
Contents

0 What is ahead? 1

1 Improving Tricolor 1

2 Deconstructing this Arabesque 2

3 Hammertime 4

4 Using Inner Classes to Improve our Design 5

5 The Position Menu 9

6 Cruft Patrol! 11

7 The Product 12

8 Inner Classes in General 15

9 Adding and Deleting Components from a JFrame 16

0 What is ahead?

Java allows you to create classes inside of other classes and, even inside of
methods. Creating classes in these places gives us access to the outer class’s state
variables. We will find that this technique is very useful for GUI programming
and for creating our own data structures. While we are in this chapter, we learn
about Java’s graphics libraries and we will make our programs responsive to
mouse and keyboard activity.

1 Improving Tricolor

We are going to study the Tricolor application and improve it via the use of
inner classes.

Let us begin with the quit menu item. We have a whole external class in
our project that is used in one place: on the quit menu item. Can we get rid of
this complexity and place the code necessary to drive the menu item inside of
Tricolor.java?

1

The answer is, “yes.” What we will do is to create an anonymous inner class.
This is a class with no name. Go into the makeMenus method of Tricolor.java
and find the lines on which the quit item is created and its action listener
attached.

JMenuItem quitItem = new JMenuItem("Quit");

fileMenu.add(quitItem);

quitItem.addActionListener(new QuitListener());

We will now obviate the need for the external QuitListener class. Change the
code as follows.

JMenuItem quitItem = new JMenuItem("Quit");

fileMenu.add(quitItem);

quitItem.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

System.exit(0);

}

});

Then by add these two import statements to the beginning of the Tricolor.java.

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

Now close the QuitListener class, compile, and run. You will see that the quit
menu item is still working.

2 Deconstructing this Arabesque

You can see we have added some very mysterious code to quitItem. What does
it all mean. Notice what is inside of the parentheses.

new ActionListener(){

public void actionPerformed(ActionEvent e)

{

System.exit(0);

}

}

2

You see a call to new, so you know an object is being created. You also know
that ActionListener is an interface, so we can never create an instance of
ActionListener.

So, what is happening? This is an example of an anonymous inner class. It
is a class with no name. What you are saying here is, “make an instance of an
ActionListener with this actionPerformed method.” Since we never refer to
it after we add it to the quitItem menu item object, we never do need to name
it.

Anonymous inner classes provide a quick and easy way to attach actions to
menu item or buttons. This is especially true if the menu item performs an iso-
lated function, such as shutting an application down. The entire anonymous in-
ner class is an argument you are sending to the call quitItem.addActionListener()!

We have now obviated the need for the QuitListener class, which just adds
another name for a single-use object.

Take note of the way we formatted the code.

quitItem.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

System.exit(0);

}

});

Observe that the entire class declaration

new ActionListener()

{

public void actionPerformed(ActionEvent e)

{

currentColor = Color.red;

leftPanel.setColor(currentColor);

leftPanel.repaint();

}

}

is part of the argument in the call quitItem.addActionListener(....);. This
explains the seemingly strange construct \tt });. In one shot we have imple-
mented an object’s class and instantiated it as well.

We will refer to this funny closing object,\tt });, as “sad Santa.” If you
format this way, you should see Sad Santa as the last line of an anonymous
listener class. It is very important to be fanatically consistent in this matter. It
helps you avoid mysterious error messages that will vex and confuse.

3

3 Hammertime

Just because you have a shiny new hammer the entire world does not become a
nail. You might be tempted to do this. And if you succumb to this impulse, it
is going to work. You should go ahead and try it!

red = new ColorMenuItem(Color.RED, "red", this);

red.addActionListener(new ActionListener()

{

public void actionPerformed(ActionEvent e)

{

currentColor = Color.red;

currentPanel.setColor(currentColor);

currentPanel.repaint();

}

});

You can now repeat this procedure for the green and blue menus as follows.

green = new ColorMenuItem(Color.GREEN, "green", this);

green.addActionListener(new ActionListener()

{

public void actionPerformed(ActionEvent e)

{

currentColor = Color.green;

leftPanel.setColor(currentColor);

leftPanel.repaint();

}

});

blue = new ColorMenuItem(Color.BLUE, "blue", this);

blue.addActionListener(new ActionListener()

{

public void actionPerformed(ActionEvent e)

{

currentColor = Color.blue;

leftPanel.setColor(currentColor);

leftPanel.repaint();

}

});

But you can see this is the sort of violation of the 11th commandment that you
were earlier warned of.

4

4 Using Inner Classes to Improve our Design

The implementation we just showed works, but it exhibits duplicate and slack
code in the implementation of the action listeners. We begin to think: Can we
attach the action listener directly to the color menu item?. Let us return to our
original design for the ColorMenuitem We can convert it to being an inner class
to Tricolor and obviate the need for the Tricolor tc state variable. So we
begin with this.

import javax.swing.JMenuItem;

import java.awt.Color;

public class ColorMenuItem extends JMenuItem

{

private final Color color;

private final Tricolor tc;

public ColorMenuItem(Color _color, String _colorName, Tricolor _tc)

{

super(_colorName);

color = _color;

tc = _tc;

addActionListener(new ColorMenuItemListener(tc, color));

}

}

Now we trim this down to be an inner class. Both JMenuItem and Color are
imported so we can lop the imports off.

Since we are going to make this into an inner class of Tricolor, we will have
access to Tricolor’s state variables. As a result, we will get rid of the instance
of Tricolor that is a state variable inside of the class. We will also get rid of
the call to ColorMenuItemListener. This will be replaced by an inner class.

class ColorMenuItem extends JMenuItem

{

private final Color color;

public ColorMenuItem(Color _color, String _colorName)

{

super(_colorName);

color = _color;

addActionListener(); TODO: Write action listener!

}

}

Now let us pop this inside of Tricolor. We will need to do some adjustment
before this will compile. First, change the lines in makeMenus

5

colorMenu.add(new ColorMenuItem(Color.RED, "red", this));

colorMenu.add(new ColorMenuItem(Color.GREEN, "green", this));

colorMenu.add(new ColorMenuItem(Color.BLUE, "blue", this));

to

colorMenu.add(new ColorMenuItem(Color.RED, "red"));

colorMenu.add(new ColorMenuItem(Color.GREEN, "green"));

colorMenu.add(new ColorMenuItem(Color.BLUE, "blue"));

Also add these two imports.

import java.awt.event.ActionListener;

import java.awt.event.ActionEvent;

Our class now looks like this. You can close the QuitListener and ColorMenuItem

classes. These are now obviated.

import javax.swing.JFrame;

import javax.swing.JMenuBar;

import javax.swing.JMenu;

import javax.swing.JMenuItem;

import java.awt.Color;

import java.awt.Container;

import java.awt.GridLayout;

import java.awt.event.ActionListener;

import java.awt.event.ActionEvent;

public class Tricolor extends JFrame implements Runnable

{

ColorPanel leftPanel;

ColorPanel rightPanel;

ColorPanel middlePanel;

ColorPanel currentPanel;

public Tricolor()

{

super("Tricolor");

leftPanel = new ColorPanel();

middlePanel = new ColorPanel();

rightPanel = new ColorPanel();

currentPanel = leftPanel;

}

public ColorPanel getCurrentPanel()

6

{

return currentPanel;

}

public void setCurrentPanel(ColorPanel c)

{

currentPanel = c;

}

public void run()

{

setSize(500,500);

makeMenus();

//install Color Panels

Container c = getContentPane();

c.setLayout(new GridLayout(1,3));

c.add(leftPanel);

c.add(middlePanel);

c.add(rightPanel);

setVisible(true);

}

private void makeMenus()

{

//make and install menu bar

JMenuBar mbar = new JMenuBar();

setJMenuBar(mbar);

//File menu

JMenu fileMenu = new JMenu("File");

mbar.add(fileMenu);

JMenuItem quitItem = new JMenuItem("Quit");

fileMenu.add(quitItem);

quitItem.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

System.exit(0);

}

});

// Color Menu

JMenu colorMenu = new JMenu("Color");

mbar.add(colorMenu);

colorMenu.add(new ColorMenuItem(Color.RED, "red"));

colorMenu.add(new ColorMenuItem(Color.GREEN, "green"));

colorMenu.add(new ColorMenuItem(Color.BLUE, "blue"));

JMenu positionMenu = new JMenu("Position");

// Position Menu

mbar.add(positionMenu);

positionMenu.add(new PositionMenuItem(this, leftPanel, "left"));

positionMenu.add(new PositionMenuItem(this, middlePanel, "middle"));

7

positionMenu.add(new PositionMenuItem(this, rightPanel, "right"));

}

class ColorMenuItem extends JMenuItem

{

private final Color color;

public ColorMenuItem(Color _color, String _colorName)

{

super(_colorName);

color = _color;

//addActionListener(); //TODO: Write action listener!

}

}

public static void main(String[] args)

{

Tricolor t = new Tricolor();

javax.swing.SwingUtilities.invokeLater(t);

}

}

Now let us get the action listener working. We will attach this as an anony-
mous inner class inside of ColorMenuItem. Begin by creating a shell for it.

public ColorMenuItem(Color _color, String _colorName)

{

super(_colorName);

color = _color;

addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

}

});

}

Before doing anything else, compile and make sure you have all of your format-
ting ducks in a row. Now we write the body. What do we want to happen? The
current panel should be set to this menu item’s color. We should then update
the graphics. You now insert this code.

public ColorMenuItem(Color _color, String _colorName)

{

super(_colorName);

color = _color;

addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

currentPanel.setColor(color);

8

repaint();

}

});

}

Now you run this shiny new code and uh oh... we appear to have a repaint
error. What happened? Only the menu item is repainting itself! There are two
ways to handle this. One is to tell the current panel to repaint. Change

repaint();

to

currentPanel.repaint();

Another way is to tell the whole app to repaint. You do have access to the this

of an enclosing class. In this case just use

Tricolor.this.repaint();

We use the former solution, since it does the minimum work needed and accom-
plishes the goal. The color menu is now completely operational as it was before.
We have relieved our code of some complexity. Since the state variables of the
enclosing class are visible we can shorten our constructor and the complexity of
the code inside of the ColorMenuItem. We make the listener a totally anony-
mous class, and cut complexity there too. You no longer need the two external
classes that controlled the Color menu.

5 The Position Menu

Now we are ready to adjust the position menu. Here is the current state of
PositionMenuItem.java.

import javax.swing.JMenuItem;

public class PositionMenuItem extends JMenuItem

{

public final Tricolor tc;

public final ColorPanel attachedPanel;

public PositionMenuItem(Tricolor _tc, ColorPanel _attachedPanel,

String pos)

{

super(pos);

tc = _tc;

9

attachedPanel = _attachedPanel;

addActionListener(new PositionMenuItemListener(tc, attachedPanel));

}

}

We now slim this down to be an inner class.

public class PositionMenuItem extends JMenuItem

{

public final ColorPanel attachedPanel;

public PositionMenuItem(ColorPanel _attachedPanel, String pos)

{

super(pos);

attachedPanel = _attachedPanel;

//TODO: write new listener

//addActionListener(new PositionMenuItemListener(tc, attachedPanel));

}

}

Now go into makeMenus and change

positionMenu.add(new PositionMenuItem(this, leftPanel, "left"));

positionMenu.add(new PositionMenuItem(this, middlePanel, "middle"));

positionMenu.add(new PositionMenuItem(this, rightPanel, "right"));

to

positionMenu.add(new PositionMenuItem(leftPanel, "left"));

positionMenu.add(new PositionMenuItem(middlePanel, "middle"));

positionMenu.add(new PositionMenuItem(rightPanel, "right"));

Once you do this, the program will compile. You no longer need either external
class controlling the position menu. Close them.

Next we write the listener as an anonymous inner class. Begin by making
the shell.

class PositionMenuItem extends JMenuItem

{

public final ColorPanel attachedPanel;

public PositionMenuItem(ColorPanel _attachedPanel, String pos)

{

super(pos);

attachedPanel = _attachedPanel;

addActionListener(new ActionListener(){

10

public void actionPerformed(ActionEvent e)

{

}

});

}

}

What needs to happen when a new position is selected? We just change the
current panel. No graphical change is needed. So let’s add the code.

class PositionMenuItem extends JMenuItem

{

public final ColorPanel attachedPanel;

public PositionMenuItem(ColorPanel _attachedPanel, String pos)

{

super(pos);

attachedPanel = _attachedPanel;

addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

currentPanel = attachedPanel;

}

});

}

}

6 Cruft Patrol!

It seems some getter and setter methods in Tricolor are obviated. What can
we trim out? Comment these out.

public ColorPanel getCurrentPanel()

{

return currentPanel;

}

public void setCurrentPanel(ColorPanel c)

{

currentPanel = c;

}

Everything still works, so you can get rid of them.

11

7 The Product

We are left with two classes. Here is ColorPanel.java, which we never changed

import javax.swing.JPanel;

import java.awt.Color;

public class ColorPanel extends JPanel

{

private Color color;

public ColorPanel()

{

color = Color.white;

}

public void setColor(Color _color)

{

color = _color;

}

public Color getColor()

{

return color;

}

}

Here we show the newly slimmed-down Tricolor class in its entirety.

import javax.swing.JFrame;

import javax.swing.JMenuBar;

import javax.swing.JMenu;

import javax.swing.JMenuItem;

import java.awt.Color;

import java.awt.Container;

import java.awt.GridLayout;

import java.awt.event.ActionListener;

import java.awt.event.ActionEvent;

public class Tricolor extends JFrame implements Runnable

{

ColorPanel leftPanel;

ColorPanel rightPanel;

ColorPanel middlePanel;

ColorPanel currentPanel;

public Tricolor()

12

{

super("Tricolor");

leftPanel = new ColorPanel();

middlePanel = new ColorPanel();

rightPanel = new ColorPanel();

currentPanel = leftPanel;

}

public void run()

{

setSize(500,500);

makeMenus();

//install Color Panels

Container c = getContentPane();

c.setLayout(new GridLayout(1,3));

c.add(leftPanel);

c.add(middlePanel);

c.add(rightPanel);

setVisible(true);

}

private void makeMenus()

{

//make and install menu bar

JMenuBar mbar = new JMenuBar();

setJMenuBar(mbar);

//File menu

JMenu fileMenu = new JMenu("File");

mbar.add(fileMenu);

JMenuItem quitItem = new JMenuItem("Quit");

fileMenu.add(quitItem);

quitItem.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

System.exit(0);

}

});

// Color Menu

JMenu colorMenu = new JMenu("Color");

mbar.add(colorMenu);

colorMenu.add(new ColorMenuItem(Color.RED, "red"));

colorMenu.add(new ColorMenuItem(Color.GREEN, "green"));

colorMenu.add(new ColorMenuItem(Color.BLUE, "blue"));

JMenu positionMenu = new JMenu("Position");

// Position Menu

mbar.add(positionMenu);

positionMenu.add(new PositionMenuItem(leftPanel, "left"));

positionMenu.add(new PositionMenuItem(middlePanel, "middle"));

13

positionMenu.add(new PositionMenuItem(rightPanel, "right"));

}

class ColorMenuItem extends JMenuItem

{

private final Color color;

public ColorMenuItem(Color _color, String _colorName)

{

super(_colorName);

color = _color;

addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

currentPanel.setColor(color);

currentPanel.repaint();

}

});

}

}

class PositionMenuItem extends JMenuItem

{

public final ColorPanel attachedPanel;

public PositionMenuItem(ColorPanel _attachedPanel, String pos)

{

super(pos);

attachedPanel = _attachedPanel;

addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

currentPanel = attachedPanel;

}

});

}

}

public static void main(String[] args)

{

Tricolor t = new Tricolor();

javax.swing.SwingUtilities.invokeLater(t);

}

}

Programming Exercises

1. Add a new item to the color menu that sets the current panel to white.

14

2. Add a new panel and modify the position menu to accommodate it.

8 Inner Classes in General

We have inner classes in several guises during the study of the tricolor applica-
tion. Let us now summarize and consolidate what we have seen.

Inner classes can be static. Such classes have access to private methods and
variables of the enclosing class, but only via an instance of that class. In the
code, shown here, note the illegal and legal examples.

public class Outer

{

int x;

int y;

public Outer(...)

{

//constructor code

}

private foo(...)

{

//code

}

static class Inner

{

public void go()

{

x = 5 //Illegal

Outer o new Outer(...);

o.x = 5 //OK

foo(....); // Illegal

o.foo(...) //OK

}

}

}

Remember, non-static portions of a class have access to static portions, but
direct access (not via an instance) is not allowed. If you are declaring an inner
class static you should closely consider making it a separate class, unless it
relieves a lot of complexity.

However, making an inner class static defeats the purpose of its inner-ness:
access to the enclosing class’s state variables. If you have a class that you would
like to make innner and static, here is a better way to deal with it.

15

public class Outer

{

int x;

int y;

public Outer(...)

{

//constructor code

}

private foo(...)

{

//code

}

}

static class Inner

{

public void go()

{

x = 5 //Illegal

Outer o new Outer(...);

o.x = 5 //OK

foo(....); // Illegal

o.foo(...) //OK

}

}

All you are doing here is making it a non-public class within the same file. Such
a class is not visible outside of the file.

This is in contrast to the non-static inner classes we used to control the
menus. These were created so as to have access to the state variables of the
enclosing outer class. We created the named inner classes PositionMenuItem

and ColorMenuItem.

The anonymous class we created as an event handler for quitItem is an ex-
ample of a local class, since it is created inside of a method of the enclosing class.
Local classes do not have access to the local variables of their enclosing method,
unless the variable is declared final. Accessing a local non-final variable is a
compiler error.

We will return to topic of inner classes when we discuss Java collections;
inner classes can play an important role in the creation of data structures.

9 Adding and Deleting Components from a JFrame

We will show a program that adds and removes buttons from a window “on the
fly.” Begin by creating a graphical shell.

16

import javax.swing.JFrame;

public class Adder extends JFrame implements Runnable

{

public Adder()

{

super("Add and Remove Buttons Demo");

}

public void run()

{

setSize(600,600);

setDefaultCloseOperation(EXIT_ON_CLOSE);

setVisible(true);

}

public static void main(String[] args)

{

Adder a = new Adder();

javax.swing.SwingUtilities.invokeLater(a);

}

}

Run and compile this; the result is an empty window with a title in the title
bar specified by the constructor.

Next, on the top of the window, we will add buttons named "Add" and
"Remove". To do this we will take take the following steps.

1. Make a JPanel with a 1 row 2 column grid layout.

2. Add the two buttons to it

3. Add it to the north side of the content pane using the BorderLayout static
constant NORTH.

We modify the run() method as follows.

public void run()

{

setSize(600,600);

setDefaultCloseOperation(EXIT_ON_CLOSE);

JPanel topPanel = new JPanel(new GridLayout(1,2));

JButton addButton = new JButton("Add");

topPanel.add(addButton);

JButton removeButton = new JButton("Remove");

topPanel.add(removeButton);

getContentPane().add(BorderLayout.NORTH, topPanel);

setVisible(true);

}

17

Do not neglect to add these imports.

import javax.swing.JButton;

import javax.swing.JPanel;

import java.awt.BorderLayout;

import java.awt.GridLayout;

You will see that the add and remove buttons now appear at the top of the
content pane.

Next, we shall make an inner class that extends JPanel and which overrides
its paintCompnent method. We will put at 10 × 10 grid layout in this panel.

Here it is. Do not forget to import java.awt.Graphics.

class ButtonPanel extends JPanel

{

public ButtonPanel()

{

super(new GridLayout(10,10));

}

@Override

public void paintComponent(Graphics g)

{

super.paintComponent(g);

}

}

This is the panel in which we will keep our buttons. Let’s make an array list
of buttons and make it a state variable. We will also make the button panel a
state variable and add it to the window. We will initialize it in the constructor.
Add this to your the top of the class

private ArrayList<JButton> buttons;

private ButtonPanel bp;

Inside the constructor add

buttons = new ArrayList<JButton>();

bp = new ButtonPanel();

To your imports add

import java.util.ArrayList;

18

Now let us add code to cause pushing the Add button to addd buttons to
the array list buttons. We do this by creating an action listener and attaching
it to addButton in the run method as follows. Note the use of the if statement
to prevent overpopulation.

addButton.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

int n = buttons.size();

if(n < 100)

{

buttons.add(new JButton("" + buttons.size()));

repaint();

}

}

});

If you hit the add button, you will not see any buttons added to the screen.
Stick in this line of code to see the listener is working.

System.out.printf("buttons.size() = %s\n", buttons.size());

Hit the add button and see this in the console.

buttons.size() = 1

buttons.size() = 2

buttons.size() = 3

buttons.size() = 4

buttons.size() = 5

buttons.size() = 6

The array list is being populated. However, we are not seeing the buttons appear
on in the lower part of the console. Let us get them in using the repaint()

method. Before proceeding, delete the print line you just inserted. Now we are
going to test this out. Run the app and hit the add button three times. You will
see nothing has happened. Now maximize or resize the window. That triggers
a repaint. You will see this.

19

Now hit the add button five more times. You will see no changes. Then
trigger a repaint by resizing or maximizing. You will then see what you expect,
which is this.

20

The window does not behave as expected. You have to trigger a repaint to see
the added buttons. We don’t want this. Notice that containers are smart, if
you add the same widget several times, it will only appear once.

Next, let us try to remove the last button we put in. Add this listener. Note
the use of the if statement to prevent a “blood from a turnip” situation that
could cause a nasty exception.

removeButton.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

int n = buttons.size();

if(n > 0)

{

buttons.remove(n - 1);

21

repaint();

}

}

});

Now run the app and click the add button five times. Resize or maximize the
window. The five buttons then suddenly appear. Now click the remove button
once and resize. You will see this.

It is whacko and it is not what we expect. What is the remedy for resetting the
components in a JPanel? Modify your paintComponent as follows.

@Override

public void paintComponent(Graphics g)

{

super.paintComponent(g);

removeAll();

for(JButton b: buttons)

{

22

add(b);

}

revalidate();

}

This evicts all items from the window, adds back in the ones that belong, and
then revalidate() ensures that the components themselves refresh. This goes
deeper than just repainting. Your add and remove features now work as ex-
pected. Now keep clicking until the whole window fills up with buttons.

23

	What is ahead?
	Improving Tricolor
	Deconstructing this Arabesque
	Hammertime
	Using Inner Classes to Improve our Design
	The Position Menu
	Cruft Patrol!
	The Product
	Inner Classes in General
	Adding and Deleting Components from a JFrame

