Contents

[0__Introduction| 1
[Java Data Structures| 1
|L1.1 Goodies inside of java.util.Arrays|. 3
1.2 Fixed Size? I'm finding this very confining!| 3
1.3 A Brief but Necessary Diversion: What 1s this Object object?]. . 4
1.4 And Now Back to the Matter at Handl 6
2 Condifi IE on o Javal 9
13 Extended—Precision Integer Arithmetic in Javal 12
4__Recursion in Javal 14
[TLooping in Javal 16
6 Static and finall 18
6.1 Etiquette Between Static and Non-Static Members| 19
6.2 How do I Make my Class Executable?| 20
6.3 Running Java at the UNIX Command Line| 22

0 Introduction

We are going to frame the concepts we learned in Python in Java. During
this chapter, we will do a comparison of the design and mechanics of the two
languages.

1 Java Data Structures

Recall that a data structure is a container in which we store a collection of
related objects under a single name. Different data structures have different
organizations and different rules for accessing and manipulating their contents.
In Python, we met the data structures list, tuple, and dict. Python lists
are mutable heterogeneous sequences; they can contain objects of any type as
entries. Python tuples are like lists, but they are immutable; list methods that

change list state cannot be used on tuples. Python dictionaries allow us to store
key-value pairs. Python data structures grow according to our needs and they
shrink when we delete items from them.

Java has two data types comparable to Python lists. We begin by learning
about the array; it is a homogeneous mutable sequence type of fixed size. When
you create an array you specify its size and the type of entries it contains. If you
run out of room and wish to add more entries to an array, you must create a
new, bigger array, copy your array into its new home, and then abandon the old
array. Before abandoning the old array, you will have do certain housekeeping
chores so that all abandoned objects get garbage-collected. Arrays can be of
primitive or object type. An array itself is an object. The syntax for declaring
an array of type type is

> typel] identifier;

Open an interactive session in DrJava and reset the interactions pane. We
will use our first import statement here. The import statement works much as
it does in Python. Importing the class java.util.Arrays will give us a con-
venient way to print the contents of an array; the built-in string representation
of an array is useless.

Let us begin by declaring a variable of integer array type.

> import java.util.Arrays;
> int[] x;

Now let’s try to assign something to an entry.

> x[0] =1
NullPointerException:
at java.lang.reflect.Array.get(Native Method)

We are greeted by a surly error message. Here is one sure reason why.

> Arrays.toString(x)
"null"

Right now, the array variable is pointing at Java’s “graveyard state” null. If
you attempt to use a method on a object pointing at null, you will get a run
time error called a NullPointerException. We need to give the array some
actual memory to point to; this is where we indicate the array’s size.

We call the special array constructor to attach an actual array to the array
pointer x. After we attach the array, notice how we obtain the array’s length.

> x = new int[10];

> Arrays.toString(x)

*fo, o0, 0, 0, 0, 0, O, O, O, O]"
> x.length

10

Observe also that Java politely placed a zero in each entry in this integer array.
This will happen for any primitive numerical type. If you make an array of
booleans, it will be populated with the value false. In a character array, watch
what happens.

> char[] y = new char[10];
> Arrays.toString(y)

||[’ s s s s s s s s :Ill

> (int) yl[O

0

The array is filled with the null character which has ASCII value 0. It is not
a printable character. An array of object type is filled with nulls. Typically,
you will need to loop through the array to attach an object or primitive to each
entry.

Arrays have indices, just as lists do in Python. Remember, you should think
of the indices as living between the array entries. Arrays know their length, too;
just use .length. Notice that this is NOT a method and it is an error to use
parentheses at the end of it.

1.1 Goodies inside of java.util.Arrays

The convenience class java.util.Arrays is a “service class” that has useful
methods for working with arrays. We will demonstrate some of its methods
here. If you are working on arrays, look to it first as as a means of doing routine
chores with arrays. Its methods are fast, efficient and tested. It is a nice exercise
to re-create some of them, but don’t needlessly reinvent the wheel.

Go to the API page; you will see some useful items there. Here is a summary
of the most important ones for us. We will use Type to stand for a primitive or
object type. Hence Type[] means an array of type Type. You call all of these
methods by using Arrays.method(arg(s)).

Header

Action

Type[] copyOf (Typel[]
original, int newlLength)

This copies your array and returns the
copy. If the newLength is shorter than your
array, your array is truncated. Otherwise,
it is lengthened and the extra entries are
padded with the default value of Type.

Type[]

copyOfRange (Type[]
original, int from,
int to)

This returns a copy of a slice of your orig-
inal array, between indices from and to.
Using illegal entries generates a run time
error.

boolean equals(Type|| arrayl,
Typel] array?2)

This returns true if the two arrays have
the same length and contain the same val-
ues in the same order. It works just like
Python’s == on lists.

void fill(Typel] array,
Type value)

This will replace all of the entries in the
array array with the value value.

void fill(Typel[] array,
int from, int to, Type
value)

This will replace the entries between in-
dices from and to with the value value.

String toString(Typel]
array

This pretty-prints your array as a string.
You have seen this used.

1.2 Fixed Size? I'm finding this very confining!

Let us create an ArrayList and put some items in it. To work with an
ArrayList you will need to import the class java.util.ArrayList. The import
statement in the interactive session below shows how to make the class visible.
java.util.ArrayList is the fully—qualified name of this class.
statement puts us on a “first-name” basis with the class.

java.util
ArrayList<E>

We now introduce a new class and a new piece of Java syntax. An ArrayList
is a variable-size array. There are two ways to work with ArrayLists and we
will show them both.

How do I know what to import? Look the class ArrayList up in the API
guide. Near the top of the page, you will see this.

This tells you that the ArrayList class lives in the package java.util.

import java.util.Arraylist;

Therefore you should place this at the top of your code.

The import

Do not put the <E> in the import statement.

We will use the ArrayList’s add method to place new items on the list we
create.

> import java.util.ArrayList;
> ArrayList pool = new ArrayList();
> pool

(]

> pool.add("noodle")

true

> pool.add("chlorine")

true

> pool.add("algicide")

true

> pool

[noodle, chlorine, algicidel
> pool.get (0)

"noodle"

All looks pretty good here. But then there is an irritating snag.

> pool.get(0).charAt(0)

Error: No 'charAt' method in 'java.lang.Object' with arguments:
(int)

>

1.3 A Brief but Necessary Diversion: What is this Object
object?

To explain what just happened to us properly, we will take a look into the near
future that lurks in Chapter 5. Every object of object type in Java, logically
enough, is an Object. Go into the API guide and look up the class 0Object.

Every Java class has a place in the Java class hierarchy, including the ones
you create. What is different from human family trees is that a Java class has
one parent class. A Java class can have any number of children. This hierarchy is
independent of the hierarchical structure imposed on the Java Standard Library
by packages.

The Java class hierarchy is an Australian (upside-down) tree, just like your
file system. In LINUX, your file system has a root directory called /. In the
Java class hierarchy, the class Object is the root class.

Heretofore, we have created seemingly stand—alone classes. Our classes, in
fact have not really been “stand—alone.” Automatically, Java enrolls them into

the class hierarchy and makes them children of the Object class. This is why
every object has toString() and equals() methods, even if you never created
them.

The only stand—alone types are the primitive types. They are entirely outside
of the Java class hierarchy. However, we have seen that these too, have Object
analogs.

What is entailed in this parent—child relationship? The child inherits the
public portion of the parent class. In a human inheritance, the heirs can decide
what to do with the property they receive. They can use the property for its
original purpose or redirect it to a new purpose. In Java, the same rule applies.
When we made a toString() method for our Point class, we decided to redirect
our inheritance. Every Java object is born with a toString() method. Unfor-
tunately the base toString() method gives us a default string representation
of our object that looks like this.

ClassName@ABunchOfHexDigits

We decided this is not terribly useful so we overrode the base toString()
method and replaced it with our own. To override a method in a parent class,
just re-implement the method, with exactly the same signature, in the child
class. We also overrode the clone() method in the parent class. If you intend
to copy objects, do not trust the clone() you inherit from Object.

This table describes the methods in the Object class and the relevance of
each of them to us now.

Object Method | Description

clone () This method creates and returns a copy of an ob-
ject. You should override this if you intend to use
independent copies of instance of your class.
finalize() This method is automatically called when the
garbage collector arrives to reclaim the object’s
memory. We will rarely if ever use it.

getClass() This method tells you the class that an object was
created from.
notify() This method is used in threaded programs. We will

deal with this much later

The three wait methods and the notifyAll methods all apply in threaded
programming. Threads allow our programs to spawn sub-processes that run
independently of our main program. Since these are a part of Object, this tells
you that threading is built right into the core of the Java language. We will
develop threading much later.

1.4 And Now Back to the Matter at Hand

Everything is returned from an ArrayList is an Object. Strings have a charAt ()
method, but an Object does not. As a result you must perform a cast to use
things you get from an ArrayList. Here is the (ugly) syntax. Ugh. It’s as ugly
as Scheme or Lisp.

> ((8tring)pool) .get (0) .charAt(0)
lnl
>

This is the way things were until Java 5. Now we have generics that allow
us to specify the type of object to go in an ArrayList. Generics make a lot
of the ugliness go away. The small price you pay is you must specify a type of
object you are placing in the ArrayList. The type you specify is placed in the
type parameter that goes inside the angle brackets < >. You may use any
object type as a type parameter; you may not do this for primitive types.

ArrayList<String> farm = new ArrayList<String>();
> farm.add("cow")

true

> farm.get (0) .charAt(0)

' c 1

>

Here is something new to Java 7. Generics now have a feature called type
inference that makes creating array lists simpler. We now show the Java 7 way
to do what we just did above.

ArrayList<String> farm = new ArrayList<>();
> farm.add("cow"

true

> farm.get (0) .charAt (0)

ICI

>

Notice you do not have to specify the type parameter on the right hand side.

Warning: Deception Reigns King Here! All here has a pleasing cosmetic
appearance. However, it’s time to take a peek behind the scenes and see the
real way that generics work.

What happens behind the scenes is that the compiler enforces the type
restriction. It also automatically inserts the needed casts for the get() method.
Java then erases all evidence of generics prior to run time.

The generic mechanism should not work at run time. However, the wizards
who created DrJava made generics work at run-time. You can partially blame
the author of this disquisition, since he suggested it.

At run time you actually could add any type of of object to an ArrayList of
strings in the interactions pane. So here is what happens behind the scenes.

1. You make an ArrayList of some type, say String by using the ArrayList<String>
syntax.

2. You put things on the list with add and friends and gain access to them
with the get () method.

3. The compiler will add the necessary casts to String type when you refer
to the entries of the ArrayList using get(), removing this annoyance
from your code.

4. The compiler then performs type erasure; it eliminates all mention of the
type parameter from the code, so to the run time environment, ArrayLists
look like old-style ArrayLists at run time.

This is a smart decision for two reasons. One reason is that it prevents
legacy code from breaking. That code will get compiler growlings and warnings
about “raw types” but it will continue to work.

Secondly, if you declare ArrayLists of various type, each type of ArrayList
does not generate new byte code. If you are familiar with C++, you may have
heard that C++’s version of generics, templates, causes “code bloat;” each new
type declared using a C++ template creates new object code in your executable
file. Because of type erasure, Java does not do this.

Let us now make a sample class that takes full advantage of generics. First,
let us make a version without generics and see something go wrong.

import java.util.ArrayList;
public class Stringlist
{
private ArrayList theList;
public StringList()

{
thelist = new ArrayList();
}
public boolean add(String newItem)
{
return thelist.add(newItem) ;
}
public String get(int k)
{

return theList.get (k) ;

Compile this program and you will get a nastygram like this.

1 error and 1 warning found:

File: Stringlist.java [line: 15]

Error: Stringlist.java:15: incompatible types
found : java.lang.Object

required: java.lang.String

File: Java/Stringlist.java [line: 11]

Warning: Stringlist.java:11:

warning: [unchecked] unchecked call to add(E) as a member
of the raw type java.util.ArrayList

The error is that we are advertising that get returns a String; the ArrayList’s
get () only returns an Object. Now let us add the type parameter <String> to
the code. Your code compiles. Let us now inspect our class interactively. We
can now cast aside our worries about casts.

> Stringlist greats = new StringList();
> greats.add("Babe Ruth")
true

> greats.add("Mickey Mantle")
true

> greats.add("Lou Gehrig")
true

> greats.get(0)

"Babe Ruth"

> greats.get(0).charAt(0)

IB 1

>

You can see that greats.get(0) in fact returns a String, not just an Object,
since it accepts the charAt () message.

Programming Exercises These exercises will help familiarize you with the
ArrayList API page. This class offers an abundance of useful services. Try

these in an interactions pane session. Make sure you import java.util.ArrayList
into the session.

1. Make a new ArrayList of strings named roster.

2. Add several lower-case words to the ArrayList; view its contents as you
add them.

. How do you compute the number of elements of an ArrayList?

. How can you determine if a given string is in your ArrayList?

Enter this import statement: import java.util.Collections.

Type this command Collections.sort(roster); Tell what happens.

. Type this command Collections.shuffle(roster); Tell what happens.

(RS B S BTN Ot

. Add some upper-case words. How do they behave when you use Collections.sort()?
What definitive conclusion can you surmise?

2 Conditional Execution in Java

Java, like Python or any other self-respecting computer language, supports con-
ditional execution. Python has if, elif and else statements. These are all
boss statements. All of this is the works the same way in Java, but the appear-
ance is a little different. Here is a comparison method called ticketTaker in
Python and Java. First we show the Python version.

def ticketTaker(age):
if age < 13:
print ("You may only see G movies.")
elif age < 17:
print("You may only see PG or G movies.")
elif age < 18:
print ("You may only see R, PG, or G-rated movies.")
else:
print("You may see any movie.")

The Java version is quite similar. The keywords change a bit. Notice that
the predicates are enclosed in parentheses. This is required. Observe in this
example that you can put a one-line statement after an if, else if or else
without using curly braces. If you want one more than one line or an empty
block attached to any of these, you must use curly braces. It is best to always
use curly braces for bodies of boss statement in Java; this eliminates a lot of
frustrating error messages from the compiler and a lot of irksome logic errors in
your code.

10

public void ticketTaker(int age)

{
if (age < 13)
{
System.out.println("You may only see G movies.");
b
else if (age < 17)
{
System.out.println("You may only see PG or G- movies.");
X
else if (age < 18)
{
System.out.println("You may only see R, PG or G movies.");
}
else
{
System.out.println("You may see any movie.");
b
¥

Both languages support a ternary statement. We shall illustrate it in an absolute
value function for both languages. First here is the Python version.

def abs(x):
return x if x >= 0 else -x

Now we show Java’s ternary operator at work.

public int abs(int x)
{

return x >= 0 7 X : -X;

Use parenthesis to keep the order of operations from producing undesired results
where necessary.

Java supports an additional mechanism, the switch statement for condi-
tional execution. We show an example of this statement and then explain its
action.

public class Stand

{
public String fruit(char c)
{
String out = "";
switch(c)

11

case 'a': case 'A':
out = "apple";

break;

case 'b': case 'B':
out = "blueberry";
break;

case 'c': case 'C':
out = "cherry";
break;

default:

out = "No fruit with this letter";
+

return out;

Let us now instantiate the Stand class and test its fruit method.

> s = new Stand()
Stand@6504bc

> s.fruit('A")

"apple"

> s.fruit('b")

"blueberry"

> s.fruit('z")

"No fruit with this letter"
>

The switch—case statement only allows you to switch on a variable of integral
type, i.e. an integer or character type. Java 7 or later additionally allows you
to switch on a String.

The switch construct cannot be used on variables of floating-point type.
Clearly this is a consequence of the fact that floating-point numbers are not
stored exactly and that equality comparisons between them are not at all rec-
ommended. Do not use it on a boolean variable; for these, we use the if
machinery. At the end of each row of one or more cases, you place zero or more
lines of code followed by a break statement. Remove various break statements
and note the behavior of the function. You will see that they play an important
role. If you do not like switch—case, you can live without it with little or no
deleterious effect.

12

3 Extended—Precision Integer Arithmetic in Java

We shall introduce a new class, BigInteger, which does extended—precision
integer arithmetic. Go into the Java API guide and bring up the page for
BigInteger. Just under the main heading

java.math
Class Biglnteger

you well see this class’s family tree. Its parent is java.lang.Number and its
grandparent is java.lang.Object. The fully-qualified name of the class is
java.math.BigInteger. To use the class, you will need to put the import
statement

import java.math.BigInteger;

at the top of your program. You can always look at the bottom of the family
tree to see what import statement is needed.

Remember that you never need to import any class that is in java.lang,
such as java.lang.String. These are automatically imported for you. Python
seamlessly integrates super-long integers into the language. This is not so in
Java. Java class developers cannot override the basic operators like +, -, * and

/.

Begin by looking the Constructor summary. The most useful constructor to
us seems to be
BigInteger (String val)

Now we shall experiment with this in an interactive session.

> import java.math.Biglnteger;
> p = new BigInteger("1");

> P
1
>

We now have the number 1 stored as a BigInteger. Continuing our session, we

attempt to compute 1 + 1.

>P*tPp
Error: Bad type in addition
>

13

In a program this would be a compiler error. Now go into the method summary
and look for add.

> p.add(p)
2

> P

1

>

The add method computes 1 + 1 in BigInteger world and comes up with
2. Notice that the value of p did not change. This is no surprise, because
BigIntegers are immutable.

To find out if a class makes immutable objects, look in the preface on its
page in the API guide. First you see the header on this page, then the family
tree. Then there is a horizontal rule, and you see the text

public class Biglnteger
extends Number
implements Comparable<BigInteger>

The phrase “extends Number” just means that the Number class is the parent
of BigInteger. We will learn what “implements” means when we deal with
interfaces; we do not need it now.

Next you see the preamble, which briefly describes the class. Here it says
“Immutable arbitrary—precision integers.” So, as with strings, you must orphan
what a variable points at to get the variable to point at anything new. Now let
us see exponentiation, multiplication, subtraction and division at work.

> import java.math.BigInteger;
> a = new BigInteger("1341121");
> BigInteger b = a.pow(5);
> a

1341121

> b

4338502129107268229778644529601

> BigInteger ¢ = b.multiply(new BigInteger("100"))
433850212910726822977864452960100

> Biglnteger d = a.subtract(new Biglnteger("1121"));
> d

1340000

> d.divide(new BigInteger("1000"))

1340

>

14

It would be convenient to have a way to convert a regular integer to a big integer.
There is a method

static BigInteger valueOf (long val)
To call this (static) method, the usage is
BigInteger.valueof (whateverIntegerYouWantConverted)

The BigInteger.valueOf () method is called a static factory method; it is a
“factory” that converts regular integers into their bigger brethren.

We now show an example or two. Be reminded of the need to use the equals
method when working with variables pointing at objects, so you do not get a
surprise.

import java.math.BigInteger;
p = BiglInteger.valueOf(3)

>
>
3
> q = new BigInteger("3")
3
>

p ==
false

> p.equals(q)
true

>

4 Recursion in Java

Java supports recursion, and subject to the new syntax you have learned, it
works nearly the same way. All of the pitfalls and benefits you learned about in
Python apply in Java. Let us write a factorial function using the BigInteger
class Recall the structure of the factorial function in Python.

def factorial(n):
return 1 if n <= 0 else n*factorial(n - 1)

Everything was so simple and snappy.

Now we have to convert this to Java using the operations provided by
BigInteger. We do have some tools at hand. BigInteger.valueOf() con-
verts regular integers into their bigger brethren. We also have to deal with the
.multiply syntax to multiply. Finally, we must remember, we are returning a
BigInteger. Bearing all those consideration in mind, you should get something
like this. If the ternary operators is not quite to your taste, use an if statement
instead. We have broken the big line here solely for typographical convenience.

15

import java.math.BigInteger;

public class Recursion

{
public BigInteger factorial(int n)
{
returnn > 0 7
factorial(n - 1) .multiply(BigInteger.valueOf(n)):
BigInteger.valueOf (1);
}
}

Now let us test our function.

> r = new Recursion();

> r.factorial(6)

720

> r.factorial (100)
933262154439441526816992388562667004907159682
643816214685929638952175999932299156089414639
761565182862536979208272237582511852109168640
00000000000000000000000

> r.factorial (1000)

40238726007709 ... (scads of digits) ...00000
>

Recursion can be used as a repetition mechanism. We add a second method
repeat to our class to character or string is passed it any specified integer
number of times to imitate Python’s string * int repeat mechanism. This
will serve as a nice example of method overloading. First let us work with
the String case. Let us call the String s and the integer n. If n <= 0, we
should return an empty string. Otherwise, let us glue a copy of s to the string
repeat(s, n - 1)

public String repeat(String s, int n)

{
String out = "";
if(n > 0)
{
out += s + repeat(s, n - 1);
}
return out;
¥

Now we get the character case with very little work.

16

public String repeat(char ch, int n)
{

return repeat("" + ch, n)

}

Now our repeat method will repeat a character or a string. We do not need
to worry about the character or string we need to repeat. Method overloading
makes sure the right method is called.

5 Looping in Java
We have already seen the while loop in Java. It works in a manner entirely

similar to Python’s while loop. For your convenience, here is a quick compari-
son

while predicate:

body0fLoop
while (predicate)
{

body0floop
}

It looks pretty much the same. All of the same warnings (beware of hanging
and spewing) apply for both languages. Note that the predicate of a while
loop is enclosed in parentheses.

Java also offers a second version of the while loop, the do-while loop. Such
a loop looks like this.

do
{
body0floop
}
while(predicate) ;

The body of the loop executes unconditionally the first time, then the predicate
is checked. What is important to realize is that the predicate is checked after
each execution of the body of the loop. When the predicate evaluates to false,
the loop’s execution ends. Almost always, you should prefer the while loop
over the do-while loop. When using this loop, take note of the semicolon; you
will get angry yellow if you omit it.

Java has two versions of the for loop. One behaves somewhat like a variant
of the while loop and comes to us from C/C++. The other is a definite loop
for iterating through a collection.

17

First let us look at the C/C++ for loop; its syntax is

for(initializer; test; between)
{
loopBody

This loop works as follows. The initializer runs once at when the loop is first
encountered. The initializer may contain variable declarations or initializations.
Any variable declared here has scope only in the loop.

The test is a predicate. Before each repetition of the loop, the test is run.
If the test fails (evaluates to false), the loop is done and control passes beyond
the end of the loop. If the test passes, the code represented by loopBody is
executed. The between code now executes. The test predicate is evaluated, if
it is true, the loopBody executes. This process continues until the test fails,
at which time the loop ends and control passes to the line of code immediately
beyond the loop. This loop is basically a modified while loop.

Java also has a for loop for collections that works similarly to Python’s for
loop. Observe that the loop variable k is an iterator, just as it is in Python’s for
loop. It has a look-but-don’t-touch relationship with the entries of the array,
just as Python does. It grants access but does not allow mutation. This works
for both class and primitive types.

import java.util.ArrayList;

> ArrayList<String> cats = new ArrayList<String> (O);
> cats.add("siamese")

true

> cats.add("javanese")

true

> cats.add("manx"

true

> for(String k : cats){System.out.println(k);}
siamese

javanese

manx

> for(String k : cats){k = "";}//Look, but don't touch!
> for(String k : cats){System.out.println(k);}
siamese

javanese

manx

18

6 Static and final

You have noticed that the static keyword appears sometimes in the API guide.
In Java, static means “shared.” Static portions of your class are shared by all
instances of the class. They must, therefore, be independent of any instance of
the class, or instance-invariant.

When you first instantiate a class in a program, the Java class loader first
sets up housekeeping. It loads the byte code for the class into RAM.

Before the constructor is called, any static items go in a special part of
memory that is visible to all instances of the class. Think of this portion of
memory as being a bulletin board visible to all instances of the class. You may
make static items public or private, as you see fit. Static items that are public
are visible outside and inside of the class.

When state variable or method is static, it can, and should, be called by
the class’s name. For instance, BigInteger.valueOf () is a static method that
converts any long into a BigInteger. Recall we called this method a static
factory method; it is static and behaves as a “factory” that accepts longs and
converts the to BigIntegers.

Two other familiar examples are the Math and Arrays classes. In the Math
class, recall you find a square-root by using Math.sqrt (), in Arrays, the static
method toString(T[]) creates a string representation of the array passed it.
All of Math’s and Arrays methods are static. Neither has a public constructor.
Both are called convenience or service classes that exist as containers for
related methods.

You can also have variables that are declared static. In the Math library,
there are Math.PI and Math.E. These variables are static. They are also final;
they are immutable variables. Variables anywhere in Java can be marked final;
this means you cannot reassign the variable once it is initialized. However, you
can call mutator methods on that datum and change the state of the object a
final variable points to. Since immutable objects and primitives lack mutator
methods, these are rendered constant by declaring them final.

Be aware that, in this context, finality is a property of variables and not
objects. What you cannot do is to make such a variable point at a different
object.

If you create static variables, you should also have a static block in your
class. Code inside this block is run when the class is first loaded. Use it to
static data members. In fact, it is a desirable postcondition of your static
block running that all static state variables are explicitly initialized. Remember
“Explicit is better than implicit”, quoth the Zen of Python. Now let us put
final and static to work.

The Minter class shown here gives each new instance an ID number, starting

19

with 1. The static variable nextID acts as a “well” from which ID numbers are
drawn. The IDNumber instance variable is marked final, so the ID number
cannot be changed throughout any given Minter’s lifetime.

public class Minter
{
private static int nextID;
final private int ID;
static
{
nextID = 1;
b
public Minter ()
{
ID = nextID;
nextID++;
b
public String toString()
{
return "Minter, ID = " + ID;

}

6.1 Etiquette Between Static and Non-Static Members

Since the Java class loader creates the static data for a class before any instance
of the class is created, there is a separation between static and non—static por-
tions of a class.

Non-static methods and state variables may access static portions of a class.
This works because the static portion of the class is created before any instance
of the class is created, so everything needed is in place. Outside of your class,
other classes may see and use the static portions of your class that are marked
public. These client programmers do not need to instantiate your class. They
can gain access to any static class member, be it a method or a state variable
by using the

ClassName.staticMember

construct.

Now consider the reverse case. Things in a class that are static must be
instance-invariant. This means you cannot access the state variables or non-
static methods of an object directly from a static method.

However, you can create an instance of your class and call non-static methods

20

on the instance. What you cannot do is have direct access to non-static data or
methods in a class.

The key to understanding why is to know that static data is shared by all
instances of the class. Hence, to be well-defined, static data must be instance—
invariant. Since your class methods can, and more often than not, do depend
on the state variables in your class, they in general are not instance—invariant.
Static methods and variables belong to the class as a whole, not any one instance.
This restriction will be enforced by the compiler. Even if a method does not
depend upon a class’s state, unless you declare it static, it is not static and
static methods may not call it.

To use any class method in the non-static portion of your class, you must
first instantiate the class and call the methods via that instance. We will see an
example this at work in the following subsection

6.2 How do I Make my Class Executable?

To make your class executable, add the following special method.
public static void main(Stringl[] args)

{
//yourEzecutableCode

To run your class, compile it. Select the interactions pane in the bottom window
and hit F2. You can also type

> java YourClassName

at the prompt. Do not put any extension on YourClassName.

If you are on a UNIX box, you can run a Java program by entering
$ java YourClassName

at the UNIX command line.

For a simple example, place this method in the Minter class we just studied.
public static void main(Stringl[] args)
{

Minter m = new Minter();
System.out.println(m);

21

Run the class and you will see it is now executable. Hitting the F2 button in
your class’s code window automatically causes the java command to be placed
at the prompt.

> java Minter
Minter, IDNumber = 1

Observe that we made a tacit call to a method of the class Minter. To use
the class, we had to create an instance m of Minter first. When we called
System.out.println, we made a tacit call to m.toString(). You cannot
make naked (no-instance) methods calls to non-static methods in main. You
can, however, see the private parts of instances of the class.

Really, it is best to think of main as being outside the class and just use
instance of your or other classes and use their (public) interface.

Finally, notice that main has an argument list with one argument, String[]
args. This argument is an array of Strings. This is how command-line argu-
ments are implemented in Java. We now show a class that demonstrates this
feature.

public class CommandLineDemo
{
public static void main(String[] args)
{
int num = args.length;
System.out.println("You entered " + num + " arguments.");
int count = 0;

for (String k: args)

{
System.out.println("args[" + count + "] = " + k);
count ++;

Now we shall run our program with some command-line arguments. You need
to type in the java command yourself rather than just hitting F2.

> java CommandLineDemo one two three
You entered 3 arguments.

args[0] = one

args[1] = two

args[2] = three

>

22

Even if you do not intend for your class to be executable, the main method is an
excellent place for putting test code for your class. Making your class executable
can save typing into the interactions pane. It is also necessary if you ever want
to distribute your application in an Java archive, which is an executable file.

6.3 Running Java at the UNIX Command Line

What you need to know is how to compile a program and how to run it, if it has
a main method at the command line. Let us use the CommandLineDemo.java
program we just created. To compile it, enter

$ javac CommandLineDemo. java

at the command line. If you list your files with 1s, you will see the files
CommandLineDemo. java and CommandLineDemo.class in your cwd. Any er-
ror messages generated by the compiler will be put to stderr, which by default,
is your terminal window. To run the program as before, use the java command
as follows: note that the .class extension is not used.

$ java CommandLineDemo one two three
You entered 3 arguments.
args[0] = one

args[1] = two
args[2] = three
$

You can edit Java programs in vi, which affords nice syntax coloring. If you
need a JDK, you can use the Oracle JDK by downloading it at the Oracle
Java site, or you can obtain the openjdk package to enable your box for Java
programming.

23

	Introduction
	Java Data Structures
	Goodies inside of java.util.Arrays
	Fixed Size? I'm finding this very confining!
	A Brief but Necessary Diversion: What is this Object object?
	And Now Back to the Matter at Hand

	Conditional Execution in Java
	Extended–Precision Integer Arithmetic in Java
	Recursion in Java
	Looping in Java
	Static and final
	Etiquette Between Static and Non-Static Members
	How do I Make my Class Executable?
	Running Java at the UNIX Command Line

