.add(e.getPoint());

repaint();

}

public void mouseDragged(MouseEvent e)

{

c.add(e.getPoint());

repaint();

}

@Override

public void paintComponent(Graphics g)

{

g.setColor(background);

g.fillRect(0,0,getWidth(), getHeight());

for(Curve c: drawing)

{

c.draw(g);

}

30

}

}

}

Programming Exercises

1. Experiment with the other cap and join costants to observe the effects
they cause on your drawing.

9 FileIO for Objects and Serialization

Now we well learn how to save our drawings in a file. This will involve several
new classes, as well as the familar File class, which represents locations in our
file system. We will now place two items in our File menu, open and save.
Choosing the open menu item will open a drawing file and display it to the
screen. Note that there are a lot of parallels to the NitPad case study here.

Let us begin by adding some features to our code. First of all, we will add
a state variable to the DrawFrame class.

private File currentFile;

You also will need this import

import java.io.File;

In the constructor, do this

currentFile = new File("test.unid"); //TODO set this to null when menus work

We will begin by getting objects into and out of this fixed file test.unid. Later,
we will get the full File menu working we will choose the current file from the
file system using the JFileChooser widget.

FileIO will be controlled by listeners attached to items in the File menu.
Let us begin with the process of saving a drawing.

This is done by creating an ObjectOutputStream. You can do this as follows.

ObjectOutputStream oos = new ObjectOutputStream(

new FileOutputStream(currentFile);

This process, if you check the constructor, can throw an IOException. Remem-
ber, we will adhere to the convention that we should handle any FileNotFoundException

in our exception handling code.

31

You will need the following imports.

import java.io.FileNotFoundException;

import java.io.IOException;

import java.io.ObjectOutputStream;

import java.io.FileOutputStream;

What can be stored via an ObjectOutputStream? You can store any primi-
tive type, or any object type that implements the interface java.io.Serializable.
This makes sense, since the process of storing an object in a file in this manner
is called serialization. The process reduces the object to its bytes and packs it
in a non-human-readable binary format.Go to the API page and look up this
interface. You will see that this is a “bundler interface” that has no required
methods. If you attempt to serialize an object that does not implement this
interface, you will be the unhappy recipient of a NonserializableExcepton.
This is not a runtime exception, but it is a subclass of IOException. We can
ferret these out by using the printStackTrace() method for IOExceptions.

Here we see the current state of makeFileMenu.

public void makeFileMenu()

{

JMenu fileMenu = new JMenu("File");

mbar.add(fileMenu);

}

Now let us add the save menu item and attach an action listener shell to it.
You can put statemnt to print some string to stdout to test that it works. Run
that, test it, and then discard it.

public void makeFileMenu()

{

JMenu fileMenu = new JMenu("File");

mbar.add(fileMenu);

JMenuItem saveItem = new JMenuItem("Save");

fileMenu.add(saveItem);

saveItem.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

saveWindowToCurrentFile();

}

});

}

Recalling what we know from NitPad, we know that there will be a need
to write a file from several places in the menu. Therefore we will calll a helper

32

method, private void saveWindowToCurrentFile(). You should make an
empty shell for this method and compile. If you run the program, you will see
a save item in the File menu.

We will now take care of the implementing our helper method. To get started
on this, we open an object output stream to the current file. We will also set
up the exception-handling code.

private void saveWindowToCurrentFile()

{

try

{

ObjectOutputStream oos = new ObjectOutputStream(

new FileOutputStream(currentFile));

}

catch(FileNotFoundException ex)

{

System.err.printf("File %s not found\n",

currentFile.getAbsolutePath());

}

catch(IOException ex)

{

ex.printStackTrace();

}

}

Now what do we save? Our rule is Stuff the State! Our state variables need
to contain all information necessary to reconstruct the fine work of art we are
creating. We are going to stuff the state of our app in the file. However, we do
not need all of the elements to do this. For example we do not need the draw
panel or the current file.

What methods are pertinent. You can write any primitive type. For exam-
ple,

oos.writeInt(5);

will write the integer 5 to the object output stream. You can look in the API
guide page to see all of the methods for writing primitive data. Any object you
write must implement Serializable. If the object is a container, such as an
ArrayList<T>, the type T of the entries, must also be serializable. Remember,
if an ancestor class implements Serializable, you are in business.

We now look at all of our state variables.

private DrawPanel dp;

33

private JMenuBar mbar;

private Color background;//color of background

private Color foreground;//color of current curve

private int width;

private ArrayList<Curve> drawing;

private File currentFile;

We ask, “What is needed ot reconstruct our drawing?” We will not need
the draw panel or the menu bar. We ditch them. We do need foreground,
background and width to save the state of our session properly. Since Color im-
plements Serializable, we are OK here. You can see this on the java.awt.Color
page.

What abut the drawing? It is an ArrayList which is serializable. What
about the entries? These are of type Curve, which is a child class of ArrayList<Point>.
Finally, note that java.awt.Point implements Serializable, so we are in the
clear. We can safely deflate all of our objects.

Here is our implementation.

private void saveWindowToCurrentFile()

{

try

{

ObjectOutputStream oos = new ObjectOutputStream(

new FileOutputStream(currentFile));

oos.writeObject(background);

oos.writeObject(foreground);

oos.writeInt(width);

oos.writeObject(drawing);

}

catch(FileNotFoundException ex)

{

System.err.printf("File %s not found\n",

currentFile.getAbsolutePath());

}

catch(IOException ex)

{

ex.printStackTrace();

}

}

Now run the app, make a drawing and save it. Change colors, use curves of
various widths and fool around. Remember its appearance, because will will
resurrect it. Then look at the file’s properties. In Linux, we see this

$ ls -l test.unid

34

-rw-rw-r-- 1 morrison morrison 774 Jan 22 19:59 test.unid

$

Our drawing occupies 774 bytes. If you open it with a text editor, you will see
gibberish. So now let’s see if we can resurrect our drawing. You can do this in
Windoze by right clicking to see file properties.

Let us begin by creating an open item in the menu and attaching an action
listener to it. We will create a helper method named private void readFromCurrentFile()

to do the dirty work.

public void makeFileMenu()

{

JMenu fileMenu = new JMenu("File");

mbar.add(fileMenu);

JMenuItem saveItem = new JMenuItem("Save");

fileMenu.add(saveItem);

saveItem.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

saveWindowToCurrentFile();

}

});

JMenuItem openItem = new JMenuItem("Open");

fileMenu.add(openItem);

openItem.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

readFromCurrentFile();

}

});

}

Now we are going to resurrect our drawing. You will not be surprised to
learn we use an ObjectInputStream to do it. When you serialize, you have a
responsibility. You must

• Retrieve the items you stored in the order in which you stored them

• Remember their types. All of this information is lost.

• If you used writeObject, you must use readObject() and cast to the
correct type. If you used writeInt, you use readInt() to retrieve the
integer. This same rule applies for all primitive types.

• Handle a ClassCastException. This is not a runtime exception but it is
most likely a programmer error. Print a stack trace in this catch block
to see where the error occurred.

35

Suitably warned, we sally forth with the customary insouciance.

private void readFromCurrentFile()

{

try

{

ObjectInputStream ois = new ObjectInputStream(

new FileInputStream(currentFile));

background = (Color) ois.readObject();

foreground = (Color) ois.readObject();

width = ois.readInt();

drawing = (ArrayList<Curve>) ois.readObject();

ois.close();

dp.repaint();

}

catch(FileNotFoundException ex)

{

System.err.printf("File %s not found\n",

currentFile.getAbsolutePath());

}

catch(IOException ex)

{

ex.printStackTrace();

}

catch(ClassNotFoundException ex)

{

ex.printStackTrace();

}

}

We have met our responsibilities. Now compile, select the open menu item and
your drawing will reappear!

10 Making the File Menu

We need to design the file menu with care. Remember: Data loss to the user
is a cardinal sin! We must be very careful to think through the user experience
very carefully to get this complex process right. So let us skech out each item’s
action prior to coding and determine what helper methods are needed.

New If you have a drawing in the window already, we need to offer to save
it. If the user says yes, save the file. In any event, blank the window and set
everything to default.

36

open If you have a drawing in the window already, we need to offer to save
it. If the user says yes, save the file. In any event, have the user select a file to
open and then place it in the window.

Save If the current file is null, have the user choose a file. If the file is saved,
do nothing. If not, write the contents of the window to the current file.

Save As... This will be a menu. It will offer two menu items: to save as a
drawing, a .jpeg or a .png.

Save As → drawing Fire up a file chooser to choose where to save. Then, if
the user opts to save, save it there.

Save As → JPEG Fire up a file chooser to choose where to save. Then, if
the user opts to save it, save it as a .jpeg

Quit Offer to save any window conents, then quit. Cancel if the user declines
when asked if he really wants to quit.

Now we examine these menu items. We should write helper methods that
are atomic, i.e. these methods accomplish a single task.

37

	Introduction
	Representing Curves
	Getting Started on the Application
	Deciding State in the Application
	Getting the Curves to Draw: Getting Curve.java ready
	Getting the Curves to draw: Enabling the Panel
	Creating and Enabling the Color Menus
	Consructing the Width Menu
	Graphics2D
	FileIO for Objects and Serialization

