
Contents

0 Introduction 1

1 A Mathematical Overture 1

2 Comparable, Comparator, Coollections, and Sorting 4

2.1 The Static Sevice Class Collections 5

0 Introduction

So far, we have had the ”insider’s view” of data structures and have gained
insight into how they work by doing some building from scratch. Now it is time
for us to explore Java’s Collection Framework, a set of classes that will enable
you to accomplish complex data manipulation quickly and efficiently, as well as
some useful interfaces that will allow you to do custom sorts.

To fully take advantage of power of the Collections Framework, we need to
spend a little time talking about the issues of ordering and sorting. Sorting
is done according to some kind of ordering, and we will begin with a brief
mathematical disquisition on orderings.

Once we discuss this, we will look at the Comparable and Comparator
interfaces. We will use thesde in conjunction with the static service class
Collections to do some custom sorting.

Finally, we will turn our attention to Java’s two frameworks for collections,
the Collections and Map Frameworks, and create some sample applications
based on these.

1 A Mathematical Overture

What we are going to do here is to introduce some useful mathematical ab-
stractions that arise from sorting and comparing objects. Being aware of these
abstractions will tune you into the aesthetical considerations that go into the
design contracts for the Comparable and Comparator interfaces. It also will
provide a succinct language for describing what is happening in the contract.

Suppose that A and B are sets. We define the cartesian product of A and B
by

A×B = {(a, b)|a ∈ A, b ∈ B}.
Simply put, this is the set of all ordered pairs with the first element chosen from
A and the second element chosen from B. Two ordered pairs are equal if their

1

first and second elements are equal. To wit,

(a0, b0) = (a1, b1) ⇐⇒ (a0 = a1) ∧ (b0 = b1).

We could construct a class for this in Java as follows.

public class Pair<S, T>

{

private S first;

private T second;

public Pair(S first, T second)

{

this.first = first;

this.second = second;

}

@Override

@SuppressWarnings("unchecked")

public boolean equals(Object o)

{

if(! (o instanceof Pair))

{

return false;

}

Pair<S, T> that = (Pair<S, T>) o;

return first.equals(that.first)

&& second.equals(that.second);

}

@Override

public String toString()

{

return "S: " + first.toString() + ", T: "

+ second.toString();

}

public static void main(String[] args)

{

Pair<String, String> terminator

= new Pair<String, String>("Arnold", "Schwarznegger");

Pair<Integer, Integer> point = new Pair<Integer, Integer>(3,5);

Pair<Integer, Integer> anotherPoint

= new Pair<Integer, Integer>(3,5);

if(point.equals(anotherPoint))

{

System.out.printf("%s equals %s\n", point, anotherPoint);

}

else

{

2

System.out.printf("%s does not equal %s\n",

point, anotherPoint);

}

System.out.println(terminator);

}

}

You should play with this class by inserting more examples into its main method
and running it.

Now if X is a set, we define a relation on X to be a subset of X × X; i.e.
a relation is a set of ordered pairs of elements of X. This may seems a strange
construct, but let us bring it down to earth.

If X is any set put R = {(x, x)|x ∈ X}. You can think of this as being
the “main diagonal” in X × X. Suppose that (x, y) ∈ R Then (x, y) = (a, a)
for some a ∈ X. but then a = x = y, so x = y. Conversely, if x = y, then
(x, y) ∈ R. This is, in fact the relation of equality on any set. The “diagonal
relation” is equality. You can think of this as an equality of identity check for
objects.

It is common to use infix notation to describe relations. If R is a relation,
we will often write xR y if (x, y) ∈ R.

There are several properties relations can have. These include

• reflexivity A relation on a set X is reflexive if for all x ∈ X, xRx, i.e,
every element is related to itself.

• symmetry A relation on a set X is symmetric if for any x, y ∈ X, if xR y
then y Rx.

• antisymmetry A relation on a set X is antisymmetric if for any x, y ∈ X,
if xR y and y RX occurs only if y = x.

• transitive A relation R on a set X is transitive if for any x, y, z ∈ X,
(xR y) ∨ (y R z)⇒ (xR z).

• An equivalence relation is a relation that is symmetric, transitive and
symmetric.

• A nonstrict partial order is a reflexive, antisymmetric, transitive relation
on a set.

• A strict partial order is a an antisymmetric and transitive relation on a
set.

• A linear or total order is a relation R on a set X so that for any x, y ∈ X,
we have (xR y) ∨ (y Rx).

You might ask, ”How does this relate to such familiar stuff as ≥ we encounter
in real and integer arithemetic? Let us give a simple example.

3

The cartesian plane we all know and love from analytic geometry is just
R × R. Let us define the subset R to be the set of all points on the line y = x
along with those above it. This is a “half-plane”.

Now suppose (x, y) ∈ R. Then the point (x, y) lies on or above the line
y = x; this means that y ≥ x. Conversely, if y ≥ x then (x, y) lies above the
line y = x. So, the relation R, satisfyingly, is just familiar old ≥.

Matematical Exercises

1. What subset of the plane represents ≤? Draw it and execute an argument
similar to the one above to show you are correct.

2. What subset of the plane represents <?

3. What subset of the plane reprsents the relation 6=?

4. What relation properties are had by ≤? Is it a partial order? A strict
partial order?

5. Suppose that S is the set of all character strings. What kind of relation
is asciicographical order?

6. Let us define for x, y ∈ C, xR y if x.toLowerCase().equals(y.toLowerCase()
evaluates to true. What kind of relation is this?

2 Comparable, Comparator, Coollections, and Sort-
ing

The package java.util contains the interface Iterator<E>, which specifies
three methods public E next(), public boolean hasNext(), and public E

remove(). We used this interface in our stack and list classes. Iterator are used
to traverse containers.

The package java.lang has these three interfaces. All of these specify ex-
actly one method, so they are functional interfaces.

• Iterable<E>, which specifies public Iterator<E> iterator() This en-
ables the collections for loop.

• Comparable<E>, which specifies public int compareTo(E other)

• Comparator<E>, which specifies public int compare(E x, E y)

The design contract for Comparable<E> and Comparator<E> calls for their
specified methods to impose an order on items of type E that is an linear order-
ing.

4

The design contract for the equals method we have impleamented several
times is that is is an equivalence relation.

Sorting is done using a sort key; this is a numerical function defined on
objects that imposes an order. Java implements these via the Comparable and
Comparator intefaces.

A sort key you have seen already is compareTo on strings. You know
that if s and t are strings, that s precedes t alphabetically precisely when
a.compareToIgnoreCase(b) < 0.

2.1 The Static Sevice Class Collections

This class has a host of useful methods, all of which are static. We will pay
attention to just a few of them for now.

• shuffle(List<?>, which shuffles a list in-place; this works very nicely on
array lists. It uses the Fisher-Yates procedure for shuffling elements.

• sort(List<T> list), which will sort a list in-place provided that T is a
subtype of Comparable.

• sort(List<T>, Comparator<? super T>), which sorts a list in-place
using a Comparator as a sort key.

Sorts in Java are done using a method called timsort, which is an exampe of a
stable sort, i.e., items with equal keys do not change order during the sort.

Let us do a simple example in jshell. First we make a comparator.

jshell> Comparator<String> alpha = (a, b) -> a.compareToIgnoreCase(b);

alpha ==> $Lambda$13/703504298@c038203

Now let us make an array list and populate it.

jshell> ArrayList<String> al = new ArrayList<String>();

al ==> []

jshell> al.addAll(Arrays.asList("zither", "Aardvark", "Anderson", "blueberry", "daffodil", "HELLO"))

$3 ==> true

jshell> al

al ==> [zither, Aardvark, Anderson, blueberry, daffodil, HELLO]

Now we will use the method Collections.sort; the result is an asciicographical
sort of or strings.

5

jshell> Collections.sort(al);

jshell> al

al ==> [Aardvark, Anderson, HELLO, blueberry, daffodil, zither]

Now we will use the method Collections.sort that allows you to pass in a
comparator. We now get an alphabetical, case-insensitive sort.

jshell> Collections.sort(al, alpha);

jshell> al

al ==> [Aardvark, Anderson, blueberry, daffodil, HELLO, zither]

In this chapter, we will begin by learning about the interface Collection

and the static service class Collections

The interface Collection is a subinterface of Iterable. You will see that
ArrayList implements this interface. This interface specifies what a basic Java
Standard Library generic container class shoud look like.

6

An important service provided by the class Collections is that of sorting.
How do we control how items in a collection get sorted? What constitutes a
sortable item? We will answer these questions and apply them to some probems.
The Comparable and Comparator interfaces will help us to deal with sortable
collections; these interfaces enjoy the advantage of being fuctional interfaces.

Along the way, we shall learn how the static service class Collections allows
us to control sorting using the Comparable and Comparator interfaces.

7

	Introduction
	A Mathematical Overture
	Comparable, Comparator, Coollections, and Sorting
	The Static Sevice Class Collections

