
Contents

1 Case Study: An Extended-Precision Fraction Class 1

1.1 A Brief Weltanschauung . 2

2 Start your Engines! 3

3 Making a Proper Constructor and toString() Method 3

4 A Static Factory Method 7

5 Creating an equals Method 9

6 Hello Mrs. Wormwood! Adding Arithmetic 10

7 The Role of static and final 13

8 Using Javadoc 17

8.1 Triggering Javadoc . 18

8.2 Documenting toString() and equals() 19

8.3 Putting in a Preamble and Documenting the Static Constants . . 20

8.4 Documenting Arithmetic . 21

8.5 The Complete Code . 23

1 Case Study: An Extended-Precision Fraction
Class

We have achieved several goals in the last chapter, the most important of which
are understanding what makes up a Java class and understanding the core Java
language so as to be Turing-complete.

To tie everything together, we will do a case study of creating a class called
BigFraction, which will work like the BigInteger class and provide many of
the same operations, except it will do exact fractional arithmetic. This class will
have a professional appearance, and an interface similar to that of BigInteger.

During this chapter, you will learn about javadoc; this allows you to create
an API page for your class that will have the same appearance as the page you
see on the web. When you are done with this chapter, you will have a class

1

suitable for others to use as clients who wish to perform extended-precision
rational arithmetic. The javadoc feature can be invoked at the UNIX command
line. It can also be created for you by DrJava.

1.1 A Brief Weltanschauung

Before we begin let us remind ourselves of some basic mathematical facts and
provide a rationale for what we are about to do. We are all familiar with the
natural (counting) numbers

N = {1, 2, 3, 4,}.

We can also start counting at zero because we are C family language geeks with

N0 = {0, 1, 2, 3,}.

The set of all integers (with signs) is often denoted by Z. Why the letter Z?
This comes from the German word zahlen, meaning “to count.”

The BigInteger class creates a computational environment for computing
in Z without danger of overflow, unless you really go bananas.

The rational numbers consist of all numbers that can be represented as a
ratio of integers; the symbol used for them is Q. The ‘Q’ is for “quotient.” So,

Q = {m/n : m ∈ Z, n ∈ N, n 6= 0}.

The BigFraction class will create an environment for computing inQ similar
to that which BigInteger provides for Z.

Not all real numbers (which we represent with double) are rational. It is a
well-known fact that

√
2 and the beloved constant π are not rational. In fact,

most of the time you take a square root, you will despoil the rationality of any
rational number you operate on. The only exception occurs when a fraction, in
lowest terms, has a perfect square in the nominator and denominator.

This explains why BigInteger’s powmethod accepts only integers. Moreover
it accepts only positive integers or 0 because a negative power of an integer is not
an integer, unless the integer happens to be ±1. As a result, Java becomes irate
and produces an abrasive run-time error if you attempt to compute a negative
power for an BigInteger. You will see that when we create a pow method for
our BigFractions it will only accept integers (any integer in fact), but not any
other kind of rational number.

We select this case study because it brings to the for a variety of important
design questions. When we are done, we will have a nice facility for computing
with fractions. You will get to see the development of a moderately sophisticated
class from scratch.

2

2 Start your Engines!

Let us begin by thinking about fractions. We know a fraction has two important
items reflecting its state: its numerator and its denominator. Fractions have
some slippery properties. For example, we know that

1

4
=

256

1024
.

The representation of a fraction in terms of numerator and denominator is not
unique.

An interesting collection of numbers is the harmonic numbers; they are
defined by

Hn =

n∑
k=1

1

k
, n ∈ N.

Let us show the first few harmonic numbers. It is easy to see that H1 = 1. We
have

H2 = 1 +
1

2
=

3

2
.

Next,

H3 = H2 +
1

3
=

3

2
+

1

3
=

11

6
.

Now let’s skip down to H10.

H10 =
7381

2520
.

One thing is clear: as we keep adding fractions, their numerators and denom-
inators have a propensity to keep getting larger. We know that the primitive
int and long types are not going to cut the mustard here because they will
overflow and produce false results.

We will therefore use BigInteger for the numerator and denominator of our
BigFractions. We should be able to compute H100 or even H1000.

3 Making a Proper Constructor and toString()
Method

When starting out to build a class, we begin by creating a suitable constructor.
Along the way, you will need a toString() method so you can see what you
are doing.

We begin with this crude attempt. We are mimicking our work on the Point
class we developed earlier.

3

import java.math.BigInteger;
public class BigFraction
{

private BigInteger num;
private BigInteger denom;
public BigFraction(BigInteger num, BigInteger denom)
{

this.num = num;
this.denom = denom;

}
}

It is easy to see that there will be problems. Suppose a client programmer
writes this code.

BigInteger a = BigInteger.valueOf(256);
BigInteger b = BigInteger.valueOf(1024);
BigFraction f = new BigFraction(a, b);

It seems ridiculous that this fraction should be stored as 256/1024 when it is in
fact 1/4. Hence, it seems we should keep our fractions reduced.

To reduce a fraction, you compute the greatest common divisor of the nu-
merator and denominator and divide it out of both. Notice that the BigInteger
class computes GCDs for you, so we can alter our constructor as follows.

public BigFraction(BigInteger num, BigInteger denom)
{

this.num = num;
this.denom = denom;
BigInteger d = num.gcd(denom);
num = num.divide(d);
denom = denom.divide(d);

}

Let us now see what this looks like.

jshell> import java.math.BigInteger;
jshell> BigInteger a = BigInteger.valueOf(256);
a ==> 256
jshell> BigInteger b = BigInteger.valueOf(1024);
a ==> 1024
jshell> BigFraction f = new BigFraction(a,b)
f ==> BigFraction@6ad20835
jshell> f

4

BigFraction@6ad20835
jshell>

Oops. The built-in toString() method is not doing such a great job. Let’s
override it so it make fractions that look like this: 45/17. Here is our revised
class.

import java.math.BigInteger;
public class BigFraction
{

private BigInteger num;
private BigInteger denom;
public BigFraction(BigInteger num, BigInteger denom)
{

this.num = num;
this.denom = denom;
BigInteger d = num.gcd(denom);
num = num.divide(d);
denom = denom.divide(d);

}

public String toString()
{

return String.format("%s/%s", num, denom);
}

}

Now we try our unreduced fraction and find things in a happy state.

> import java.math.BigInteger;
jshell> import java.math.BigInteger;
jshell> BigInteger a = BigInteger.valueOf(256);
a ==> 256
jshell> BigInteger b = BigInteger.valueOf(1024);
a ==> 1024
jshell> BigFraction f = new BigFraction(a,b)
f ==> 1/4
jshell> f
1/4

There is yet one more thing to do to button this up. This little session should
prove convincing.

jshell> b = new BigInteger.valueOf(-1024);
jshell> BigFraction f = new BigFraction(a,b);

5

f ==> 1/-4
jshell> f
1/-4

If we put the negative on the top, the toString() method will work nicely.
We also get the benefit that we can check fraction equality by just checking for
equality of numerator and denominator.

All we need do is to add something like this to the constructor.

if(denom < 0)
{

denom = -denom;
}

However, we are indulging here in illegal operations on BigIntegers. Looking
on the API page, we can see that there is a negate() method that returns
a copy of the BigInteger with its sign changed. Also, there is a compareTo
method. The expression

foo.compareTo(goo)

returns a negative integer if foo < goo, a positive integer if foo > goo and 0
if foo == goo. We integrate these features into our class and we now have

import java.math.BigInteger;
public class BigFraction
{

private BigInteger num;
private BigInteger denom;
public BigFraction(BigInteger num, BigInteger denom)
{

BigInteger d = num.gcd(denom);
num = num.divide(d);
denom = denom.divide(d);
if(denom.compareTo(BigInteger.ZERO) < 0)
{

num = num.negate();
denom = denom.negate();

}
this.num = num;
this.denom = denom;

}
public String toString()
{

return String.format("%s/%s", num, denom);

6

}
}

4 A Static Factory Method

Wouldn’t it be nice to be able to make a BigFraction with ordinary integers? In
fact, it would be a smart play to use the long type, since a long type argument
will happily accept an int, short, or byte. We will use this to call the main
constructor, so we do not have to repeat all of the heavy lifting it does.

To this end, we avail ourselves of the valueOf method for BigInteger to
make a valueOf method for BigFraction.

public static BigFraction valueOf(long num, long denom)
{

return new BigFraction(BigInteger.valueOf(num), BigInteger.valueOf(denom));
}

While we are here, let’s make an (obvious) default constructor.

public BigFraction()
{

this(BigInteger.ZERO,BigInteger.ONE);
}

Finally we shall send an ugly message to the woebegone client programmer
who tries to create a BigFraction with a zero denominator. Insert this line in
the main constructor, just after num and denom are initialized.

if(denom.equals(BigInteger.ZERO))
{

throw new IllegalArgumentException();
}

This will bring immediate program death to the miscreant client programmer
who calls it.

Here is our class with everything added to it.

import java.math.BigInteger;
public class BigFraction
{

private BigInteger num;

7

private BigInteger denom;
public BigFraction(BigInteger num, BigInteger denom)
{

if(denom.equals(BigInteger.ZERO))
throw new IllegalArgumentException();

BigInteger d = num.gcd(denom);
num = num.divide(d);
denom = denom.divide(d);
if(denom.compareTo(BigInteger.ZERO) < 0)
{

num = num.negate();
denom = denom.negate();

}
this.num = num;
this.denom = denom;

}
public BigFraction(long num, long denom)
{

this(BigInteger.valueOf(num), BigInteger.valueOf(denom));
}
public BigFraction()
{

this(BigInteger.ZERO,BigInteger.ONE);
}
public String toString()
{

return String.format("%s/%s", num, denom);
}

}

Finally, let’s take this all for a test-drive. First we look at our main “workhorse”
constructor.

jshell> import java.math.BigInteger;
jshell> BigInteger a = BigInteger.valueOf(1048576);
a ==> 1048576
jshell> BigInteger b = BigInteger.valueOf(7776);
b ==> 7776
jshell> BigFraction f = new BigFraction(a,b)
f ==> 32768/243
jshell> f
32768/243

Our static factory method makes this process less verbose.

8

jshell> BigFraction g = BigFraction.valueOf(1048576, 7776)
g ==> 32768/243
jshell> g
32768/243

Here we see our default constructor.

jshell> BigFraction z = new BigFraction()
z ==> 0/1
jshell> z
0/1

Finally we tempt and see death.

jshell> BigFraction rotten = BigFraction.valueOf(5,0);
| Exception java.lang.IllegalArgumentException
| at BigFraction.<init> (#2:36)
| at BigFraction.valueOf (#2:69)
| at (#3:1)

This exception object will immediately halt any program that is running and
that calls the static factory illegally; notice how it shows the path the exception
takes. This will do a nice job of flagging the error for the malefactor who
perpetrates it.

5 Creating an equals Method

This process is always the same. First do the species test. Then cast the Object
in the argument list to a BigFraction. Once this is done, creating equals is
easy, since all we need to is to compare equality of numerator and denominator.

public boolean equals(Object o)
{

if(! (o instanceof BigFraction))
return false;

BigFraction that = (BigFraction) o;
return num.equals(that.num) && denom.equals(that.denom);

}

Note that since we are comparing BigIntegers in the return statement, we
must use the equals method for BigInteger.

Now lets take this for a walk. We begin by making some instances.

9

jshell> BigFraction f = new BigFraction(1,3);
f ==> 1/3
jshell> BigFraction g = new BigFraction(1,2);
g ==> 1/2
jshell> BigFraction h = new BigFraction(2,4);
h ==> 1/2
jshell> f
1/3
jshell> g
1/2
jshell> h
1/2
>

Notice that none are equal under ==.

jshell> f == g
false
jshell> f == h
false
jshell> g == h
false
>

Next, we trot out our shiny new equals method.

jshell> f.equals(g)
false
jshell> f.equals(h)
false
jshell> g.equals(h)
true

Finally, we violate the species test and watch a false come right back at us as
it should.

> f.equals("platypus")
false
>

6 Hello Mrs. Wormwood! Adding Arithmetic

To as great an extent as possible, we shall imitate the interface that is presented
to us by the BigInteger class. We need to define four methods: add, subtract,

10

multiply, and divide. Each of these methods will take a BigFraction as an
argument, and will return a BigFraction. We begin with addition.

We learned from Mrs. Wormwood that

a

b
+
c

d
=
ad+ bc

bd
.

The header for our add method will be

public BigFraction add(BigFraction that)

Remember, since we are programming in BigFraction, we have a num and a
denom and we are num

denom.
We are going to add ourselves to that. Since that is a BigFraction has a num
and a denom, too. These are known as that.num and that.denom.

So, we will wind up doing this little arithmetic arabesque to provide us with
a framework for writing the actual code.

num
denom

+
that.num

that.denom
=

num*that.denom + denom*that.num
denom*that.denom

Let’s take this a piece at a time, beginning with the first term in the numerator
of the sum. We are not allowed to write

num*that.denom

We have to translate it into the language of BigInteger, which says we do the
following; we elect to store the result in the BigInteger term1.

BigInteger term1 = num.multiply(that.denom);

Now do the same thing with the second term.

BigInteger term2 = denom.multiply(that.num);

As a result, the numerator will be

term1.add(term2)

Now we deal with the denominator

BigInteger bottom = denom.multiply(that.denom);

11

Our entire fraction in these terms is

term1+ term2
bottom

.

So our return statement reads

return new BigFraction(term1.add(term2), bottom);

Assembling it all we have the completed add method.

public BigFraction add(BigFraction that)
{

BigInteger term1 = num.multiply(that.denom);
BigInteger term2 = denom.multiply(that.num);
BigInteger bottom = denom.multiply(that.denom);
return new BigFraction(term1.add(term2), bottom);

}

Let’s now do a little test.

> BigFraction f = new BigFraction(1,2)
> BigFraction g = new BigFraction(1,3)
> f.add(g)
5/6
>

Subtraction is easy, we just change an add into a subtract.

public BigFraction add(BigFraction that)
{

BigInteger term1 = num.multiply(that.denom);
BigInteger term2 = denom.multiply(that.num);
BigInteger bottom = denom.multiply(that.denom);
return new BigFraction(term1.subtract(term2), bottom);

}

Multiplication is done “straight across.”

public BigFraction multiply(BigFraction that)
{

BigInteger top = num.multiply(that.num);
BigInteger bottom = denom.multiply(that.denom);
return new BigFraction(top, bottom);

}

12

To divide, invert and multiply.

public BigFraction divide(BigFraction that)
{

BigInteger top = num.multiply(that.denom);
BigInteger bottom = denom.multiply(that.num);
return new BigFraction(top, bottom);

}

7 The Role of static and final

In keeping with the behavior of BigInteger we will make our BigFractions
immutable. You will notice that none of our methods we have created so far
allow changes in state.

To make this intent clear, we should mark the num and denom state variables
final. Since BigIntegers are immutable, this renders the state variables
constant. Our class creates immutable objects.

The BigInteger class has static constants ONE and ZERO. We add constants
like this to our class as follows. First we create the static objects ONE and ZERO.
We shall make them public.

public static final BigFraction ZERO;
public static final BigFraction ONE;

Place these before the declarations for the state variables in the class. Note:
these are not state variables, since they reflect a property of the class as a whole,
not the state of any particular object. To initialize them, create a static block.
You do so as follows.

static
{

ZERO = new BigFraction();
ONE = new BigFraction(1,1);

}

Clients of your class can now use BigFraction.ZERO to get 0 as a BigFraction
and BigFraction.ONE to get 1 as a BigFraction.

If you compile now, you will get errors because the constructor performs some
reassignments. We can reëngineer it as follows to get rid of the reassignments.

public BigFraction(BigInteger num, BigInteger denom)
{

13

if(denom.equals(BigInteger.ZERO))
throw new IllegalArgumentException();

BigInteger d = num.gcd(denom);
if(denom.compareTo(BigInteger.ZERO) < 0)
{

num = num.negate();
denom = denom.negate();

}
num = num.divide(d);
denom = denom.divide(d);

}

Now you should be glad you used this in the sibling constructors. No modifi-
cation of these is necessary.

You will notice that BigInteger has a static valueOf method that con-
verts longs to BigIntegers. We now make two static factory methods named
valueOf. One will take a long and promote it to a BigFraction. The other
will do this service for BigInteger.

public static BigFraction valueOf(long n)
{

return new BigFraction(n, 1);
}
public static BigFraction valueOf(BigInteger num)
{

return new BigFraction(num, BigInteger.ONE);
}

Here is the current appearance of the entire class.

import java.math.BigInteger;
public class BigFraction
{

public static final BigFraction ZERO;
public static final BigFraction ONE;
static
{

ZERO = new BigFraction();
ONE = new BigFraction(1,1);

}
private final BigInteger num;
private final BigInteger denom;
public BigFraction(BigInteger num, BigInteger denom)
{

this.num = num;

14

this.denom = denom;
if(denom.equals(BigInteger.ZERO))

throw new IllegalArgumentException();

BigInteger d = num.gcd(denom);
num = num.divide(d);
denom = denom.divide(d);
if(denom.compareTo(BigInteger.ZERO) < 0)
{

num = num.negate();
denom = denom.negate();

}
}
public static BigFraction valueOf(long num, long denom)
{

return new BigFraction(BigInteger.valueOf(num), BigInteger.valueOf(denom));
}
public BigFraction()
{

this(BigInteger.ZERO,BigInteger.ONE);
}
public String toString()
{

return String.format("%s/%s", num, denom);
}
public boolean equals(Object o)
{

if(! (o instanceof BigFraction))
return false;

BigFraction that = (BigFraction) o;
return num.equals(that.num) && denom.equals(that.denom);

}
public BigFraction add(BigFraction that)
{

BigInteger term1 = num.multiply(that.denom);
BigInteger term2 = denom.multiply(that.num);
BigInteger bottom = denom.multiply(that.denom);
return new BigFraction(term1.add(term2), bottom);

}
public BigFraction subtract(BigFraction that)
{

BigInteger term1 = num.multiply(that.denom);
BigInteger term2 = denom.multiply(that.num);
BigInteger bottom = denom.multiply(that.denom);
return new BigFraction(term1.subtract(term2), bottom);

}

15

public BigFraction multiply(BigFraction that)
{

BigInteger top = num.multiply(that.num);
BigInteger bottom = denom.multiply(that.denom);
return new BigFraction(top, bottom);

}
public BigFraction divide(BigFraction that)
{

BigInteger top = num.multiply(that.denom);
BigInteger bottom = denom.multiply(that.num);
return new BigFraction(top, bottom);

}
public static BigFraction valueOf(long n)
{

return new BigFraction(n, 1);
}
public static BigFraction valueOf(BigInteger num)
{

return new BigFraction(num, BigInteger.ONE);
}

}

Programming Exercises Add these methods to our existing BigFraction
class. These will make our BigFractions more resemble BigIntegers.

1. Write a publlic pow(int n) method that works for both positive and
negative integers

2. Write a method public BigInteger bigIntValue() that divides the de-
nominator into the numerator and which truncates towards zero.

3. Write the method public BigFraction abs() which returns the absolute
value of this BigFraction.

4. Write the method public BigFraction max(BigFraction) which returns
the larger of this BigFraction and that.

5. Write the method public BigFraction min(BigFraction) which returns
the smaller of this BigFraction and that.

6. Write a method public BigFraction negate() which returns a copy of
this BigFraction with its sign changed.

7. Write the method public int signum() which returns +1 if this BigFraction
is positive, -1 if it is negative and 0 if it is zero.

8. Write the method public int compareTo(BigFraction that) which re-
turns +1 if this BigFraction is larger than that, -1 if that is larger than
this BigFraction and 0 if this BigFraction equals that.

16

9. Add a static method public BigFraction harmonic(int n) which computes
the nth harmonic number. Throw an IllegalArgumentException if the
client passes an n that is negative.

10. When should division throw an IllegalArgumentException? Add this
feature to the class.

11. (Quite Challenging) Write the method public double doubleValue()
which returns a floating point value for this BigFraction. It should re-
turn Double.NEGATIVE_INFINITY or Double.POSITIVE_INFINITY where
appropriate. Test this very carefully; it is not easy to get it right.

8 Using Javadoc

The kind of class we have created represents a real extension of the Java language
that could be useful to others. Now we need to give our class an API page so it
has a professional appearance and so it can easily be used by others.

Javadoc comments are delimited by the starting token /** and the ending
token */. C/C++ style comments delimited by // and /* */ do
not appear on Javadoc pages.

You may use HTML markup in your javadoc where needed.

Use Javadoc to document your interface, the public portion of your class.
Do not javadoc private methods or state variables.

We will produce a full javadoc page for our BigFraction class. Let us begin
with the constructors.

/**
* This constructor stores a <code>BigFraction</code> in
* reduced form, with any negative factor appearing in
* the numerator.
* @param num the numerator of this <code>BigFraction</code>
* @param denom the denomnator of this <code>BigFraction</code>
* @throws IllegalArgumentException if a zero
* denominator is passed in
*/

public BigFraction(BigInteger num, BigInteger denom)
{

if(denom.equals(BigInteger.ZERO))
throw new IllegalArgumentException();

BigInteger d = num.gcd(denom);
if(denom.compareTo(BigInteger.ZERO) < 0)
{

17

num = num.negate();
denom = denom.negate();

}
this.num = num.divide(d);
this.denom = denom.divide(d);

}
/**
* This default constructor produces BigFraction 0/1.
*/

public BigFraction()
{

this(BigInteger.ZERO,BigInteger.ONE);
}

We see the special markup @param; this is the description given for each
parameter. The markup @throws warns the client that an exception can be
thrown by a method. You should always tell exactly what triggers the throwing
of an exception, as the penalty for an exception is program death.

8.1 Triggering Javadoc

First we give instructions for DrJava. Bring up the Preferences by hitting
control-; or by selecting the Preferences item from the bottom of the Edit menu.
Under Web browser put the path to your web browser. An example of a valid
path is

/usr/lib/firefox/firefox.sh

If you use Windoze, your path should begin with \tt C:\. If you use a Mac,
it will be in your Applications folder. You can browse for it by hitting the ...
button just to the right of the Web Browser text field.

The javadoc will be saved in a directory called doc that is created in same
directory as your class’s code. Allow the javadoc to be saved in that folder, or
files will “spray” all over your directory and make a big mess.

You can also javadoc at the command line with

unix> javadoc -d someDirectory BigFraction.java

The javadoc output will be placed in the directory someDirectory that
you specify. Make sure you use the -d option to avoid spraying. To see your
objet d’art, select File Open... in your browser and then navigate to the file
index.html in your doc directory and open it.

Note that yoiur program must compile before any javadoc will be generated.

18

I don’t see my javadoc! Make sure you are using the javadoc comment
tokens like so.

/**
* stuff
*/

and not regular multiline comment token that look like this.

/*
* stuff
*/

8.2 Documenting toString() and equals()

You will see a new markup device @return and overrides which tells you what
these methods override. You will notice if you look in the javadoc you generated,
that an overrides tag is already in the method detail.

/**
* @return a string representing this BigFraction of the form
* numerator/denominator.
*/

@Override
public String toString()
{

return "" + num + "/" + denom;
}

Note the use of the @Override construct just after our javadoc markup. This
is called an annotation, and the compiler checks that you have used the right
signature to actual override the method. If you don’t it will be flagged as a
compiler error. Always use this annotation if you are implementing the methods
public boolean equals(Object o) or public String toString().

Now we deal similarly with the equals method.

/**
* @param o an Object we are comparing this BigFraction to
* @return true iff this BigFraction and that are equal numerically.
* A value of <tt>false</tt> will be returned if the Object o is not
* a BigFraction.
*/

@Override
public boolean equals(Object o)

19

{
if(! (o instanceof BigFraction))

return false;
BigFraction that = (BigFraction) o;
return num.equals(that.num) && denom.equals(that.denom);

}

8.3 Putting in a Preamble and Documenting the Static
Constants

We show where to preamble goes, after the imports and before the head for the
class. Place a succinct description of your class here to let your clients know
what it does.

import java.math.BigInteger
/**
* This is a class of immutable arbitrary-precision
* rational numbers. BigFraction provides
* extended-precision fractional arithmetic
* operations, including + with the <code>add</code> method,
* - with the <code>subtract</code>
* method, * with the <code>multiply</code> method,
* and / with the <code>divide</code> method.
* It computes integer powers
* of fractions using the <code>pow</code> method.
*/

public class BigFraction
{

//code
}

Documenting the static constants is very straightforward.

/**
* This is the BigFraction constant 0, which is 0/1.
*/

public static final BigFraction ZERO;
/**
* This is the BigFraction constant 1, which is 1/1.
*/

public static final BigFraction ONE;

20

8.4 Documenting Arithmetic

Next we javadoc all of the arithmetic operations we have provided the client.
Notice how we add an exception if the client attempts to divide by zero.

/**
* This add BigFractions.
* @param that a BigFraction we are adding to this BigFraction
* @return <code>this</code> + <code>that</code>
*/

public BigFraction add(BigFraction that)
{

BigInteger term1 = num.multiply(that.denom);
BigInteger term2 = denom.multiply(that.num);
BigInteger bottom = denom.multiply(that.denom);
return new BigFraction(term1.add(term2), bottom);

}
/**
* This subtracts BigFractions.
* @param that a BigFraction we are adding to this BigFraction
* @return <code>this</code> - <code>that</code>
*/

public BigFraction subtract(BigFraction that)
{

BigInteger term1 = num.multiply(that.denom);
BigInteger term2 = denom.multiply(that.num);
BigInteger bottom = denom.multiply(that.denom);
return new BigFraction(term1.subtract(term2), bottom);

}
/**
* This multiplies BigFractions.
* @param that a BigFraction we are adding to this BigFraction
* @return <code>this</code> * <code>that</code>
*/

public BigFraction multiply(BigFraction that)
{

BigInteger top = num.multiply(that.num);
BigInteger bottom = denom.multiply(that.denom);
return new BigFraction(top, bottom);

}
/**
* This divides BigFractions.
* @param that a BigFraction we are adding to this BigFraction
* @return <code>this</code>/<code>that</code>
* @throws <code>IllegalArgumentException</code> if division by
* 0 is attempted.

21

*/
public BigFraction divide(BigFraction that)
{

if(that.equals(BigFraction.ZERO))
throw new IllegalArgumentException();

BigInteger top = num.multiply(that.denom);
BigInteger bottom = denom.multiply(that.num);
return new BigFraction(top, bottom);

}
/**
* This computes an integer power of BigFraction.
* @param n an integer power
* @return <code>this</code>^{<code>n</code>}
*/

public BigFraction pow(int n)
{

if(n > 0)
return new BigFraction(num.pow(n), denom.pow(n));

if(n == 0)
return new BigFraction(1,1);

else
{

n = -n; //strip sign
return new BigFraction(denom.pow(n), num.pow(n));

}
}

Finally, we will take care of our two valueOf methods.

/**
* @param n a long we wish to promote to a BigFraction.
* @return A BigFraction object wrapping n
*/

public static BigFraction valueOf(long n)
{

return new BigFraction(n, 1);
}
/**
* @param num a BigInteger we wish to promote to a BigFraction.
* @return A BigFraction object wrapping num
*/
public static BigFraction valueOf(BigInteger num)
{

return new BigFraction(num, BigInteger.ONE);
}

22

8.5 The Complete Code

Here it is! We have dropped in javadoc for our stateic factory method as well.

import java.math.BigInteger;
/**
* This is a class of immutable arbitrary-precision
* rational numbers. BigFraction provides
* extended-precision fractional arithmetic
* operations, including + with the <code>add</code> method,
* - with the <code>subtract</code>
* method, * with the <code>multiply</code> method,
* and / with the <code>divide</code> method.
* It computes integer powers
* of fractions using the <code>pow</code> method.
*/

public class BigFraction
{

/**
* This is the BigFraction constant 0, which is 0/1.
*/

public static final BigFraction ZERO;
/**
* This is the BigFraction constant 1, which is 1/1.
*/

public static final BigFraction ONE;

static
{

ZERO = new BigFraction();
ONE = new BigFraction(1,1);

}
private final BigInteger num;
private final BigInteger denom;
/**
* This constructor stores a <code>BigFraction</code> in
* reduced form, with any negative factor appearing in
* the numerator.
* @param num the numerator of the <code>BigFraction</code>
* @param denom the denominator of the <code>BigFraction</code>
* @throws <code>IllegalArgumentException</code> if the creation
* of a zero-denominator <code>BigFraction</code> is attempted.
*/

public BigFraction(BigInteger num, BigInteger denom)
{

if(denom.equals(BigInteger.ZERO))

23

throw new IllegalArgumentException();

BigInteger d = num.gcd(denom);
if(denom.compareTo(BigInteger.ZERO) < 0)
{

num = num.negate();
denom = denom.negate();

}
num = num.divide(d);
denom = denom.divide(d);

}
/**
* This default constructor produces BigFraction 0/1.
*/

public BigFraction()
{

this(BigInteger.ZERO,BigInteger.ONE);
}
/**
* @return a string representing this BigFraction of the form
* numerator/denominator.
*/

@Override
public String toString()
{

return String.format("%s/%s", num, denom);
}
/**
* @param o an Object we are comparing this BigFraction to
* @return true iff this BigFraction and that are equal numerically.
* A value of <code>false</code> will be returned if the Object o is not
* a BigFraction.
*/

@Override
public boolean equals(Object o)
{

if(! (o instanceof BigFraction))
return false;

BigFraction that = (BigFraction) o;
return num.equals(that.num) && denom.equals(that.denom);

}
/**
* This static factory produces num/denom as a BigFraction.
* @param num the numerator for this BigFraction
* @param denom the denominator for this BigFraction
* @return A <code>BigFraction</code> representing num/denom.

24

*/
public static BigFraction valueOf(long num, long denom)
{

return new BigFraction(BigInteger.valueOf(num),
BigInteger.valueOf(denom));

}
/**
* This add BigFractions.
* @param that a BigFraction we are adding to this BigFraction
* @return <code>this</code> + <code>that</code>
*/

public BigFraction add(BigFraction that)
{

BigInteger term1 = num.multiply(that.denom);
BigInteger term2 = denom.multiply(that.num);
BigInteger bottom = denom.multiply(that.denom);
return new BigFraction(term1.add(term2), bottom);

}
/**
* This subtracts BigFractions.
* @param that a BigFraction we are adding to this BigFraction
* @return <code>this</code> - <code>that</code>
*/

public BigFraction subtract(BigFraction that)
{

BigInteger term1 = num.multiply(that.denom);
BigInteger term2 = denom.multiply(that.num);
BigInteger bottom = denom.multiply(that.denom);
return new BigFraction(term1.subtract(term2), bottom);

}
/**
* This multiplies BigFractions.
* @param that a BigFraction we are adding to this BigFraction
* @return <code>this</code> * <code>that</code>
*/

public BigFraction multiply(BigFraction that)
{

BigInteger top = num.multiply(that.num);
BigInteger bottom = denom.multiply(that.denom);
return new BigFraction(top, bottom);

}
/**
* This divides BigFractions.
* @param that a BigFraction we are adding to this BigFraction
* @return <code>this</code>/<code>that</code>
* @throws <code>IllegalArgumentException</code> if division by

25

* 0 is attempted.
*/

public BigFraction divide(BigFraction that)
{

if(that.equals(BigFraction.ZERO))
throw new IllegalArgumentException();

BigInteger top = num.multiply(that.denom);
BigInteger bottom = denom.multiply(that.num);
return new BigFraction(top, bottom);

}
/**
* @param n a long we wish to promote to a BigFraction.
* @return A BigFraction object wrapping n
*/

public static BigFraction valueOf(long n)
{

return new BigFraction(n, 1);
}
/**
* @param num a BigInteger we wish to promote to a BigFraction.
* @return A BigFraction object wrapping num
*/

public static BigFraction valueOf(BigInteger num)
{

return new BigFraction(num, BigInteger.ONE);
}

}

Programming Exercises

1. Add javadoc for all of the methods you wrote in the previous set of pro-
gramming exercises.

2. Write a second class called TestBigFraction. Place a main method in
this class and have it test BigFraction and its methods. Place the classes
in the same directory.

26

	Case Study: An Extended-Precision Fraction Class
	A Brief Weltanschauung

	Start your Engines!
	Making a Proper Constructor and toString() Method
	A Static Factory Method
	Creating an equals Method
	Hello Mrs. Wormwood! Adding Arithmetic
	The Role of static and final
	Using Javadoc
	Triggering Javadoc
	Documenting toString() and equals()
	Putting in a Preamble and Documenting the Static Constants
	Documenting Arithmetic
	The Complete Code

