
Contents

0 Java Object Types 1

1 Java Strings as a Model for Java Objects 2

1.1 But is there More? . 4

2 Primitive vs. Object: A Case of equals Rights 10

2.1 Aliasing . 13

3 More Java String Methods 14

4 The Wrapper Classes 17

4.1 Autoboxing and Autounboxing 18

5 Two Caveats 19

6 Java Classes Know Things: State 20

6.1 Quick! Call the OBGYN! And get a load of this! 21

6.2 Method and Constructor Overloading 23

6.3 Get a load of this again! . 24

6.4 Now Let Us Make this Class DO Something 25

6.5 Who am I? . 27

6.6 Mutator Methods . 28

7 The Scope of Java Variables 30

8 The Object-Oriented Weltanschauung 34

8.1 Procedural Programming . 34

8.2 Object–Oriented Programming 35

0 Java Object Types

We have seen that Java has eight primitive types: the four integer types, the
floating–point types double and float, the boolean type and the char type.

1

Python has a string type; you might ask why we have not given much em-
phasis to string in Java yet. This is because the string type in Java is not a
primitive type. It is an example of a Java object or class type. This distinction
is extremely important, because there are significant differences in the behav-
iors of the two types. We will make a close study of the Java string class and
compare its behavior to the string type in Python.

You will see that Java strings have many capabilities. You can slice them
as you can Python strings, they know their lengths, and you have access to all
characters. You will learn how to use the Java API guide to learn more about
any class’s capabilities, including those of String.

1 Java Strings as a Model for Java Objects

Java handles strings in a manner similar to that of Python. Strings in Java
are immutable. Java has an enormous standard library containing thousands of
classes. The string type is a part of this vast library, an it is implemented in a
class called String.

Because strings are so endemic in computing, the creators of Java gave Java’s
string type some features atypical of Java classes, which we shall point out as
we progress.

Let us begin by working interactively. Here we see how to read individual
characters in a string by their indices.

jshell> String x = "abcdefghijklmnopqrstuvwxyz"
x ==> "abcdefghijklmnopqrstuvwxyz"

jshell> x.charAt(0)
$2 ==> 'a'

jshell> x[0]
Error:
array required, but java.lang.String found
x[0]
^--^

jshell> x.charAt(25)
$3 ==> 'z'

jshell> x.length()
$4 ==> 26

Now let us deconstruct all of this. Strings in Java enjoy an exalted position.
The line

2

String x = "abcdefghijklmnopqrstuvwxyz"

makes a tacit call to new and it creates a new String object in memory. Only
a few other Java class enjoys the privilege of making tacit calls to new; these
are the wrapper classes. Let us take a brief detour to see one of them, Integer,
which is the wrapper type for the primitive type int. You can create an Integer
either by saying

Integer n = 5;

or by saying

Integer n = new Integer(5);

This tacit call to new is enabled by a feature called autoboxing. We will meet
the wrapper classes in full after we finish discussing the string class.

Coming back to our main thread, you can create a string using new as well.

String x = new String("abcdefghijklmnopqrstuvwxyz");

Here we made an explicit call to new. This is not done very often in practice, as
it is excessively verbose, and it can create duplicate copies of immutable objects.

Access to the individual characters within a string is granted via the charAt
string method. The expression

x.charAt(25)

can be read as “x’s character at index 25.” Just as in Python, the dot (.)
indicates the genitive case. The nastygram you got before,

| Error:
| array required, but java.lang.String found
| x[0]
| ^--

arises because the square–bracket operator, which exists in Python, is only used
to extract array entries in Java. Arrays are a Java data structure, which we will
learn about in the next chapter. Finally, we see that a string knows its length;
to get it we invoke the length() method.

String has another atypical feature not found in other Java classes. The
operators + and += are implemented for Strings. The + operator concatenates
two strings, just as it does in Python. The += operator works for strings just as
it does in Python.

3

jshell> String x = "abc"
x ==> "abc"

jshell> x += "def"
$2 ==> "abcdef"

jshell> x
x ==> "abcdef"

Note, however, that the string "abc" is not changed. It is orphaned and the
String variable x now points at "abcdef".

The mechanism of orphaning objects in Java works much as it does in
Python. Both Python and Java are garbage-collected languages.

1.1 But is there More?

You might be asking now, “Can I learn more about the Java String class?” Fortu-
nately, the answer is “yes;” it is to found in the Java API (Applications Program-
ming Interface) guide. This is a freely available online comprehensive encyclo-
pedia of all of the classes in the Java Standard Library. Go to this site, https:
//docs.oracle.com/javase/10/docs/api/overview-summary.html and you
will see this. There is a link on this page so you can download the entire docu-
mentation set onto your computer. When you go to this link, here is what you
see.

4

https://docs.oracle.com/javase/10/docs/api/overview-summary.html
https://docs.oracle.com/javase/10/docs/api/overview-summary.html

Classes in Java have two levels of organization. One is modules. We are
going to explore the module java.base.

Scroll down a little more and you will see the Modules area; it is tabbed.
Click on the link for java.base.

5

When you open this link, you will see the packages inside of it. Here are
some we will use in this book.

java.lang This is the core of the Java lan-
guage.

java.io This is where Java’s fileIO facili-
ties live.

java.math This is the home of BigInteger,
a class for arbitrary-precision in-
teger arithmetic.

java.util This is where Java’s data struc-
tures live.

Now click on java.lang This page has several segments. Here they are.

• Interfaces

• Classses

• Enums

• Exceptions

• Errors

• Annotation Types

6

Scroll down the the Classes segment. In it you will find a link for the class
String. Click on it. This is the top of the page.

At the very top, the module and the package are identified for you. You
can also see the fully qualified name of the String class, java.lang.String.
Further down, you see this.

The String class represents character strings. All string literals in
Java programs, such as "abc", are implemented as instances of this
class.
Strings are constant; their values cannot be changed after they are
created.

In the beginning you will see much that you will not understand. For exam-
ple, there is this.

public final class String
extends Object
implements Serializable, Comparable<String>, CharSequence

7

We will learn about that stuff later. For now, you will learn how to pick out
what you need to know. Now scroll down to the Method Summary area. The
top of it looks like this.

There are three columns in this table. The first column contains the return
type of the method and any modifier (later...). The second shows the name of
the method and its argument list. The third describes the method briefly.

To learn more, click on charAt. You will see the method detail, which looks
like this.

public char charAt(int index)

Returns the char value at the specified index. An index ranges from 0 to
length() - 1. The first char value of the sequence is at index 0, the next at
index 1, and so on, as for array indexing. If the char value specified by the index
is a surrogate, the surrogate value is returned.

Specified by:
charAt in interface CharSequence

8

Parameters:
index - the index of the char value.

Returns:
the char value at the specified index of this string. The first char value is at
index 0.

Throws:
IndexOutOfBoundsException - if the index argument is negative or not less
than the length of this string.

Now click on the link; you will go to the method detail for charAt. Right
after the heading it says

public char charAt(int index)

This is the method header that appears in the actual String class. It then goes
on to say the following.

Returns the char value at the specified index. An index ranges from
0 to length() - 1. The first char value of the sequence is at index
0, the next at index 1, and so on, as for array indexing.

The following paragraph

If the char value specified by the index is a surrogate, the surrogate
value is returned.

looks pretty mysterious, so we will ignore it for now. The Parameters: head-
ing describes the argument list. Returns: heading describes the return value.
There are no surprises here.

What is interesting is the Throws: heading. This describes run time errors
that can be caused by misuse of this method. These errors are not found by the
compiler. If you trigger one, your program dies gracelessly and you get great
list of nastiness put to your screen. You have observed similar tantrums thrown
by Python when you give it an index that is out of bounds in a string, list or
tuple.

We shall use this web page in the next sections so keep it open. First it will
be necessary to understand a fundamental difference between Java object types
and Java primitive types.

Programming Exercises Write a class called Exercises11 and place the
following methods in it.

1. Write the method

9

public boolean isASubstringOf(String quarry, String field)
{
}

It should return true when quarry is a contiguous substring of field.
(Think Python in construct.)

2. Suppose you have declared the string cat as follows.

String cat = "abcdefghijklmonopqrstuvwxyz";

Find at least two ways in the API guide to obtain the string "xyz". You
may use no string literals (stuff inside of "..."), just methods applied to
the object cat. There are at least three ways. Can you find them all?

3. The Python repetition operator *, which takes as operands a string and
an integer, and which repeats the string the integer number of times does
not work in Java. Write a method

String repeat(String s, int n)

that replicates the action of the Python repetition operator. And yes,
there is recursion in Java.

2 Primitive vs. Object: A Case of equals Rights

We will study the equality of string objects. A big surprise lies ahead so pay
close attention. Create this interactive session in Python. All is reassuringly
familiar.

>>> good = "yankees"
>>> evil = "redsox"
>>> copy = "yankees"
>>> good == copy
True
>>> good == evil
False

No surprises greet us here. Now let us try the same stuff in Java.

jshell> String good = "yankees"
good ==> "yankees"

jshell> String evil = "redsox"
evil ==> "redsox"

String copy = new String("yankees")
copy ==> "yankees"

10

jshell> good == evil
$4 ==> false

jshell> good == good
$5 ==> true

jshell> good == copy
$7 ==> false

Beelzebub! Some evil conspiracy appears to be afoot! Despite the fact that
both good and copy point to a common value of "yankees", the equality test
returns a false. Now we need to take a look under the hood and see what is
happening.

First of all, let’s repeat this experiment using integers.

jshell> int Good = 5;
Good ==> 5

jshell> int Evil = 4;
Evil ==> 4

jshell> int Copy = 5;
Copy ==> 5

jshell> Good == Evil
$12 ==> false

jshell> Good == Good
$13 ==> true

jshell> Good == Copy
$14 ==> true

This seems to be at odds with our result with strings. This phenomenon occurs
because primitive and class types work differently.

Without exception, when you use == on two variables, you are asking if
they store the same value. The value stored by a variable of object type is the
memory address of its object. The value stored by a primitive type is the actual
value it is storing; a primitive type variable points directly at its datum.

So if you are using == on variables of object type, you are comparing memory
addresses. In our case, Strings do not directly store their object; they store its
memory address. this is true of all object types in Java. What a java object
knows is a how to find where where the string is stored in memory.

In Python, objects never point directly at their datum. Python types such

11

as bool, float and int are actually immutable objects. This phenomenon is a
major difference between Python and Java. Python has no primitive types.

We saw good == good evaluate to true because good points to the same
actual object in memory as itself. We saw good == copy evaluate to false,
because good and copy point to separate copies of the string "yankees" stored
in memory. Therefore the test for equality evaluates to false.

Recall we said that objects have behavior and identity. For objects, the ==
operator is a test for equality of identity. It checks if two objects are in fact
one and the same. This behavior is identical to that of the Python is keyword,
which checks for equality of identity.

What do we do about the equality of strings? Fortunately, the equals
method comes to the rescue.

jshell> good.equals(good)
$15 ==> true

jshell> good.equals(evil)
$16 ==> false

jshell> good.equals(copy)
$17 ==> true

Ah, paradise restored. . . Just remember to use the equals method to check for
equality of Java objects. This method for strings has a close friend equalsIgnoreCase
that will do a case-insensitive check for equality of two strings. These comments
also apply to the inequality operator !=. This operator checks for inequality of
identity. To check and see if two strings have unequal values use ! in conjunction
with equals. Here is an example

jshell > !(good.equals(copy))
$ 18 ==> false
>
jshell> !(good.equals(evil))
$ 19 ==> true

Finally, notice that Python compares strings lexicographically according to
Unicode value by using inequality comparison operators. These do not work in
Java. It makes no sense to compare memory addresses. However, the string
class has the method

int compareTo(String anotherString)

We show it at work here.

12

jshell> String little = "aardvark";
little ==> "aardvark"

jshell> String big = "zebra";
big ==> "zebra"

jshell> little <= big
| Error:
| bad operand types for binary operator '<='
| first type: java.lang.String
| second type: java.lang.String
| little <= big
| ^-----------^

jshell> little.compareTo(big) < 0
$3 ==> true

jshell> little.compareTo(big) == 0
$4 ==> false

jshell> little.compareTo(big) > 0
$5 ==> false

You may be surprised compareTo returns an integer. However, alphabetical
string examples can be done as in the example presented here. This method’s
sibling method, compareToIgnoreCase that does case–insensitive comparisons
and works pretty much the same way.

2.1 Aliasing

Consider the following interactive session.

jshell> String smith = "granny";
smith ==> "granny"

jshell> String jones = smith;
jones ==> "granny"

jshell> smith == jones
$3 ==> true

Here we performed an assignment, jones = smith. What happens in an as-
signment is that the right–hand side is evaluated and then stored in the left.
Remember, the string smith points at a memory address describing the loca-
tion where the string "granny" is actually stored in memory. So, this memory

13

address is given to jones; both jones and smith hold the same memory ad-
dress and therefore both point at the one copy of "granny" that we created in
memory.

This situation is called aliasing. Since strings are immutable, aliasing can
cause no harm. We saw in the Python book that aliasing can create surprises.

First we will need to be introduced a property of objects we have omitted
heretofore in our discussion: state. The state of a string is given by the character
sequence it contains. How these are stored is not now known to us, and we really
do not need to know or care. We shall tour the rest of the string class in the
Java API guide, then turn to the matter of state. Just know that a String’s
state is specified by the character sequence it contains.

3 More Java String Methods

Python’s slicing facilities are implemented in Java using substring. Here is an
example of substring at work.

jshell> x = "abcdefghijklmnopqrstuvwxyz"
jshell> x.substring(5)
"fghijklmnopqrstuvwxyz"
jshell> x.substring(3,5)
"de"
jshell> x.substring(0,5)
"abcde"
jshell> x
"abcdefghijklmnopqrstuvwxyz"

Notice that the original string is not modified by any of these calls; copies are
the advertised items are returned by these calls. The endsWith method seems
pretty self–explanatory.

jshell> x.endsWith("xyz")
true
jshell> x.endsWith("XYZ")
false

The indexOf method allows you to search a string for a character or a
substring. In all cases, it returns a -1 if the string or character you are seeking
is not present.

jshell> x.indexOf('a')
0
jshell> x.indexOf('z')

14

25
jshell> x.indexOf('A')
-1
jshell> x.indexOf("bc")
1

You can pass an optional second argument to the indexOf method to tell is to
start its search at a specified index. For example, since the only instance of the
character ’a’ in the string x is at index 0, we have t

jshell> x.indexOf('a', 1)
-1

You are encouraged to further explore the String API. It contains many
useful methods that make strings a useful andx powerful programming tool.
The programming exercises here will give you an opportunity to do this.

Programming Exercises Fill in the methods in this class. Copy it and
ocmpile it; it will compile in this state. When you are done, it should print all
trues. Do not worry about the use of the static keyword. It makes everything
work and it will be explained later. Use the String API page to help you.

public class Exercises
{

public static void main(String[] args)
{

System.out.println(between("catamaran", 'a').equals("tamar"));
System.out.println(between("catamaran", 'c').equals(""));
System.out.println(between("catamaran", 'q').equals(""));
System.out.println(laxEquals(" boot", "boot"));
System.out.println(laxEquals("boot ", "boot"));
System.out.println(laxEquals(" boot ", "boot"));
System.out.println(laxEquals(" \t\n boot \n\t ", "boot"));
System.out.println(getExtension("wd2.tex").equals("tex"));
System.out.println(getExtension("hello.py").equals("py"));
System.out.println(getExtension("Hello.java").equals("java"));
System.out.println(getExtension("tossMeNow").equals(""));
System.out.println(getExtension(".").equals(""));
System.out.println(isUpperCaseOnly("EAT NOW 123"));
System.out.println(!isUpperCaseOnly("eat NOW 123"));
System.out.println(isUpperCaseOnly(""));

}
/*
* This returns an empty string if q is not present in

15

* s or if it only appears once. Otherwise, it returns the
* substring between the first and last instances of q in s.
*/

public static String between(String s, char q)
{

return "";
}
/*
* This returns true if the only difference between s1 and s2
* is leading or trailing whitespace.
*/

public static boolean laxEquals(String s1, String s2)
{

return false
}
/*
* this returns an empty string if the fileName is empty
* or has no extension. Otherwise, it returns the extension
* without the dot.
*/

public static String getExtension(String fileName)
{

return "";
}
/*
* this returns true if the String contains only uppercase
* or non-alpha characters.
*/

public static boolean isUpperCaseOnly(String s)
{

return false;
}

}

and put these methods in it.

1. Write the method public Stirng bewteen(String s, char q) that re-
turns an empty string if q occurs once or not at all inside of s; otherwise
it reteurns the substring in between the first and last instances of q in s.
Examples

16

4 The Wrapper Classes

Every primitive type in Java has a corresponding wrapper class. Such a class
“wraps” the primitive object. These classes also supply various useful methods
associated with each primitive type. Here is a table showing the wrapper classes.

Wrapper Classes
Primitive Wrapper
byte Byte
short Short
int Integer
long Long
boolean Boolean
float Float
double Double
char Character

All of these classes have certain common features. You should explore the
API guide for each wrapper. They have many helpful features that will save
you from reinventing a host of wheels.

One thing you will notice in the wrapper classes is the presence of methods
marked static. We will discuss this later in more detail, but for now, just know
that static methods can be called directly using the class name. If you have a
class Foo and a static method named cling, you call it by using Foo.cling().
What you don’t need to do is this.

Foo f = new Foo();
f.cling();

You can operate in this way, but calling a static method via the class name
is the preferred way of calling a static method, and it saves the Java Virtual
Machine work.

• Immutability Instances of these classes are immutable. You may not
change the datum. You may only orphan the object by pointing at a new
one with a different datum. This should remind you of Python, because
this is how Python treats these types types such at int, bool, and float.

• A toString() method, which returns a string representation of the da-
tum.

• A static toString(primitiveType p) Method This method will con-
vert the object passed it into a string. For example, Integer.toString(45)
returns the string "45".

17

• A static parsePrimitive(String s) Method This method converts a
String into a value of the primitive type. For example,

Integer.parseInt("455")}

converts the string "455" into the integer 455. For numerical types, a
NumberFormatException is thrown if an malformed numerical string is
passed them. The Character wrapper does not have this feature. You
should take note of how this method works in a Boolean.

• Membership in java.lang All of these classes belong to the package
java.lang; you do not need to import anything to use these classes.

Programming Exercises

1. Write an expression to see if a character is an upper-case letter.

2. Write a method that converts an integer into a comma format string as
follows.

• 456 7→ 456
• 32768 7→ 32,768
• 1048576 7→ 1,048,576

4.1 Autoboxing and Autounboxing

These features make using the wrapper classes simple. Autoboxing automati-
cally promotes a primitive to a wrapper class type where appropriate. Here is
an example. The command

Integer i = 5;

really amounts to

Integer i = new Integer(5);

This call to new “boxes” the primitive 5 into an object of type Integer. The
command Integer i = 5; automatically boxes the primitive 5 inside an object
of type Integer. This results in a pleasing syntactical economy.

Autounboxing allows the following sensible–looking code.

Integer i = 5;
int x = i;

Here, the datum is automatically “unboxed” from the wrapper Integer type
and it is handed to the primitive type variable x.

18

This is the smart way to compare a primitive with a boxed primitive. Direct
comparison can be dangerous and result in errors.

jshell> Integer i = 5;
jshell> int y = i;
jshell> int x = 5;
jshell> i == y
true
jshell>

Autoboxing and autounboxing eliminate a lot of verbosity from Java; we no
longer need to make most valueOf and equals calls.

5 Two Caveats

Do not box primitive types gratuitously. If you can keep variables primitive
without a sacrifice of clarity or functionality, do so. Here is an example of a
big mistake caused by seemingly innocuous choice. Although we have not met
loops yet, you can easily figure out what is happening here. You are doing a
million boxings and unboxings.

for(Integer i = 0; i < 1000000; i++)
{

//code
}

This will be a significant performance hit. This is much better.

for(int i = 0; i < 1000000; i++)
{
//code
}

It is best to prefer the use of primitive types, and to use the wrapper types
when you need their helpful methods. We mention them because you will need
to use them in conjunction with collections.

Using == on autoboxed primitives is almost always wrong You must
use the equals method in this case.

The wrappers types become very important when we begin to use collections;
you cannot make a collection of primitive objects in Java.

19

6 Java Classes Know Things: State

So far, we have seen that objects have identity and that they have behavior,
which is reflected by a class’s methods.

We then saw that a string “knows” the character sequence it contains. We
do not know how that sequence is stored, and we do not need to know that.
The character sequence held by a string is reflective of its state. The state of an
object is what an object “knows.” Observe that the outcome of a Java method
on an object can, and often does, depend upon its state.

To give you a look behind the scenes, we shall now produce a simple class
which will provides a blueprint for making objects having state, identity and
behavior. To do this, it will necessary to introduce some new ideas in Java, the
constructor and method overloading.

Place the following code in a file, compile and save it with the name Point.java.
We are going to create a simple class for representing points in the plane with
integer coördinates.

public class Point
{
}

What does such a point need to know? It needs to know its x and y coördi-
nates. Here is how to make it aware of these.

public class Point
{

private int x;
private int y;

}

You will see a new keyword: private. This says that the variables x and y are
not visible outside of the class. These variables are called instance variables or
state variables. We shall see that they specify the state of a Point.

Why this excessive modesty? Have you ever bought some electronic trin-
ket, turned it upside–down and seen “No user serviceable parts inside” embla-
zoned on the bottom? The product–liability lawyers of the trinket’s manufac-
turer figure that an ignorant user might bring harm to himself whilst fiddling
with the entrails of his device. Said fiddling could result in a monster lawsuit
that leaves the principles of the manufacturer living in penury.

Likewise, we want to protect the integrity of our class; we will not allow the
user of our class to monkey with the internal elements of our program. We will

20

permit the client programmer access to these elements by creating methods that
give access. This is a hard-and-fast rule of Java programming: Always declare
your state variables private.

Additionally, if we decide later that it is better to implement the class in a
newer and better way, we can do this and we can keep the interface the same.
This allows us to do an “engine upgrade” but have the operation of the car be
the same. It will just have a little more pep when you step on the gas.

Now compile your class. Let us make an instance of this class and deliber-
ately get in trouble.

jshell> Point p = new Point();
p ==> Point@26653222

jshell> p.x
| Error:
| x has private access in Point
| p.x
| ^-^

We have debarred ourselves from having any access to the state variables of an
instance of the Point class. This makes our class pretty useless. How do we get
out of this pickle?

6.1 Quick! Call the OBGYN! And get a load of this!

Clearly a Point needs help initializing its coördinates. For this purpose we
use a special method called a constructor. A constructor has no return type;
in fact it is the only method in a class which can lack a return type. When
the constructor is finished, good programming practice dictates that all state
variables should be initialized. Constructors are OBGYNs: they oversee the
birth of objects.

Now for some grammatical ground rules. The constructor for a class must
have the same name as the class. In fact, only constructors in a class may have
the same name as the class. We now write a constructor for our Point class.

public class Point
{

private int x;
private int y;
public Point(int x, int y)
{

this.x = x;
this.y = y;

21

}
}

When you are programming in a class, you are that object. The keyword this
refers to “me.” The dot construct is the genetive case, so this.x is “my x.”

Now compile your class. To make a point at (3,4), call the constructor by
using new. The new keyword calls the class’s constructor and oversees the birth
of an object.

jshell> Point p = new Point(3,4);
p ==> Point@26653222

jshell> Point q = new Point();
| Error:
| constructor Point in class Point cannot be applied to given types;
| required: int,int
| found: no arguments
| reason: actual and formal argument lists differ in length
| Point q = new Point();
| ^---------^

The Point p is storing the point (3,4). Remember, the variable p itself only
stored a memory address. The point (3,4) is stored at that address.

One other thing we see is that once we create a constructor the default
constructor, which has an empty signature, no longer exists.

Note the similarity of this process to the Python Point class we created
earlier. The Python __init__ method behaves much like a Java constructor; it
is called every time a new Python object of type Point is created.

import math
class Point(object):

def __init__(self, x = 0, y = 0):
self.x = x
self.y = y

p = Point()
print ("p = ({0}, {1})".format(p.x, p.y))
q = Point(3,4)
print ("q = ({0}, {1})".format(q.x, q.y))

Now go back to the String class in the API guide. Scroll down to the
constructor summary; this has a blue header on it and it is just above the
method summary. You will see that the string class has many constructors.

22

How is this possible? We faked in in Python by using default arguments. Can
we do this for our point class in Java?

Happily, the answer is “yes”.

6.2 Method and Constructor Overloading

The signature of a method is an ordered list of the types of its arguments.
Java supports method overloading : you may have several methods bearing the
same name, provided they have different signatures. This is why you see several
versions of indexOf in the String class. Java resolves the ambiguity caused by
overloading at compile time by looking at the types of arguments given in the
signature. It looks for the method with the right signature and it then calls it.

Notice that the static typing of Java allows it to support method overloading.
Python fakes method overlaoding via the facility of default arguments. Here is
another example of Python default arguments at work.

def f(x = 0, y = 0, z = 0):
return x + y + z

print "f() = ", f()
print "f(3) = ", f(3)
print "f(3, 4) = ", f(3, 4)
print "f(3, 4, 5) = ", f(3, 4, 5)

unix> python overload.py
f() = 0
f(3) = 3
f(3, 4) = 7
f(3, 4, 5) = 12
unix>

You can use this principle on constructors, too. Let us now go back to our
Point class. We will make the default constructor (sensibly enough) initialize
our point to the origin.

public class Point
{

private int x;
private int y;
public Point(int x, int y)
{

this.x = x;
this.y = y;

}

23

public Point()
{

this.x = 0;
this.y = 0;

}
}

Compile this class. Then type in this interactive session.

jshell> Point p = new Point(3,4);
p ==> Point@26653222

jshell> Point q = new Point();
q ==> Point@68c4039c

Voila! The default constructor is now working.

6.3 Get a load of this again!

The eleventh commandment reads, “Thou shalt not maintain duplicate code.”
This sounds Draconian, but it is for reasons of convenience and sanity. If you
want to modify your program, you want to do the modifications in ONE place.
Having duplicate code forces you to ferret out every copy of a duplicated piece
of code you wish to modify. You should strive to avoid this.

One way to avoid it is to write separate methods to perform tasks you do
frequently. Here, however, we are looking at our constructor. You see duplicate
code in the constructors. To eliminate it, you may use the this keyword to call
one constructor from another. We shall apply this here.

public class Point
{

private int x;
private int y;
public Point(int _x, int _y)
{

this.x = x;
this.y = y;

}
public Point()
{

this(0,0);
}

}

24

6.4 Now Let Us Make this Class DO Something

So far, our Point class is devoid of features. We can create points, but we
cannot see what their coördinates are. Now we shall provide accessor methods
that give access to the cöordinates. While we are in here we will also write a
special method called toString, which will allow our points to print nicely to
the screen.

First we create the accessor methods. Here is how they should work.

jshell> Point p = new Point(3,4);
p ==> Point@26653222

jshell> Point q = new Point();
q ==> Point@68c4039c

jshell> p.getX()
$4 ==> 3

jshell> p.getY()
$5 ==> 4

jshell> q.getX()
$6 ==> 0

jshell> q.getY()
$7 ==> 0

Making them is easy. Just add these methods to your Point class.

public int getX()
{

return x;
}
public int getY()
{

return y;
}

These accessor or “getter” methods allow the user of your class to see the
coördinates of your Point but the user cannot use the getter methods to change
the state of the Point. So far, our point class is immutable. There is no way to
change its state variables, only a way to read their values.

To get your points to print nicely, create a toString method. Its header
must be

25

public String toString()

In this method we will return a string representation for a point. Place this
method inside of your Point class.

public String toString()
{

return "("+ x + ", " + y + ")";
}

Compile and run. The toString() method of an object’s class is called au-
tomatically whenever you print an object. Every Java object is born with a
toString() method. We saw that this built–in method for our point class was
basically useless. By implementing the toString method in our class, we are
customizing it for our purposes. Here we see our nice representation of a Point.

jshell> Point p = new Point(3,4)
(3, 4)
jshell> System.out.println(p)
(3, 4)
jshell>

You will see that many classes in the standard library customize this method.

Now let us write a method that allows us to compute the distance between
two points. To do this we will need to calculate a square-root. Fortunately,
Java has a scientific calculator. Go to the API guide and look up the class
Math. To use a Math function, just prepend its name with Math.; for example
Math.sqrt(5) computes

√
5. All of the methods of this class are static. Many

of the names of these functions are the same as they are in Python’s math library
and in and C/C++’s cmath and math.h libraries.

Now add this method to your class. You will see that it is just carrying out
the distance formula between your point (x,y) and the point q.

public double distanceTo(Point q)
{

return Math.sqrt((x - q.x)*(x - q.x) + (y - q.y)*(y - q.y));
}

Compile and run.

jshell> Point origin = new Point()
(0, 0)
jshell> Point p = new Point(5,12);
jshell> origin.distanceTo(p)

26

13.0
jshell> p.distanceTo(origin)
13.0
jshell>

Programming Exercises Here is a chance to try out some new territory in
Python. Python has special methods called hooks that do special jobs. We have
met the init hook; all hooks are surrounded by double-underscores.

1. The Python hook __str__ tells Python to represent a Python object as a
string. Its method header is

def __str__(self):

Make a method for the Python Point class that represents a Point as a
string.

2. The Python hook __eq__ can check for equality of objects. You can cause
to points to be compared using == with this hook. Its header is

def __eq__(self, other):

Implement this for our Python Point class. What header do you decide
to use?

3. Look up the hypot() method in the Math class. How can you use it in
our Point class?

6.5 Who am I?

In Java there are two programming roles: that of the class developer and that of
the client programmer. You assume both roles, as all code in Java lives inside of
classes. You are the class developer of the class you are writing, and the client
programmer of the classes you are using. Any nontrivial Java program involves
at least two classes, the class itself and often the class String or System.out. In
practice, as you produce Java classes, you will often use several different classes
that you have produced or from the Java Standard Library.

So while we are creating the Point class, we should think of ourselves as
being Points. A Points knows its coördinates. Since you are a point when
programming in the class Point, you have access to your private variables. You
also have access to the private variables of any instance of class Point. This is
why in the distanceTo method, we could use q.x and q.y.

In the last interactive session we made two points with the calls

Point origin = new Point();
Point p = new Point(5,12)

27

This resulted in the creation of two points. The call

p.distanceTo(origin)

returned 13.0. What is says is “Call p’s distanceTo method using the argument
origin.” In this case, you should think of “you” as p. The point origin is
playing the role of the point q in the method header. Likewise, the call

origin.distanceTo(p)

is calling p’s distance to origin. In the first case, “I” is origin, in the second,
“I” is p.

6.6 Mutator Methods

So far, all of our class methods have only looked at, but have not changed, the
state of a point object. Now we will make our points mutable. To this end,
create two “setter” methods and place them in your Point class.

public void setX(int a)
{

x = a;
}
public void setY(int b)
{

y = b;
}

Now compile and type in the following.

jshell> p = new Point()
(0, 0)
jshell> p.setX(5)
jshell> p
(5, 0)
jshell> p.setY(12)
jshell> p
(5, 12)

Our point class is now mutable: We are now giving client programmers permis-
sion to reset each of the coördinates. These new methods are called “mutator”
methods, because they change the state of a Point object. Instances of our
Point class are mutable, much as are Python lists. Mutability can be conve-
nient, but it can be dangerous, too. Watch us get an ugly little surprise from
aliasing.

28

To this end, let us continue the interactive session we started above.

jshell> q = p;
jshell> q
(5, 12)
jshell> q.setX(0)
jshell> p
(0, 12)
jshell> q
(0, 12)

Both p and q point at the same object in memory, which is initially storing
the point (5,12). Now we say, “q, set the x–coördinate of the point you are
pointing at to 0. Well, p happens to be pointing at precisely the same object.
In this case p and q are aliases of one another. If you call a mutator method
from either variable, it changes the value pointed at by the other!

If we wanted p and q to be independent copies of one another, a different
procedure is required. Let us now create a method called clone, which will
return an independent copy of a point.

public Point clone()
{

return new Point(x,y);
}

Compile and fire up a new jshell session. Now we will test–drive our new
clone method. We will make a point p, an alias for the point alias, and a copy
of the point copy.

jshell> Point p = new Point(3,4)
(3, 4)
jshell> Point alias = p
(3, 4)
jshell> Point copy = p.clone();
jshell> p
(3, 4)

Continuing, let us check all possible equalities.

jshell> p == alias
true
jshell> copy == alias
false
jshell> p == copy
false

29

We can see that p and q are in fact aliases the same object, but that alias is
not synonymous with either p or q.

jshell> p
(3, 4)
jshell> alias
(3, 4)
jshell> copy
(3, 4)

All three point at a point stored in memory that is (3,4). Now let us call the
mutator setX on p; we shall then inspect all three.

jshell> p.setX(0)
jshell> p
(0, 4)
jshell> alias
(0, 4)
jshell> copy
(3, 4)

The object pointed to by both p and q was changed to (0,4). The copy,
however, was untouched.

Look at the body of the clone method. It says

return new Point(x,y);

This tells Java to make an entirely new point with coördinates x and y. The
call to new causes the constructor to spring into action and stamp out a fresh,
new Point.

7 The Scope of Java Variables

In this section, we shall describe the lifetime and visibility of Java variables.
The rules differ somewhat from Python, and you will need to be aware of these
differences to avoid unpleasant surprises.

There are two kinds of variables in Java, state variables and local variables.
Local variables are variables created inside of any method in Java. State vari-
ables are visible anywhere in a class. Where they are declared in a class is
immaterial, but you should declare them at the top of your class. This makes
them easy to find and manage. You could move them to the end of the class
with no effect.

30

The rest of our discussion pertains to local variables. All local variables in
Java have a block ; this is delimited by the closest pair of matching curly braces
containing the variable’s declaration. The first rule is that no local variable is
visible outside of its block. The second rule is that a local variable is not visible
until it is created. You will notice that these rules are stricter than those of
Python. As in Python, variables in Java are not visible prior to their creation;
this rule is exactly the same.

Here is an important difference. Variables created inside of Python functions
are visible from their creation to the end of the function, even if they are declared
inside of a block in that function. Here is a quick example in a file named
laxPyScope.py.

def artificialExample(x):
k = 0
while k < len(x):

lastSeen = x[k]
k += 1

return lastSeen
x = "parfait"
print "artificialExample(" + x + ") = ", artificialExample(x)

It is easy to see that the function artificialExample simply returns the last
letter in a nonempty string. We run it here.

$ python laxPyScope.py
artificialExample(parfait) = t
$

Observe that the variable lastSeen was created inside a block belonging to a
while loop. In Java’s scoping rules, this variable would no longer be visible (it
would be destroyed) as soon as the loop’s block ends.

There are some immediate implications of this rule. Any variable declared
inside of a method in a class can only be seen inside of that method. That works
out the same as in Python. Let us code up exactly the same thing in Java in a
class StrictJavaScope. In this little demonstration, you will see Java’s while
loop at work.

public class StrictJavaScope
{

public char artificialExample(String x)
{

int k = 0;
while(k < x.length())
{

31

char lastSeen = x.charAt(k);
k += 1;

}
return lastSeen;

}
}

Now compile and brace yourself for compiler grumblings.

javac StrictJavaScope.java
StrictJavaScope.java:11: error: cannot find symbol

return lastSeen;
^

symbol: variable lastSeen
location: class StrictJavaScope

1 error

Your symbol lastSeen died when the while loop ended. Even worse, it got
declared each time the loop was entered and died on each completion of the
loop.

How do we fix this? We should declare the lastSeen variable before the
loop. Then its block is the entire function body, and it will still exist when we
need it. Here is the class with repairs effected.

public class StrictJavaScope
{

public char artificialExample(String x)
{

int k = 0;
char lastSeen = ' ';
while(k < x.length())
{

lastSeen = x.charAt(k);
k += 1;

}
return lastSeen;

}
}

Peace now reigns in the valley.

jshell> s = new StrictJavaScope();
jshell> s.artificialExample("parfait")
't'
jshell>

32

while We are at it The use of the while loop is entirely natural to us and
it looks a lot like Python. There are some differences and similarities. The
differences are largely cosmetic and syntactical. The semantics are the same,
save of this issue of scope we just discussed.

• similarity The while statement is a boss statement. No mark occurs in
Java at the end of a boss statement.

• difference Notice that there is NO colon or semicolon at the end of the
while statement. Go ahead, place a semicolon at the end of the while
statement in the example class. It compiles. Run it. Now figure out what
you did, Henry VIII.

• difference Notice that predicate for the while statement is enclosed in
parentheses. This is required in Java; in Python it is optional.

• similarity The while statement owns a block of code. This block can be
empty; just put an empty pair of curly braces after the loop header.

The scoping for methods and state variables is similar. State variables have
class scope and they are visible from anywhere inside of the class. They may
be modified by any of the methods of the class. Any method modifying a
state variable is a mutator method for the class. Be careful when using mutator
methods, as we have discussed some of their perils when we talked about aliasing.
A good general rule is that if a class creates small objects, give it no mutator
methods. For our Point class, we could just create new Points, rather than
resetting coördinates. Then you do not have to think about aliasing. In fact, it
allows you to share objects among variables freely and it can save space. It also
eliminates the need for copying objects.

Later, we will deal with larger objects, like graphics windows and displays.
We do not want to be unnecessarily calling constructors for these large objects
and we will see that these objects in the standard library have a lot of mutator
methods.

All methods are visible inside of the class. To get to methods outside of the
class, you create an instance of the class using new and call the method via the
instance. Even if your state variables are (foolishly) public, you must refer to
them via an instance of the class. Let us discuss a brief example to make this
clear.

Suppose you have a class Foo with a method called doStuff() and public a
public state variable x. Then to get at doStuff or x we must first create a new
Foo by calling a constructor. In this example we will use the default.

Foo f = new Foo();

Then you can call doStuff by making the call

f.doStuff();

33

Here you are calling doStuff via the instance f of the class Foo. To make f’s x
be 5, we enter the code

f.x = 5;

Notice that the “naked” method name and the naked variable name are not
visible outside of the class. In practice, since all of our state variables will be
marked private, no evidence of state variables is generally visible outside of
any class.

8 The Object-Oriented Weltanschauung

Much emphasis has been placed here on classes and objects. In this section
we will have a discussion of programming using objects. We will begin by
discussing the procedural programming methods we developed in Chapters 0-7
of the Python book.

8.1 Procedural Programming

When we first started to program in Python, we wrote very simple programs
that consisted only of a main routine. These programs carried out small tasks
and were short so there was little risk of confusion or of getting lost in the code.

As we got more sophisticated, we began using functions as a means to break
down, or modularize, our program into manageable pieces. We would then code
each part and integrate the functions into a program that became a coherent
whole. Good design of programs is “top down.” You should nail down what
you are trying to accomplish with your program. Then you should break the
program down into components. Each component could then be broken into
smaller components. When the components are of a manageable size, you then
code them up as functions.

To make this concrete, let us examine the case of writing a program that
accepts a string and which looks through an English word list, and which shows
all anagrams of the string you gave as input which appear in the word list.

To do this, you could write one monolithic procedure. However, the proce-
dure would get pretty long and it would be trying to accomplish many things
at once. Instead we might look at this and see we want to do the following

• Obtain the word from the user.

• Lower-case the word and permute the letters so they are in alphabetical
order

34

• Open a word list file.

• for each word in the list:

– Lower-case each word in the wordlist and put it in alphabetical order.

– If you get a match, put the word on an output list

• Return the list of words we obtained to the user.

Not all the tasks here are of the same difficulty. The first one, obtain the
word from the user, is quite easy to do. We, however have to make a design
decision and decide how to get the word from the user. This is a matter of
deciding the program’s user interface.

Python is an object-oriented language like Java with a library of classes.
Many of the Python classes can save you great gobs of work; the same is true in
Java. Always look for a solution to your problem in the standard library before
trying to solve it yourself! If you create classes intelligently, you will see that
you will be able to reuse a lot of code you create.

Returning to our problem, you would revisit each sub-problem you have
found. If the sub-problem is simple enough to write a function for it, code it.
Otherwise, break it down further.

This is an example of top–down design for a procedural program. We keep
simplifying procedures until they become tractable enough to code in a single
function. We program with verbs.

The creation of functions gives us a layer of abstraction. Once we test our
functions, we use them and we do not concern ourselves with their internal
details (unless a function goes buggy on us), we use them for their behavior.
Once a function is created and its behavior is known, we no longer concern
ourselves with its local variables and the details of its implementation.

This is an example of encapsulation; we are thinking of a function in terms
of its behavior and not in terms of its inner workings.

8.2 Object–Oriented Programming

In object–oriented programming, we program with nouns. A class is a sophisti-
cated creature. It creates objects, which are computational creatures that have
state, identity and behavior. We shall see here that encapsulation plays a large
role in object-oriented programming. Good encapsulation dictates that we hide
things from client programmers they do not need to see. This is one reason we
make our state variables private. We may even choose to make certain methods

35

private, if the do think they are of real use other than that of a service role the
other methods of the class.

You still do top-down design, but you begin by thinking about what kind of
objects the task at hand entails. This prompts you to think about the classes
you can use from the standard libraries and those you need to write yourself.
You must think about the ways in which they interact.

For each class, you have to think about what state it needs to maintain, and
what methods it should have so it can do its job properly. We arrive here in
much more complex world than that of procedural programming.

When you used the String class, you did not need to know how the char-
acters of a String are stored. You do not need to know how the substring()
method works: you merely know the behavior it embodies and you use it. What
you can see in the API guide is the interface of a class; this is a class’s public
portion. You are a client programmer for the entire standard library.

What you do not see is the class’s implementation. You do not know how
the String class works internally. You could make a good guess. It looks as if
a list of characters that make up the string is stored somewhere. That probably
reflects the state of a String object.

A string, however, is a fairly simple object. The contents of a window in a
graphical user interface (GUI) in Java is stored in an object that is an instance
of the class Stage. How do you store such a thing? Is it different on different
platforms? All of a sudden we feel the icy breath of the possibly unknown....
However, there is nothing to fear! In Java the Stage class has behaviors that
allow you to work with a frame in a GUI and you do not have to know how the
internal details of the Stage work. This is the beauty of encapsulation. Those
details are thankfully hidden from us!

For an everyday example let us think about driving a car. You stick in the
key, turn it, and the ignition fires the engine. You then put the car in gear
and drive. Your car has an interface. There is the shifter, steering wheel, gas
pedal, the music and climate controls, the brakes and the parking brake. There
are other interface items such as door locks, seat adjusters, and the dome light
switch.

These constitute the “public” face of your car. You work with this familiar
interface when driving. It is similar across cars. Even if your car runs on diesel,
the interface you use to drive is not very different from that of a gasoline–fueled
car.

You know your car has “private parts” to which you do not have direct access
when driving. Your gas pedal acts as a mutator method does; when you depress
it, it causes more gas to flow to the fuel injection system and causes the RPM
of the engine to increase. The RPM of the engine is a state variable for your
car. Your tachometer (if your car has one) is a getter method for the RPM of
your engine. You affect the private parts (the implementation) of your car only

36

indirectly. Your actions occur through the interface.

Let’s not encapsulate things for a moment. Imagine if you had to think
about everything your car does to run. When you stick your key in the ignition,
if you drive a newer car, an electronic system analyzes your key fob to see if your
key is genuine. That then triggers a switch that allows the ignition to start the
car. Then power flows to the starter motor....... As you are tooling down the
highway, it is a safe bet you are not thinking about the intricacies of your car’s
fuel injection system and the reactions occurring in its catalytic converter. You
get the idea. Encapsulation in classes simplifies things to a manageable essence
and allows us to think about the problem (driving here) at hand. You use the
car’s interface to control it on the road. This frees your mind to think about
your actual driving.

So, a Java program is one or more classes working together. We create
instance of these classes and call methods via these instances to get things
done. In the balance of this book, you will gain skill using the standard library
classes. You will learn how to create new classes and to create extensions of
existing ones. This will give you a rich palette from which to create programs.

Exercises

1. Think about your bicycle. What constitutes its interface?

2. What is the interface to your computer? How do you interact with it and
control it? What are some of its “private parts”?

3. How about a takeout pizza joint? How do you interact with it? What are
some of its public and private parts?

37

	Java Object Types
	Java Strings as a Model for Java Objects
	But is there More?

	Primitive vs. Object: A Case of equals Rights
	Aliasing

	More Java String Methods
	The Wrapper Classes
	Autoboxing and Autounboxing

	Two Caveats
	Java Classes Know Things: State
	Quick! Call the OBGYN! And get a load of this!
	Method and Constructor Overloading
	Get a load of this again!
	Now Let Us Make this Class DO Something
	Who am I?
	Mutator Methods

	The Scope of Java Variables
	The Object-Oriented Weltanschauung
	Procedural Programming
	Object–Oriented Programming

