
Programming in Java

John M. Morrison

March 8, 2013

2

Contents

0 Getting Started 11

0.0 Introduction . 11

0.1 Getting a Java Development Kit 11

0.2 Getting DrJava . 12

0.3 What the heck is tools.jar? . 14

1 Introducing Java 17

1.0 How does Java Work on a Mechanical Level? 17

1.0.1 Customizing DrJava . 18

1.1 Python Classes and Objects . 19

1.2 Java Classes and Objects . 22

1.3 Java’s Integer Types . 27

1.3.1 Some Interaction Pane Nuances 28

1.3.2 Using Java integer types in Java Code 29

1.4 The Rest of Java’s Primitive Types 34

1.4.1 The boolean Type . 35

1.4.2 Floating–Point Types . 36

1.4.3 The char type . 36

1.5 More Java Class Examples . 37

2 Java Objects 41

2.0 Java Object Types . 41

2.1 Java Strings as a Model for Java Objects 41

3

4 CONTENTS

2.1.1 But is there More? . 43

2.2 Primitive vs. Object: A Case of equals Rights 46

2.2.1 Aliasing . 48

2.3 More Java String Methods . 49

2.4 Java Classes Know Things: State 50

2.4.1 Quick! Call the OBGYN! 52

2.4.2 Method and Constructor Overloading 53

2.4.3 Get a load of this . 54

2.4.4 Now Let Us Make this Class DO Something 55

2.4.5 Who am I? . 57

2.4.6 Mutator Methods . 58

2.5 The Scope of Java Variables . 60

2.6 The Object-Oriented Weltanschauung 64

2.6.1 Procedural Programming 64

2.6.2 Object–Oriented Programming 65

3 Translating Python to Java 69

3.0 Introduction . 69

3.1 Java Data Structures . 69

3.1.1 Goodies inside of java.util.Arrays 71

3.1.2 Fixed Size? I’m finding this very confining! 71

3.1.3 A Brief but Necessary Diversion: What is this Object

object? . 72

3.1.4 And Now Back to the Matter at Hand 74

3.2 Conditional Execution in Java . 77

3.3 Extended–Precision Integer Arithmetic in Java 79

3.4 Recursion in Java . 82

3.5 Looping in Java . 84

3.6 Static and final . 85

3.6.1 Etiquette Between Static and Non-Static Members 87

3.6.2 How do I Make my Class Executable? 88

CONTENTS 5

3.7 The Wrapper Classes . 89

3.7.1 Autoboxing and Autounboxing 90

3.8 A Caveat . 91

3.9 Case Study: An Extended-Precision Fraction Class 92

3.9.1 Making a Proper Constructor and toString() Method . 93

3.10 Overloading the Constructor . 96

3.11 Creating an equals Method . 99

3.12 Hello Mrs. Wormwood! Adding Arithmetic 100

3.13 The Role of static and final 103

4 The Big Fraction Case Study 109

4.0 Case Study: An Extended-Precision Fraction Class 109

4.0.1 A Brief Weltanschauung 109

4.1 Start your Engines! . 110

4.2 Making a Proper Constructor and toString() Method 111

4.3 Overloading the Constructor . 114

4.4 Creating an equals Method . 116

4.5 Hello Mrs. Wormwood! Adding Arithmetic 118

4.6 The Role of static and final 120

4.7 Using Javadoc . 125

4.7.1 Triggering Javadoc . 126

4.7.2 Documenting toString() and equals() 127

4.7.3 Putting in a Preamble and Documenting the Static Con-
stants . 128

4.7.4 Documenting Arithmetic 129

4.7.5 The Complete Code . 131

5 Interfaces, Inheritance and Java GUIs 137

5.0 What is ahead? . 137

5.1 A Short GUI Program . 137

5.2 Inheritance . 140

5.2.1 Polymorphism and Delegation 144

6 CONTENTS

5.2.2 Understanding More of the API Guide 145

5.2.3 Deprecated Can’t be Good 146

5.2.4 Why Not Have Multiple Inheritance? 146

5.2.5 A C++ Interlude . 146

5.3 Examining Final . 147

5.4 Back to the ’70’s with Cheesy Paneling, or I Can’t Stand it, Call
the Cops! . 148

5.4.1 Recursion is our Friend 151

5.5 A Framework for our GUI Programs 152

5.6 Creating a Complex View . 154

5.7 Interfaces . 160

5.7.1 The API Guide, Again . 162

5.8 Making a JButton live with ActionListener 163

5.9 Inheritance and Graphics . 164

5.10 Abstract Classes . 166

6 The Tricolor Case Study 171

6.0 Introduction . 171

6.1 Building the View for Tricolor . 171

6.2 Our Panels Need to Know their Colors 172

6.3 Inserting ColorPanels into the Tricolor App 173

6.4 Le Carte . 174

6.5 It’s time to build the controller! 176

6.6 The Color Menu and the Controller 177

6.7 The Position Menu and Its Controller 182

6.8 All Code Shown . 184

6.8.1 Tricolor.java . 184

6.8.2 ColorPanel.java . 186

6.8.3 QuitListener.java . 187

6.8.4 ColorMenuItem.java . 187

6.8.5 ColorMenuItemListener.java 188

CONTENTS 7

6.8.6 PositionMenuItem.java . 188

6.8.7 PositionMenuItemListener.java 189

7 Inner Classes, Anonymous Classes and Java GUIs 191

7.0 What is ahead? . 191

7.1 Improving Tricolor . 191

7.2 Deconstructing this Arabesque 192

7.3 Hammertime . 193

7.4 Using Inner Classes to Improve our Design 194

7.5 The Position Menu . 199

7.6 Cruft Patrol! . 201

7.7 The Product . 201

7.8 Inner Classes in General . 204

7.9 Adding and Deleting Components from a JFrame 206

8 Exception Handling 213

8.0 Introduction . 213

8.1 The Throwable Subtree . 213

8.2 Checked and Run-Time Exceptions 215

8.2.1 Catching It . 216

8.3 A Simple Case Study . 216

8.4 All Code Shown . 222

8.5 Exception Handling, In General 224

8.5.1 Can you have several catch blocks? 224

8.5.2 The Bucket Principle . 225

8.6 Mr. Truman, We Must Pass the Buck! 226

8.6.1 Must I? . 227

8.7 Can I Throw an Exception? . 228

8.7.1 Can I make my own exceptions? 229

8.8 Summary . 230

9 Text File IO 231

8 CONTENTS

9.0 Introduction . 231

9.1 The File Class and Paths . 231

9.2 Constructors and Methods . 233

9.3 A Simple Case Study: Copying a File 234

9.3.1 A Programming Idiom . 236

9.3.2 Buffered FileIO . 238

9.4 Opening a File in a GUI Window 241

9.4.1 Designing the Application 242

9.5 Swing’s ImageIO Class . 245

10 The NitPad Case Study 249

10.0 Case Study: NitPad: A Text Editor 249

10.0.1 Laying out Menus . 250

10.0.2 Getting a File to Save via Menus 253

10.0.3 Is the Window Saved? . 259

10.0.4 Getting Save and Save As to Work 261

10.0.5 Getting the File Menu in Order 263

11 The UniDraw Case Study and Serialization 267

11.0 Introduction . 267

11.1 Representing Curves . 267

11.2 Getting Started on the Application 269

11.3 Deciding State in the Application 272

11.4 Getting the Curves to Draw: Getting Curve.java ready 276

11.5 Getting the Curves to draw: Enabling the Panel 278

11.6 Creating and Enabling the Color Menus 281

11.7 Consructing the Width Menu . 284

11.8 Graphics2D . 286

11.9 FileIO for Objects and Serialization 297

11.10Making the File Menu . 302

12 Collections: from the Inside 305

CONTENTS 9

12.0 Data Strucures . 305

12.1 What is a Stack? . 306

12.2 The Link Class . 306

12.3 The Stack Interface . 308

12.4 Implementing the Link-Based Stack 309

12.5 Iteraor and Iterable in the Link-Based Stack 314

12.6 An Array Based Stack . 319

12.7 Some Perspective . 327

12.8 A Roundup of Basic Facts about Generics 327

12.8.1 Type Erasure . 329

12.9 Inheritance and Generics . 331

12.10Programming Project: A Linked List 334

12.11Programming Project: An Array-Based List 338

10 CONTENTS

Chapter 0

Getting Started

0.0 Introduction

In this chapter you will learn how to get Java up and running, and understand
how compile a program. This chapter will deal purely with nitty-gritty me-
chanical matters. Getting these out of the way will pave the path for the more
interesting matters awaiting us in Chapter 1.

Let us begin by getting Java running on your machine. You will need to
connect your box to the Internet or you will need to write certain materials to
a CD or DVD so they may be installed on your box.

0.1 Getting a Java Development Kit

To build Java programs on your box, you will need a Java Development Kit.
This piece of software is available for all major computing platforms. We will
step through the process for the Windoze, Mac and Linux platforms.

• Windoze Go to http://www.oracle.com/technetwork/java/javase/

downloads/index.html. and you can get the most current JDK. Begin
by hitting the “Download JDK” button. You will be asked the platform
you are using. Agree to the license agreement and hit Continue. You will
need to know if you are runnig 32 or 64 bit windoze. You will download
a file something like jdk-6u24-windows-586.exe. This name may vary
whether you are using 64 bit or 32 bit windows. The number after the
jdk- is version number.
When the download is done, double–click on the download’s icon to launch
it. A Windoze install shield will come up. Agree to the license agreement

11

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

12 CHAPTER 0. GETTING STARTED

and click through the boxes to do the install. When you finish, reboot.
Your machine is now fully Java-enabled.

• Mac Macs come with the JDK installed.

• Linux In Ubuntu, You will need openjdk or sun-javaX-jdk, where X is
the version number. You will need to get into the extended repositories for
Ubuntu to get the package sun-java6. You should not have to reboot when
this process is complete. You can also obtain the binaries from Oracle.
All major distributions of Linux will have repositories will also have JDK
binaries.

If you are building a CD Place the JDK installer in a folder you will later
copy to the CD. Go to the DrJava site, and download the DrJava documentation
and the DrJava App for your platform and the JAR file. Place these on your
CD so you can finalize it and get it ready for your (offline) machine to read. All
of these items are freely available for you to use and to share with your friends,
colleagues and classmates.

If you are going to work offline, you should also download the Java API
documentation and install it on your machine. This documentation is a free
“Encyclopaedia of Java” that will be extremely helpful.

0.2 Getting DrJava

We will use the DrJava integrated development environment (IDE) in this book.
Its unique features will allow us to approach the language correctly and coher-
ently. It represents an ideal compromise between ease of use and powerful
features for beginning–to–intermediate Java programmers. It has an interactive
mode similar that of Python that allows you to “talk” to Java interactively. We
will make a lot of use of this feature. You can obtain DrJava from

http://www.drjava.org

This site has complete instructions on downloading and configuring DrJava,
including how to download and install the Java development kit. Take a little
time to browse this very useful documentation.

If you are a Windoze or Mac user, download the App. On LINUX machines,
get the .jar file. This file is fairly small; it is a few megabytes.

To launch DrJava on a Mac or in Windoze, double-click on its icon.

In Linux, open a terminal navigate to the directory containing DrJava.
Change its name to drjava.jar (for convenience) and enter

$ java -jar drjava.jar

0.2. GETTING DRJAVA 13

at the UNIX command line. In a few seconds, the DrJava window will appear
on the screen. If you are asked to locate tools.jar, skip to the next section
immediately and follow the instructions there.

The DrJava window is divided into three portions. On the bottom you
will see a tabbed window with tabs named Interactions, Console, and Compiler
Output. Click on the interactions tab. On top there is a skinny window on the
left that will contain the text

(Untitled)

and the big window on the right that is the code window; you will enter your
Java code in the code window. Enter the following text in the code window

public class Foo

{

}

DrJava has a toolbar underneath its menu bar. Most things you need to do
in DrJava can be run from either. To run the powerful program we just created,
you can do any of the following.

• Hit the F5 button on your keyboard.

• Hit the Compile button in the toolbar.

• Click on the Tools menu and select the Compile All Documents or Compile
This Document item.

You may be asked to locate your tools.jar file at this time. If so, skip to the
next section, do that, then return here.

You will be prompted to save your file. Java requires you name it Foo.java;
the IDE will make this the default choice. Save your program. It is a good idea
for you to make a directory to hold your Java programs and save it there.

Click on the Compiler Output tab on the bottom window. You will see the
reassuring text

Compilation Completed

Here is what you will see.

14 CHAPTER 0. GETTING STARTED

As advertised, you can see the file window on the left. It wll display all of
the files you are currently editing. You can switch between files by clicking on
the file names. The big window is the code window. You can obtain the line
numbers by folling the directions in the next chapter. If you are impaitent, click
control-; and see the preferences. There is a check box for show line numbers.
At the bottom you see a triple-tabbed window on the left. It offers you a choice
of the interactions pane, Console (stdout), Compiler output, or if you have
clicked on Find/Replace, that shows up too, as has happened here.

0.3 What the heck is tools.jar?

When you first use DrJava, you may be asked to locate the tools.jar file in
your Java development kit. The instructions on the DrJava site will help you
locate this in Windoze. Owing to the poor search features on Windoze, we
cannot recommend you search for this file. You can easily find tools.jar file
on a Mac; just search for it in Finder.

In LINUX, you can find the file using locate. Before you do this enter

$ sudo updatedb

to update the index of your hard drive. You should do this periodically as a
matter of maintenance on your UNIX box to make searching easy. If you have
never done this, it may take a few minutes for this procedure to execute. Then
type

0.3. WHAT THE HECK IS TOOLS.JAR? 15

$ locate tools.jar

at the command line. Once you know the path to your tools.jar file, navigate
to it and DrJava will be ready to roll.

If the sample program shown in the last section compiles for you, the goal of
this chapter is met. We will turn to actually creating programs that do useful
stuff in the next chapter.

Exercise Open the Dr. Java documentation and look through it. Perform
some customization you might want such as font size (this is important for
teachers who use their PC attached to a projector), background color, or colors
in general.

16 CHAPTER 0. GETTING STARTED

Chapter 1

Introducing Java

1.0 How does Java Work on a Mechanical Level?

We will begin by looking at the mechanics of producing a program. We will then
sketch a crude version of what actally happens during the process and refine it
as we go along. Here is a simplified life-cycle for a Java program.

1. Edit You begin the cycle by entering code in the code window and
saving it. Each file of Java will have a public class in it. The class
is the fundamental unit of Java code; all of your Java programs will be
organized into classes. This classes are similar to those in Python; later
we will compare them.
The name of the class must match the name of the file; otherwise you will
get a nastygram from the compiler. As you saw in the example at the
end of the last section, the file containing public class Foo must be be
named Foo.java; failure to adhere to this convention will be punished by
the compiler.
Deliberately trigger this error by changing the name of your class from
Foo to something else. Hit F5; your new class name will be highlighted
in angry yellow. The compiler enforces this convention. An optional but
nearly universal convention is to capitalize class names. You should adhere
to this rule in the name of wise consistency. This is done by other Java
programmers; uncapitlized class names just confuse, annoy and vex others.

2. Compile Java is an example of a high–level language. A complex program
called a compiler converts your program into an executable form.
If your program contains syntactical errors that make it unintelligible to
the compiler, the compilation will abort. When this happens, nothing
executes and no executable file is generated. In contrast, in the Python
language, the program stops running when an syntactical error is encoun-

17

18 CHAPTER 1. INTRODUCING JAVA

tered; in Java the program does not run at all unless it compiles success-
fully. There is no compile time in Python.
If your program does not compile, you will get one or more error messages.
You can click on the Compiler Output tab of the bottom window to see
these. You will see “angry yellow” in the code window at the scene of the
crime. You will need to re–edit your code to stamp out these errors before
it will compile.
Java compiles programs in the machine language of the Java Virtual Ma-
chine; this machine is a virtual computer that is built in software. Its
machine language is called Java byte code. In the Foo.java example, suc-
cessful compilation yields a file Foo.class; this file consists of Java byte
code. Your JVM takes this byte code and converts it into machine lan-
guage for your particular platform, and your program will run. Java is not
the only language that compiles to the JVM. Others include Clojure, a
Lisp dialect, Processing, an animation language created in the MIT media
lab, and Groovy, a scripting language. There is even a JVM implementa-
tion of Python called Jython.

3. Run If your compilation succeeds, you will be able to run your program.
For now, we will run our programs in the interactions pane. You can see
the interactions pane by clicking on the Interactions tab in the bottom
window. You will run your program and see if it works as specified. If
not... back to the step Edit. You can have errors at run time, too. These
errors result in an “exploding heart;” these ghastly things are nasty error
messages that are printed in dark red in the compiler output window. You
can also have logic errors in your program; in this case, the program will
reveal some unexpected behavior you did not want.

You will often hear the terms “compile time” and “run time” used. These
are self-explanatory. Certain events happen when your program compiles, these
are said to be compile time events. Others happen at run time. These terms
will often be used to describe errors.

1.0.1 Customizing DrJava

There are several things you can do to make DrJava easier to use. Choose the
Edit menu and select Preferences. Under Display Options, you can set the font
size. Choose a size that is easy for you to read. We strongly recommend a
Monospaced font.

Go to the Colors under Display Options. Make your background color
0xFFFFCC, or red: 255, green: 255, blue 208. You can do this by clicking
on the RGB tab. This color background is much easier on your eyes than the
conventional white. The rest of the defaults are OK. Go under Miscellaneous.
We recommend indent level: 4. Go into Display Options and check “Show all
Line Numbers.” The compiler specifies errors by line number, so having them

1.1. PYTHON CLASSES AND OBJECTS 19

out is convenient. When you are done, hit the Apply button and close the pref-
erence window. You should adjust the font if you find it too large or small. We
strongly suggest you use a monospace font; it makes programs easier to look at
and it also will match the appearance of code examples in this book.

Next, we take a brief tour of Python classes.

1.1 Python Classes and Objects

Python classes have a very simple structure; we will take a quick look at these
before wading into Java classes. You can create a Python class with two lines
of code.

class Simple(object):

pass

A class is a blueprint for creating objects; this principle works the same in
Python and Java. Making an object from this class is . . . simple. Just do this.

>>> class Simple(object):

... pass

...

>>> s = Simple()

>>> t = Simple()

>>>

We have created two objects s and t that are instances of this class.

We have learned that objects have state, identity and behavior. Recall that
state is what an object knows, behavior is what an object does, and identity is
what an object is (a hunk of memory). Since the body of our class is empty,
Simple objects no nothing and do nothing. The can, however do some basic
stuff. They can be represented as strings, and they can be checked for equality.
Here we see this.

>>> s

<__main__.Simple object at 0x12e3250>

>>> t

<__main__.Simple object at 0x12e3290>

>>> s == t

False

>>>

In Python, you can attach things to objects. Watch what is happening here.

20 CHAPTER 1. INTRODUCING JAVA

>>> s.x = "I am x."

>>> s.y = "I am y."

>>> s.x

’I am x.’

>>> t.x

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

AttributeError: ’Simple’ object has no attribute ’x’

>>>

Now the object s knows its x and y, but t still knows nothing. We can make
all instances of our class know x and y as follows.

>>> class Simple:

... x = "I am x."

... y = "I am y."

...

>>> s = Simple()

>>> t = Simple()

>>> s.x

’I am x.’

>>> t.x

’I am x.’

>>> s.y

’I am y.’

>>> t.y

’I am y.’

>>>

So far, our classes have fixed state. Objects of type Simple all have the same x

and y. This is not terrible useful. Suppose we want to make a Point class to
represent points in the plane with integer coördinates. When we create a Point,
we might want to specify its coördiantes. To do this, we will use a special method
called init , which runs immediately after the object is created.

Let us now consider this program.

class Point(object):

def __init__(self, x = 0, y = 0):

self.x = x

self.y = y

p = Point()

print ("p = ({0}, {1})".format(p.x, p.y))

q = Point(3,4)

print ("q = ({0}, {1})".format(q.x, q.y))

1.1. PYTHON CLASSES AND OBJECTS 21

Now run this program and see the following.

$ python3 Point.py

p = (0, 0)

q = (3, 4)

We see a lot of new stuff here, so let us go through it with some care. We
know that the init method runs immediately after a Point object is created.
Its argument list is (self, x, y). The purpose of the x and y seem clear: they
furnish coördiantes to our Point object.

We also see this self. What is this? When you program in the Point

class, you are a Point. So self is you. In the statement self.x = x, you are
attaching the value x sent by the caller to yourself. The quantities self.x and
self.y constitute the state of an instance of this class. This is how a Point

knows its coördinates. The symbols self.x and self.y have scope inside of
the entire class body. Take note that all argument lists of methods in a Python
class must begin with self.

Now let us make a Point capable of doing something. Modify your Point.py
program as follows.

import math

class Point(object):

def __init__(self, x = 0, y = 0):

self.x = x

self.y = y

def distanceTo(self, other):

return math.hypot(self.x - other.x, self.y - other.y)

p = Point()

print ("p = ({0}, {1})".format(p.x, p.y))

q = Point(3,4)

print ("q = ({0}, {1})".format(q.x, q.y))

print ("p.distanceto(q) = {0}".format(p.distanceTo(q)))

Now run this program.

$ python Point.py

p = (0, 0)

q = (3, 4)

p.distanceto(q) = 5.0

$

The class mechanism enables us to create our own new types of objects.
Python supports the class mechanism, and object-oriented programming in gen-
eral.

22 CHAPTER 1. INTRODUCING JAVA

Java goes even further: all code in Java must appear in a class.

1.2 Java Classes and Objects

A Java program consists of one or more classes. All Java code that is created is
contained in classes. So far you have created an empty class called Foo. Since
the class is devoid of code, it is of limited use.

In Python, you created programs that consisted of functions, one of which
was the “main routine,” which lived outside of all other functions. Your pro-
grams had variables that point at objects and functions that remember proce-
dures. Java has these features but it works somewhat differently. Let us begin
by comparing the time–honored “Hello, World!” program in both languages. In
Python we code the following

#!/usr/bin/python

print "Hello, World!"

A Java vs. Python Comparison Python has classes but their use is purely
optional. In Java, all of your code must be enclosed in classes. Throughout you
will see that Java is more “modest” than Python. No executable code can be
naked; all code must occur within a function that is further clothed in a class,
with the exception of certain initializations of variables that still must occur
inside of a class.

Also, we should remember we have two types of statements in Python, worker
statements and boss statements. In Python, boss statements are grammatically
incomplete sentences. Worker statements are complete sentences. All boss
statements in Python end in a colon (:), and worker statements have no mark
a the end. All boss statements own a block of code consisting of one or more
lines of code; an empty block can be created by using Python’s pass keyword.

Java uses a similar system of boss and worker statements. In Java, boss
statements have no mark at the end. Worker statements must be ended with a
semicolon (;).

In Python, delimitation is achieved with a block structure that is shown by
tabbing. In Java, delimitation is achieved by curly braces {· · ·}.

In Python, a boss statement must own a block containing at least one worker
statement. In Java, a boss statement must have a block attached to it that is
contained in curly braces. An empty block can be indicated by an empty pair of
matching curly braces. Technically, you can get away with omitting the empty
block, but it is much better to make your intent explicit.

Knowing these basic facts will make it fairly easy for you to understand
simple Java programs.

1.2. JAVA CLASSES AND OBJECTS 23

Now, make the following class in Java and save it in the file Hello.java

public class Hello

{

public void go()

{

System.out.println("Hello, World!");

}

}

Notice that there is no self argument as there is in Python. Next, hit F5 or
select Compile from the menus. Save the file. Click on the Compiler Output tab
and you will see that compilation has occurred. Now click on the interactions
pane. You will see something like this.

Welcome to DrJava. Working directory is /home/morrison/book/Java

>

The working directory will be the directory occupied by your code Hello.java.
Henceforth, when showing interactive sessions, we will not show the Welcome

line. To run the program, click on the interactions tab. The

>

is a prompt, much like a UNIX prompt. It is waiting for you to enter a Java
command. At the prompt enter

> greet = new Hello();

You have just created an instance of your class named greet. The class supplied
a blueprint for the creation of an object of type Hello. Your class has one method
called go. We shall use the term “method” to describe any function that lives
inside of a class in Java or Python. Since all code in Java lives inside of classes,
functions will be known uniformly as methods. Any object of type Hello can
be sent the message “go()”. We now do so.

Welcome to DrJava. Working directory is /home/morrison/book/texed/Java

> greet = new Hello();

> greet.go()

Hello, World!

>

The mysterious line greet = new Hello(); tells Java, “make a new object
of type Hello.” The variable greet points at a Hello object. Observe that new
is a language keyword that is designated for creating objects.

24 CHAPTER 1. INTRODUCING JAVA

You can think of the Java Virtual Machine as being an object factory. The
class you make is a blueprint for the creation of objects. You may use the
new keyword to manufacture as many objects as you wish. When you use this
keyword, you tell Java what kind of object you want created, and it is brought
into existence. Here we show a second Hello object getting created by using
new.

> greet = new Hello();

> greet.go()

Hello, World!

> snuffle = new Hello();

> snuffle.go()

Hello, World!

> greet

Hello@3cb075

> snuffle

Hello@e99ce5

>

Now there are two Hello objects in existence. Each has the capability to
“go().” This is the only capability we have given our Hello objects so far.
Every Java object has the built–in capability of representing itself as a string.
The string representation of a Hello object looks like

Hello@aBunchOfHexDigits

You can see we have created two distinct Hello objects; the string repre-
sentation of greet is Hello@3cb075 and the string representation of snuffle is
Hello@e99ce5. Each of the variables greet and snuffle is pointing at its own
Hello object.

The method go() represents a behavior of a Hello object. These objects
have one behavior, they can go(). You can also see here that objects have
identity. They “are”. the two instances, snuffle and greet we created of the
Hello class are different from one another. So far, we know that objects have
identity and behavior.

This is all evocative of some things we have seen in Python. For example,
if we create a string in Python, we can invoke the string method upper() to
convert all alpha characters in the string to upper case. Here is an example of
this happening.

>>> x = "abc123;"

>>> x.upper()

’ABC123;’

>>>

1.2. JAVA CLASSES AND OBJECTS 25

The Python string object and the Java Hello object behaved identically. When
we sent the string x the message upper(), it returned a copy of itself with all
alpha characters converted to upper-case. In the Python interactive mode, this
copy is put to the Python interactive session, which acts as stdout.

The Java Hello object greet put the text "Hello, World!" to stdout. Click
on the console pane to see that. Things put to stdout in DrJava are also put to
the interactions pane. All things put to stdout are printed in green by default.

Now let us go through the program line-by-line and explain all that we see.
The first line

public class Hello

is a boss statement. Read it as “To make a Hello,” Since “To make a Hello,” is
not a complete sentence, we know the class head is a boss statement. Therefore
it gets NO semicolon.

The word public is an access specifier. In this context, it means that the
class is visible outside of the file. Python has no such modesty; it lacks any
system of access specifiers. Later, you may have several classes in a file. Only
one may be public. You may place other classes in the same file as your public
class. This is done if the other classes exist solely to serve the public class. Java
requires the file bear the name of the public class in the file. The compiler will
be angry if you do not do this, and you will get an error message.

The words public and class are language keywords, so do not use them as
identifiers. The class keyword says, clearly enough, “We are making a class
here.” Now we go to the next line

{

This line has just an open curly brace on it. Java, in contrast to Python,
has no format requirement. This freedom is dangerous. We will adopt certain
formatting conventions. Use them, or develop your own and be very consistent.
Consistent formatting makes mistakes easy to see and correct. It is unwise
consistency that is the “hobgoblin of small minds;” wise consistency is a great
virtue in computing.

The single curly brace acts like tabbing in in Python: it is a delimiter. It
delimits the beginning of the Hello class’s code. The next line

public void go()

is a function header. In Python you would write

def go():

26 CHAPTER 1. INTRODUCING JAVA

There are some differences. The Python method header is a boss statement so
it has a colon (:) at the end. Remember, boss statements in Java have no mark
at the end. There is an access specifier public listed first. This says, “other
classes can see this function.” The interactions pane behaves like a different
class, so go() can be seen by the interactions pane when we create a Hello

object there. The other new element is the keyword void. A function in Java
must specify the type of object it returns. If a function returns nothing, its
return type must be marked void. Next you see the line

{

This open curly brace says, “This is the beginning of the code for the function
go.” It serves as a delimiter marking the beginning of the function’s body. On
the next line we see the ungainly command

System.out.println("Hello, World!");

The System.out.println command puts the string "Hello, World!" to stan-
dard output and then it adds a newline. The semicolon is required for this
statement because it is a worker statement. Try removing the semicolon and
recompiling. You will see angry yellow.

1 error found:

File: /home/morrison/book/texed/Java/Hello.java [line: 5]

Error: /home/morrison/book/texed/Java/Hello.java:5: ’;’ expected

A semicolon must be present at the end of all worker statements in Java. It
is a mistake to put a semicolon at the end of a boss statement. In Java, the
compiler can sometimes fail to notice this and your program will have a strange
logic error.

The next line

}

signifies the end of the go method. Drag the mouse over the opening curly brace
for the go method and you will get “toothpaste color” that highlights the closing
curly brace and the stuff enclosed by the two curly braces. This brace-matching
feature is very useful. Do not be shy!

Finally,

}

ends the class.

1.3. JAVA’S INTEGER TYPES 27

In summary, all Java code is packaged into classes. What we have seen here
is that we can put functions (which we call methods) in classes. The methods
placed in classes give objects created from classes behaviors. We shall turn next
to looking at Java’s type system so we can write a greater variety of methods.

Programming Exercises Add new methods to our Hello class with these
features.

1. Have a method use System.out.print() twice. How is it different from
System.out.println()?

2. Have a method do this.

System.out.printf("<tr><td>%s</td><td>%s</td></tr>",

16, 256);

Experiment with this printf construct. Note its similarities to Python’s
formatting % construct.

3. Create the Hello class using Python, giving it a go method.

1.3 Java’s Integer Types

Creating a new class allows you to create new types. Every time you create
a class, you are actually extending the Java language. Like all things that are
built out of other things, there must be some “atoms” at the bottom. Said
atoms are called primitive types in Java.

We will begin by discussing Java’s four integer types. These are all primitive
types. Let us begin by studying these in the interactions pane.

Type Size Explanation
long 8 bytes This is the double–wide 8 byte integer type. It

stores a value between -9223372036854775808
and 9223372036854775807. These are 64-bit
two’s complement integers

int 4 bytes This is the standard two’s complement 4 byte
integer type, and the most commonly used
integer type. It stores a value between -
2147483648 and 2147483647.

short 2 bytes This is the standard 2 byte integer type. It
stores a value between -32768 and 32767 in
two’s complement notation.

byte 1 byte This is a one–byte integer that stores an inte-
ger between -128 and 127 in two’s complement
notation.

28 CHAPTER 1. INTRODUCING JAVA

You should note that Python 3 has one integer type and that Python 2 has
two: int and long.

1.3.1 Some Interaction Pane Nuances

When you work in the interactions pane, you are working in a run time envi-
ronment, as you would be at the Python interactive prompt. Your statements
are compiled “live,” so if you enter a statement that is nonsensical to Java, you
will get a run–time error (red), and you will never see angry yellow. On the
dark side, many errors will result in dreaded exploding hearts (remember: dark
red ink).

Hit F5 to clear the interactions pane. If there is a messed-up program in
your code window, right click on it in the skinny window on the left and select
Close. Then hit F5. The interactions pane will be cleared. Type in

> int x = 5

You are seeing the assignment operator = at work here. This works just as it
does in Python; you should read it as, “x gets 5” and not “x equals 5.” As is
true in Python, it is a worker statement. Consequently in a compiled program,
it must be ended with a semicolon. The expression on the right–hand side is
evaluated and stored into the variable on the left–hand side. Now hit the enter
key. You will see this. The reply will be toothpaste-colored.

> int x = 5

5

If you type a semicolon at the end like this and hit enter, the output will be
suppressed. It is no surprise that the assignment x = 5 returns a 5.

> int x = 5;

>

To create a variable in Java, you need to specify its type and an identifier
(variable name). This is because Java is a it statically compiled language; the
types of all variables must be known at compile time. In general a variable is
created in a declaration of the form

type variableName;

You can initialize the variable when you create it like so.

type variableName = value;

1.3. JAVA’S INTEGER TYPES 29

When you create variables inside of methods you should always initialize them,
or the compiler will growl at you. You may do any of these things in the
interactions pane. Remember, the semicolon will suppress any output. You can
see the value held by any variable by typing it at the interactive prompt.

> int x = 5;

> x

5

Now let us deliberately do something illegal. We will set a variable of type byte

equal to 675. Watch Java rebel.

> byte b = 675

Error: Bad types in assignment

>

The error message appears in red type. Again, this occurs because the
interactions pane is a run time environment. This would attract the compiler’s
attention in a compiled program.

1.3.2 Using Java integer types in Java Code

So far we have seen Java’s four integer types: int, byte, short, and long. To
see them in code, begin by creating this file.

public class Example

{

public void go()

{

}

}

Once you enter the code in the code window, compile and save it. It now
does nothing. Now we will create some variables in the method go and do some
experiments. Modify your code to look like this and compile.

public class Example

{

public void go()

{

int x = 5;

System.out.println("x = " + x);

}

}

30 CHAPTER 1. INTRODUCING JAVA

Compile the program. Start an interactions pane session and enter the code
e = new Example()

> Example e = new Example()

Example@3cb075

Since we did not put a semicolon at the end, we see the mysterious artifact
Example@(some gibberish). If you noticed the gibberish looks like hex code,
you are right. All Java objects can print themselves, what they print by default
is not very useful. Later we will learn how to change that. Now let us send the
message “go()” to our Example object e.

Recall from the Hello class that System.out.println puts things to stan-
dard output with a newline at the end.

> e = new Example()

Example@3cb075

> e.go()

x = 5

Inside the System.out.println() command, we see the strange sequence
"x = " + 5. Java has a built–in string type String, which is akin to Python’s
str. In Python, you would have written

print "x = " + str(x)

Java has a feature called “lazy evaluation” for strings. Once Java knows that
an expression is to be a string, any other objects concatenated to the expression
are automatically converted into strings. That is why you see

x = 5

printed to stdout. Note that Python is very strict in this matter and requires
you to explicitly convert objects to string before they can be concatenated to a
string.

Now let us add some more code to our Example class so we can see how
these integer types work together.

public class Example

{

public void go()

{

int x = 5;

System.out.println("x = " + x);

1.3. JAVA’S INTEGER TYPES 31

byte b = x;

System.out.println("b = " + b);

}

}

Now we compile our masterpiece and we get angry yellow and these scoldings
from Java.

1 error found:

File: Example.java [line: 7]

Error: Example.java:7: possible loss of precision

found : int

required: byte

Indeed, line 7 contains the offending code

byte b = x;

To fully understand what is happening, let’s do a quick comparison with Python
and explain a few differences with Java.

Types: Java vs. Python Python is a strongly, dynamically typed language.
This means that objects are aware of their type and that decisions about type
are made at run time. Variables in Python are merely names; they have no
type.

In contrast, Java is a strongly, statically typed language. In the symbol
table, Java keeps the each variable’s name, the object the variable points at and
the variable’s type. Types are assigned to variables at compile time. In Python
a variable may point at an object of any type. In Java, variables have type and
may only point at objects of their own type.

Now let’s return to the example. The value being pointed at by x is 5.
This is a legitimate value for a variable of type byte. However, x is an integer
variable and knows it is an integer. The variable b is a byte and it is aware of
its byteness. When you perform the assignment

b = x;

Java sees that x is an integer. An integer is a bigger variable type than a byte.
The variable b says, “How dare you try to stuff that 4–byte integer into my
one–byte capacity!” Java responds chivalrously to this plea and the compiler
calls the proceedings to a halt.

In this case, you can cast a variable just as you did in Python. Modify the
program as follows to cast the integer x to a byte.

32 CHAPTER 1. INTRODUCING JAVA

public class Example

{

public void go()

{

int x = 5;

System.out.println("x = " + x);

byte b = (byte) x;

System.out.println("b = " + b);

}

}

Your program will now run happily.

> e = new Example();

> e.go()

x = 5

b = 5

>

Now let’s play with fire. Change the value you assign x to 675.

public class Example

{

public void go()

{

int x = 675;

System.out.println("x = " + x);

byte b = (byte) x;

System.out.println("b = " + b);

}

}

This compiles very happily. It runs, too!

> e = new Example()

Example@afae4a

> e.go()

x = 675

b = -93

>

Whoa! When casting, you can see that the doctrine of caveat emptor applies.
If we depended upon the value of b for anything critical, we can see we might

1.3. JAVA’S INTEGER TYPES 33

be headed for a nasty logic error in our code. When you cast, you are telling
Java, “I know what I am doing.” With that right, comes the responsibility for
dealing with the consequences.

Notice that you are casting from a larger type to a smaller type. This is a
type of downcasting, and it can indeed cause errors that will leave you downcast.
Since we discussed downcasting, let’s look at the idea of upcasting that should
easily spring to mind. For this purpose, we have created a new program that
upcasts a byte to an integer

public class UpCast

{

public void go()

{

byte b = 122;

System.out.println("b = " + b);

int x = b;

System.out.println("x = " + x);

}

}

This compiles and runs without comment.

> u = new UpCast();

> u.go()

b = 122

x = 122

>

The four integer types are just four integers with different sizes. Be careful
if casting down, as you can encounter problems. Upcasting occurs without
comment. Think of this situation like a home relocation. Moving into a smaller
house can be difficult. Moving into a larger one (theoretically) presents no
problem with accommodating your stuff.

Important! If you use the arithmetic operators +, -, * or / on the short
integral types byte and short, they are automatically upcast to integers as are
their results.

Finally let us discuss the problem of type overflow and “doughnutting.”
Since the byte type is the smallest integer type, we will demonstrate these
phenomena on this type. Observe that the binary operators +, -, * /, and %

work in java just as they do in Python 2.x on integer types. Also we have the
compound assignment operators such as += which work exactly as they do in
Python.

34 CHAPTER 1. INTRODUCING JAVA

Open the interactions pane and run these commands. By saying int b =

2147483647, we guarantee that Java will regard b as a regular integer.

> byte b = 2147483647

> b += 1 This is b = b + 1.

-2147483648

> Uh oh.

The last command b += 1 triggered an unexpected result. This phenomenon
called type overflow. As you saw in the table at the beginning of the section, a
byte can only hold values between -2147483648 and 2147483647. Adding 1 to
2147483647 yields -128; this phenomenon is called doughnutting. It is an artifact
of the workings of two’s complement notation. You can see that this occurs in
C/C++ as well.

This is caused by the fact that integers in Java are stored in two’s comple-
ment notation. See the section in the Cyberdent in Computing in Python to
learn why this happens.

1.4 The Rest of Java’s Primitive Types

The table below shows the rest of Java’s primitive types. We see there are eight
primitive types, four of which are integer types.

Type Size Explanation
boolean 1 byte This is just like Python’s bool type. It holds

a true or false. Notice that the boolean con-
stants true and false are not capitalized as
they are in Python.

float 4 bytes This is an IEEE 754 floating point number
It stores a value between -3.4028235E38 and
3.4028235E38.

double 8 bytes This is an IEEE 754 double preci-
sion number. It stores a value be-
tween -1.7976931348623157E308 and
1.7976931348623157E308. This is the
same as Python’s float type. It is the type
we will use for representing floating–point
decimal numbers.

char 2 byte This is a two–byte Unicode character. In con-
trast to Python, Java has a separate character
type.

1.4. THE REST OF JAVA’S PRIMITIVE TYPES 35

1.4.1 The boolean Type

Let us now explore booleans. Java has three boolean operations which we will
show in a table

Operator Role Explanation
&& and This is the boolean operator ∧. It is a binary

infix operator and the usage is P && Q, where
P and Q are boolean expressions. If P evaluates
to true, the expression Q is ignored.

| | or This is the boolean operator ∨. It is a binary
infix operator and the usage is P | | Q, where
P and Q are boolean expressions. If P evaluates
to false, the expression Q is ignored.

! not This negates a boolean expression. It is a
unary prefix operator. Be careful to use paren-
theses to enforce your intent!

Hand–in–hand with booleans go the relational operators. These work just
as they do in Python on primitive types. The operator == checks for equality,
!= checks for inequality and the operators <, >, <= and >= act as expected on
the various primitive types. Numbers (integer types and floating point types)
have their usual orderings. Characters are ordered by their ASCII values. It is
an error to use inequality comparison operators on boolean expressions.

Now let us do a little interactive session to see all this at work. You are
encouraged to experiment on your own as well and to try to break things so you
better understand them.

> 5 < 7

true

> 5 + 6 == 11 == tests for equality

true

> !(4 < 5) ! is "not"

false

> (2 < 3) && (1 + 2 == 5) and at work

false

> (2 < 3) || (1 + 2 == 5) "or" at work

true

> 100 % 7 == 4 % is just like Python!

false

>

36 CHAPTER 1. INTRODUCING JAVA

1.4.2 Floating–Point Types

When dealing with floating–point numbers we will only use the double type.
Do not test floating–point numbers for equality or inequality. Since they are
stored inexactly in memory, comparing them exactly is a dangerous hit–or–miss
proposition. Instead, you can check and see if two floating–point numbers are
within some tolerance of one another. Here is a little lesson for the impudent
to ponder. Be chastened!

> x = 1.0/2.0

0.5

> x

0.5

> x = 997.0/1994.0

0.5

> x == y

false

>

All integer types will upcast to the double type. You can also downcast
doubles to integer types; you should experiment and see what kinds of truncation
occur. You should experiment with this in the interactions pane. Remember,
downcasting can be hazardous and . . . leave you downcast.

1.4.3 The char type

In Python, characters are recorded as one–character strings. Java works dif-
ferently and is more like C/C++ in this regard. It has a separate type for
characters, char.

Recall that characters are really just bytes. Java uses the unicode scheme for
encoding characters. All unicode characters are two bytes. The ASCII charac-
ters are prepended with a zero byte to make them into unicode characters. You
can learn more about unicode at \protect\protect\protect\edefOT1{OT1}\
let\enc@update\relax\protect\edefcmr{cmr}\protect\edefm{m}\protect\

edefn{n}\protect\xdef\OT1/cmr/m/it/10{\OT1/cmr/m/n/10}\OT1/cmr/m/it/

10\size@update\enc@update\ignorespaces\relax\protect\relax\protect\

edefcmr{cmtt}\protect\xdef\OT1/cmr/m/it/10{\OT1/cmr/m/n/10}\OT1/cmr/

m/it/10\size@update\enc@updatehttp://www.unicode.org.

Integers can be cast to characters, and the unicode value of that character
will appear.

Here is a sample interactive session. Notice that the integer 945 in unicode
translates into the Greek letter α.

> (char) 65

\protect \protect \protect \edef OT1{OT1}\let \enc@update \relax \protect \edef cmr{cmr}\protect \edef m{m}\protect \edef n{n}\protect \xdef \OT1/cmr/m/it/10 {\OT1/cmr/m/n/10 }\OT1/cmr/m/it/10 \size@update \enc@update \ignorespaces \relax \protect \relax \protect \edef cmr{cmtt}\protect \xdef \OT1/cmr/m/it/10 {\OT1/cmr/m/n/10 }\OT1/cmr/m/it/10 \size@update \enc@update http://www.unicode.org
\protect \protect \protect \edef OT1{OT1}\let \enc@update \relax \protect \edef cmr{cmr}\protect \edef m{m}\protect \edef n{n}\protect \xdef \OT1/cmr/m/it/10 {\OT1/cmr/m/n/10 }\OT1/cmr/m/it/10 \size@update \enc@update \ignorespaces \relax \protect \relax \protect \edef cmr{cmtt}\protect \xdef \OT1/cmr/m/it/10 {\OT1/cmr/m/n/10 }\OT1/cmr/m/it/10 \size@update \enc@update http://www.unicode.org
\protect \protect \protect \edef OT1{OT1}\let \enc@update \relax \protect \edef cmr{cmr}\protect \edef m{m}\protect \edef n{n}\protect \xdef \OT1/cmr/m/it/10 {\OT1/cmr/m/n/10 }\OT1/cmr/m/it/10 \size@update \enc@update \ignorespaces \relax \protect \relax \protect \edef cmr{cmtt}\protect \xdef \OT1/cmr/m/it/10 {\OT1/cmr/m/n/10 }\OT1/cmr/m/it/10 \size@update \enc@update http://www.unicode.org
\protect \protect \protect \edef OT1{OT1}\let \enc@update \relax \protect \edef cmr{cmr}\protect \edef m{m}\protect \edef n{n}\protect \xdef \OT1/cmr/m/it/10 {\OT1/cmr/m/n/10 }\OT1/cmr/m/it/10 \size@update \enc@update \ignorespaces \relax \protect \relax \protect \edef cmr{cmtt}\protect \xdef \OT1/cmr/m/it/10 {\OT1/cmr/m/n/10 }\OT1/cmr/m/it/10 \size@update \enc@update http://www.unicode.org
\protect \protect \protect \edef OT1{OT1}\let \enc@update \relax \protect \edef cmr{cmr}\protect \edef m{m}\protect \edef n{n}\protect \xdef \OT1/cmr/m/it/10 {\OT1/cmr/m/n/10 }\OT1/cmr/m/it/10 \size@update \enc@update \ignorespaces \relax \protect \relax \protect \edef cmr{cmtt}\protect \xdef \OT1/cmr/m/it/10 {\OT1/cmr/m/n/10 }\OT1/cmr/m/it/10 \size@update \enc@update http://www.unicode.org
\protect \protect \protect \edef OT1{OT1}\let \enc@update \relax \protect \edef cmr{cmr}\protect \edef m{m}\protect \edef n{n}\protect \xdef \OT1/cmr/m/it/10 {\OT1/cmr/m/n/10 }\OT1/cmr/m/it/10 \size@update \enc@update \ignorespaces \relax \protect \relax \protect \edef cmr{cmtt}\protect \xdef \OT1/cmr/m/it/10 {\OT1/cmr/m/n/10 }\OT1/cmr/m/it/10 \size@update \enc@update http://www.unicode.org

1.5. MORE JAVA CLASS EXAMPLES 37

‘A’

> (char) 97

‘a’

> (char)945

‘α’
> (char)946

‘β’
>

Similarly, you can cast an integer to a character to determine its ASCII (or
unicode) value.

The relational operators may be used on characters. Just remember that
characters are ordered by their Unicode values. The numerical value for the 8
bit characters are the same in Unicode. Unicode characters are two bytes; all
of the 8 bit characters begin with the byte 00000000.

1.5 More Java Class Examples

Now let us develop more examples of Java classes. Since we have the primitive
types in hand, we have some grist for producing useful and realistic examples.
Let us recall the basics. All Java code must be enclosed in a class. So far, we
have seen that classes contain methods, which behave somewhat like Python
functions.

Open DrJava and place the following code in the code window; this produces
an empty class named MyMethods.

public class MyMethods

{

}

When you are done, hit the F5 button and save the resulting file as MyMethods.java
in the directory you are using for Java programs. DrJava should automatically
place this name in the Save dialog box. In the bottom pane, the Compiler
Output tab will be activated and you will see it has the text “Compilation
Completed” in it. If you get any angry yellow, correct any errors. Remember,
we never want to stray far from a compiling, running program.

So far, our program does nothing. Now let us give it a method.

public class MyMethods

{

public double square(double x)

{

38 CHAPTER 1. INTRODUCING JAVA

return x*x;

}

}

Compile this program. Once it compiles, enter the following in the interactions
pane.

> MyMethods m = new MyMethods();

Recall that new tells Java, “make a new MyMethods object.” Furthermore,
we have assigned this to the variable m. Now type m.getClass() and see m’s
class.

> m.getClass()

class MyMethods

Every Java object is born with a getClass() method. It behaves much like
Python’s type() function. For any object, it tells you the class that created the
object. In this case, m is an instance of the MyMethods class, so m.getClass()

returns class MyMethods.

We endowed our class with a square method; here we call it.

> m.square(5)

25.0

The name of the method leaves us no surprise as to its result. Now let us look
inside the method and learn its anatomy.

public double square(double x)

{

return x*x;

}

In Python, you would make this function inside of a class by doing the following.

class MyMethods:

def square(self, x):

return x*x

in both the top line is called the function header. Notice that in Python, you
must use the self variable in the argument list for any methods you create.
Python functions begin with the def statement; this tells Python we are defining
a function. Java methods begin with an access specifier and then a return type.
The access specifier controls visibility of the method. The access specifier public

1.5. MORE JAVA CLASS EXAMPLES 39

says that the square method is visible outside of the class MyMethods. The
return type says that the square method will return a datum of type double.

In both Python and Java, the next thing you see is the function’s name,
which we have made square. The rules for naming methods in Java are the
same as those for naming variables. To review, an identifier name may start
with an alpha character or an underscore. The remaining characters may be
numerals, alpha characters or underscores.

Inside the parentheses, we see different things in Java and Python. In
Python, we see a lone x. In Java, we see double x. Since Java is statically
typed, it requires all arguments to specify the type of the argument as well as
the argument’s name. This restriction is enforced at compile time. In contrast,
Python makes these and all decisions at run time.

In general every Java method’s header has the following form.

returnType functionName(type1 arg1, type2 arg2, ... , typen argn)

The list

[type1, type2, ... typen]

of a Java method is called the method’s signature, or “sig” for short. Notice that
the argument names are not a part of the signature of a method. Remember,
such names are really just dummy placeholders. Methods in Java may have zero
or more arguments, just as functions and methods do in Python.

Try entering m.square(’a’) in the interactions pane.

> m.square(’a’)

Error: No ’square’ method in ’MyMethods’ with arguments: (char)

>

If we were compiling a program we would get angry yellow. Since the interac-
tions pane is a run-time environment, Java objects by saying that a character
is an illegal argument for your method square. Java methods have type re-
strictions in their arguments. Users who attempt to pass data of illegal type to
these methods are rewarded with compiler errors. This sort of protection is a
two–edged sword. Add this method to your MyMethods class.

public double dublin(double x)

{

return x*2;

}

Now let us do a little experiment.

40 CHAPTER 1. INTRODUCING JAVA

> m = new MyMethods();

> m.dublin(5)

10.0

> m.dublin("string")

Error: No ’dublin’ method in ’MyMethods’

with arguments: (java.lang.String)

>

What have we seen? The dublin method belonging to the MyMethods class will
accept integer types, which upcast to doubles, or doubles, but it rejects a string.
(More about Java’s string type later)

We will now write the analogous function in Python; notice what happens.
Place this Python code in a file named method.py.

def dublin(x):

return x*2

x = 5

print "dublin(" + str(x) + ") = " + str(dublin(x))

x = "string"

print "dublin(" + str(x) + ") = " + str(dublin(x))

Now let us run it.

$ python method.py

dublin(5) = 10

dublin(string) = stringstring

$

Python makes decisions about objects at run time. The call dublin(5) is fine
because it makes sense to take the number 5 and multiply it by the number 2.
The call dublin("string") is fine for two reasons. First, multiplication of a
string by an integer yields repetition, so the return statement in the function
dublin makes sense to Python at run time. Secondly, variables in Python have
no type, so there is no type restriction in dublin’s argument list. You will notice
that static typing makes the business of methods more restrictive. However,
compiler errors are better than run time errors, which can conceal ugly errors
in your program’s logic and which can cause surprisingly unappealing behavior
from your function.

Just as in Python, you may have functions that produce no output and
whose action is all side–effect. To do this, just use the void return type, as we
did in the Hello class.

Chapter 2

Java Objects

2.0 Java Object Types

We have seen that Java has eight primitive types: the four integer types, the
floating–point types double and float, the boolean type and the char type.

Python has a string type; you might ask why we have not given much em-
phasis to string in Java yet. This is because the string type in Java is not a
primitive type. It is an example of a Java object or class type. This distinction
is extremely important, because there are significant differences in the behav-
iors of the two types. We will make a close study of the Java string class and
compare its behavior to the string type in Python.

You will see that Java strings have many capabilities. You can slice them
as you can Python strings, they know their lengths, and you have access to all
characters. You will learn how to use the Java API guide to learn more about
any class’s capabilities, including those of String.

2.1 Java Strings as a Model for Java Objects

We will first turn our attention to the Java String type. Java handles strings in
a manner similar to that of Python. Strings in Java are immutable. Java has
an enormous standard library containing thousands of classes. The string type
is a part of this vast library, an it is implemented in a class called String.

Because strings are so endemic in computing, the creators of Java gave Java’s
string type some features atypical of Java classes, which we shall point out as
we progress.

Let us begin by working interactively. Here we see how to read individual

41

42 CHAPTER 2. JAVA OBJECTS

characters in a string by their indices.

> String x = "abcdefghijklmnopqrstuvwxyz"

"abcdefghijklmnopqrstuvwxyz"

> x.charAt(0)

’a’

> x[0]

Error: ’java.lang.String’ is not an array

> x.charAt(25)

’z’

> x.length()

26

>

Now let us deconstruct all of this. Strings in Java enjoy an exalted position.
The line

> x = "abcdefghijklmnopqrstuvwxyz"

makes a tacit call to new and it creates a new String object in memory. Only a
few other Java class enjoys the privilege of making tacit calls to new; these are
the wrapper classes.

Each primitive type has a wrapper class; for example, int has the wrapper
class Integer. You can create an Integer either by saying

Integer n = 5;

or by saying

Integer n = new Integer(5);

This tacit call to new is enabled by a feature called autoboxing. We will meet
the wrapper classes in full later.

Coming back to our main thread, you can create a string using new as well.

String x = new String("abcdefghijklmnopqrstuvwxyz");

Here we made an explicit call to new. This is not done very often in practice, as
it is excessively verbose, and it can create duplicate copies of immutable objects.

Access to characters is granted via the charAt string method. The expression

> x.charAt(25)

2.1. JAVA STRINGS AS A MODEL FOR JAVA OBJECTS 43

can be read as “x’s character at index 25.” Just as in Python, the dot (.)
indicates the genitive case. The nastygram

Error: ’java.lang.String’ is not an array

arises because the square–bracket operator, which exists in Python, is only used
to extract array entries in Java. Arrays are a Java data structure, which we will
learn about Java soon. Finally, we see that a string knows its length; to get it
we invoke the length() method.

String has another atypical feature not found in other Java classes. The
operators + and += are implemented for Strings. The + operator concatenates
two strings, just as it does in Python. The += operator works for strings just as
it does in Python.

> x = "abc"

"abc"

> x += "def"

"abcdef"

>

Note, however, that the string "abc" is not changed. It is orphaned and the
String variable x now points at "abcdef". The mechanism of orphaning objects
in Java works much as it does in Python. Both Python and Java are garbage-
collected languages.

2.1.1 But is there More?

You might be asking now, “Can I learn more about the Java String class?”
Fortunately, the answer is “yes;” it is to found in the Java API (Applications
Programming Interface) guide. This is a freely available online comprehensive
encyclopaedia of all of the classes in the Java Standard Library.

In the beginning you will see much that you will not understand. This is
OK: we will learn how to dig for the information we need. As your knowledge of
Java progresses, more of the things posted on these pages will be understandable
to you. We recommend that you download this documentation and place it on
your computer so you can use it any time. It is available at http://http://

download.oracle.com/javase/6/docs/api/, which wll give you instructions
for installing it.

Bring up the API guide and you will see that the page is divided into three
frames. On the left, is a skinny frame that is further divided into two smaller
frames.

The frame on the top–left is called the package frame. The Java Standard
Library is organized into units called packages. Packages form a hierarchical

 http://http://download.oracle.com/javase/6/docs/api/
 http://http://download.oracle.com/javase/6/docs/api/

44 CHAPTER 2. JAVA OBJECTS

structure that behaves much like your file system. The principal package in
Java is called java.lang; the String class resides in this package. If you click
on java.lang in the package window, you can seee the other classes in this
package in the frame just below the package frame. This is called the class
frame.

If you click on a class in the class frame, its documentation will appear on
the right in the main frame.

If you click on a package in the package frame, only classes belonging to that
package will be displayed in the class frame. When you are working, this can
help narrow your search. You will use this feature as you become more familiar
with the standard library’s hierarchy.

Let us find the documentation for the String class. In your browser, do a
Find on Page. In the search window, type a space, then String (try omitting the
space and you will see the method to this madness). You will find the String
class in the class window. You can also find it by navigating downward in the
class frame. Find it either way and click on its link.

You will see lots of incomprehensible incantations. Do not be worried. Right
near the top you will see

java.lang
class String

This tells you that the class String is part of the package java.lang, which
is the “core” of the Java language. If you click on the package java.lang in
the package window, you can see all of the other classes in java.lang.

Now let us ferret out the usable goodies. Scroll down to the area that has
the heading “Method Summary.” Here you will see a complete listing of all
String methods. It is a long list, but we will focus on some methods that will
be familiar because of Python.

At the top of the list, you can see the now–familiar charAt method. When
reading the method summary, note that the first column tells the return type
of the method. The return type of charAt is char. Next you see

charAt(int index)

The word charAt is a link. We shall click on it in a moment. The int index

gives the argument list of the method charAt. What we see here is that charAt
accepts an integer argument. The guide then says “Returns the char value at
the specified index.” This gives us some pretty good information about charAt.
We know it is used for fetching the characters from a string. It needs to know
which character you wish to fetch; this is specified by the (integer) index of the
character.

2.1. JAVA STRINGS AS A MODEL FOR JAVA OBJECTS 45

Now click on the link; you will go to the method detail for charAt. Right
after the heading it says

public char charAt(int index)

This is the method header that appears in the actual String class. It then goes
on to say the following.

Returns the char value at the specified index. An index ranges from
0 to length() - 1. The first char value of the sequence is at index
0, the next at index 1, and so on, as for array indexing.

The following paragraph

If the char value specified by the index is a surrogate, the surrogate
value is returned.

looks pretty mysterious, so we will ignore it for now. The Parameters: head-
ing describes the argument list and the Returns: heading describes the return
value. There are no surprises here.

What is interesting is the Throws: heading. This describes run time
errors that can be caused by misuse of this method. These errors are not found
by the compiler. If you trigger one, your program dies gracelessly and you get
a dreaded “exploding heart” of red text. You have observed similar tantrums
thrown by Python when you give it an index that is out of bounds in a string,
list or tuple.

We shall use this web page in the next sections so keep it open. First it will
be necessary to understand a fundamental difference between Java object types
and Java primitive types.

Programming Exercises Write a class called Exercises11 and place the
following methods in it.

1. Write the method

public boolean isASubstringOf(String quarry, String field)

{

}

It should return true when quarry is a contiguous substring of field.
(Think Python in construct.)

2. Suppose you have declared the string cat as follows.

String cat = "abcdefghijklmonopqrstuvwxyz";

46 CHAPTER 2. JAVA OBJECTS

Find at least two ways in the API guide to obtain the string "xyz". You
may use no string literals (stuff inside of ”...”), just methods applied to
the object cat. There are at least three ways. Can you find them all?

3. The Python repetition operator *, which takes as operands a string and
an integer, and which repeats the string the integer number of times does
not work in Java. Write a method

String repeat(String s, int n)

that replicates the action of the Python repetition operator. And yes,
there is recursion in Java.

2.2 Primitive vs. Object: A Case of equals

Rights

We will study the equality of string objects. A big surprise lies ahead so pay
close attention. Create this interactive session in Python. All is reassuringly
familiar.

>>> good = "yankees"

>>> evil = "redsox"

>>> copy = "yankees"

>>> good == copy

True

>>> good == evil

False

No surprises greet us here. Now let us try the same stuff in Java.

> good = "yankees"

"yankees"

> evil = "redsox"

"redsox"

> copy = "yankees"

"yankees"

> good == evil

false

> good == good

true

> good == copy

false

>

Beelzebub! Some evil conspiracy appears to be afoot! Despite the fact that
both good and copy point to a common value of "yankees", the equality test

2.2. PRIMITIVE VS. OBJECT: A CASE OF EQUALS RIGHTS 47

returns a false. Now we need to take a look under the hood and see what is
happening.

First of all, let’s repeat this experiment using integers.

> Good = 5;

> Evil = 4;

> Copy = 5;

> Good == Evil

false

> Good == Good

true

> Good == Copy

true

This seems to be at odds with our result with strings. This phenomenon occurs
because primitive and class types work differently. A primitive type points
directly at its datum. When you use == on two variables, you are asking if they
point to the same value.

Strings do not point directly at their datum; this is true of all object types
in Java. What a java object holds is a pointer, i.e. a memory address where
the string is stored. In Python, objects never point directly at thier datum.
Python types such as bool, float and int are actually immutible objects.
This phenomenon is a major difference between Python and Java. Python has
no primitive types.

We saw good == good evaluate to true because good points to the same
actual object in memory as itself. We saw good == copy evaluate to false,
because good and copy point to separate copies of the string "yankees" stored
in memory. Therefore the test for equality evaluates to false.

Recall we said that objects have behavior and identity. The == operator is
a test for identity. It checks if two objects are in fact one and the same. This
behavior is identical to that of the Python is keyword, which checks for equality
of identity.

What do we do about the equality of strings? Fortunately, the equals

method comes to the rescue.

> good.equals(good)

true

> good.equals(evil)

false

> good.equals(copy)

true

>

48 CHAPTER 2. JAVA OBJECTS

Ah, paradise restored. . . Just remember to use the equals method to check
for equality of strings. This method has a close friend equalsIgnoreCase that
will do a case-insensitive check for equality of two strings. These comments
also apply to the inequality operator !=. This operator checks for inequality of
identity. To check and see if two strings have unequal values use ! in conjunction
with equals. Here is an example

> !(good.equals(copy))

false

> !(good.equals(evil))

true

>

Finally, notice that Python compares strings lexicographically according to
Unicode value by using inequality comparison operators. These do not work in
Java. It makes no sense to compare memory addresses. However, the string
class has the method

int compareTo(String anotherString)

We show it at work here.

> little = "aardvark"

"aardvark"

> big = "zebra"

"zebra"

> little <= big

Error: Bad type in relational expression

> little.compareTo(big)

-25

> little.compareTo(big) < 0

true

> little.compareTo(big) == 0

false

> little.compareTo(big) > 0

false

>

You may be surprised it returns an integer. However, alphabetical string ex-
amples can be done as in the example presented here. This method’s sib-
ling method, compareToIgnoreCase that does case–insensitive comparisons and
works pretty much the same way.

2.2.1 Aliasing

Consider the following interactive session.

2.3. MORE JAVA STRING METHODS 49

> smith = "granny"

"granny"

> jones = smith;

> smith == jones

true

>

Here we performed an assignment, jones = smith. What happens in an as-
signment is that the right–hand side is evaluated and then stored in the left.
Remember, the string smith points at a memory address describing the loca-
tion where the string "granny" is actually stored in memory. So, this memory
address is given to jones; both jones and smith hold the same memory ad-
dress and therefore both point at the one copy of "granny" that we created in
memory.

This situation is called aliasing. Since strings are immutable, aliasing can
cause no harm. We saw in the Python book that aliasing can create surprises.
First we will need to explore a property of objects we have omitted heretofore
in our discussion: state.

The state of a string is given by the characters it contains. How these are
stored is not now known to us, and we really do not need to know or care. We
shall tour the rest of the string class in the Java API guide, then turn to the
matter of state.

2.3 More Java String Methods

Python’s slicing facilities are implemented in Java using substring. Here is an
example of substring at work.

> x = "abcdefghijklmnopqrstuvwxyz"

> x.substring(5)

"fghijklmnopqrstuvwxyz"

> x.substring(3,5)

"de"

> x.substring(0,5)

"abcde"

> x

"abcdefghijklmnopqrstuvwxyz"

Notice that the original string is not modified by any of these calls; copies are
the advertised items are returned by these calls. The endsWith method seems
pretty self–explanatory.

> x.endsWith("xyz")

50 CHAPTER 2. JAVA OBJECTS

true

> x.endsWith("XYZ")

false

The indexOf method allows you to search a string for a character or a
substring. In all cases, it returns a -1 if the string or character you are seeking
is not present.

> x.indexOf(’a’)

0

> x.indexOf(’z’)

25

> x.indexOf(’A’)

-1

> x.indexOf("bc")

1

You can pass an optional second argument to the indexOf method to tell is to
start its search at a specified index. For example, since the only instance of the
character ’a’ in the string x is at index 0, we have

> x.indexOf(’a’, 1)

-1

You are encouraged to further explore the String API. It contains many
useful methods that make strings a useful an powerful programming tool. The
programming exercises at the end of this section will give you an opportunity
to do this.

2.4 Java Classes Know Things: State

So far, we have seen that objects have identity and that they have behavior,
which is reflected by a class’s methods.

We then saw that a string “knows” the character sequence it contains. We
do not know how that sequence is stored, and we do not need to know that.
The character sequence held by a string is reflective of its state. The state of an
object is what an object “knows.” Observe that the outcome of a Java method
on an object can, and often does, depend upon its state.

To give you a look behind the scenes, we shall now produce a simple class
which will produce objects having state, identity and behavior. To do this, it
will necessary to introduce some new ideas in Java, the constructor and method
overloading.

2.4. JAVA CLASSES KNOW THINGS: STATE 51

Place the following code in the Java code window, compile and save it in a
file named Point.java. We are going to create a simple class for representing
points in the plane with integer coördinates.

public class Point

{

}

What does such a point need to know? It needs to know its x and y

coördinates. Here is how to make it aware of these.

public class Point

{

private int x;

private int y;

}

You will see a new keyword: private. This says that the variables x and y are
not visible outside of the class. These variables are called instance variables or
state variables. We shall see that they specify the state of a Point.

Why this excessive modesty? Have you ever bought some electronic trin-
ket, turned it upside–down and seen “No user serviceable parts inside” embla-
zoned on the bottom? The product–liability lawyers of the trinket’s manufac-
turer figure that an ignorant user might bring harm to himself whilst fiddling
with the entrails of his device. Said fiddling could result in a monster lawsuit
that leaves the princplles of the manufacturer living in penury.

Likewise, we want to protect the integrity of our class; we will not allow the
user of our class to monkey with the internal elements of our program. We will
permit the client programmer access to these elements by creating methods that
give access. This is a hard-and-fast rule of Java programming: Always declare
your state variables private.

Now compile your class. Let’s make an instance of this class and deliberately
get in trouble.

> p = new Point()

Point@1db9852

> p.x

IllegalAccessException:

(then a bunch of nasty messages in red)

>

We have debarred ourselves from having any access to the state variables of an
instance of the Point class. This makes our class pretty useless. How do we get
out of this pickle?

52 CHAPTER 2. JAVA OBJECTS

2.4.1 Quick! Call the OBGYN!

Clearly a Point needs help initializing its coördinates. For this purpose we use
a special method called a constructor. A constructor has no return type. When
the constructor is finished, all state variables should be initialized. Constructors
are OBGYNs: they oversee the birth of objects. The constructor for a class must
have the same name as the class. In fact, only constructors in a class may have
the same name as the class. We now write a constructor for our Point class.

public class Point

{

private int x;

private int y;

public Point(int _x, int _y)

{

x = _x;

y = _y;

}

}

Now compile your class. To make the a point at (3,4), call the constructor
by using new. The new keyword calls the class’s constructor and oversees the
birth of an object.

> p = new Point(3,4)

Point@3cb075

> q = new Point()

NoSuchMethodException: constructor Point()

>

The Point p is storing the point (3,4). Remember, the variable p itself only
stored a memory address. The point (3,4) is stored at that address.

One other thing we see is that once we create a constructor the default
constructor, which has an empty signature, no longer exists.

Note the similarity of this process to the Python Point class we created
earler. The Python init method behaves much like a Java constructor; it
is called every time a new Python object of type Point is created.

import math

class Point(object):

def __init__(self, x = 0, y = 0):

self.x = x

self.y = y

2.4. JAVA CLASSES KNOW THINGS: STATE 53

p = Point()

print ("p = ({0}, {1})".format(p.x, p.y))

q = Point(3,4)

print ("q = ({0}, {1})".format(q.x, q.y))

Now go back to the String class in the API guide. Scroll down to the
constructor summary; this has a blue header on it and it is just above the
method summary. You will see that the string class has many constructors.
How is this possible? We faked in in Python by using default arguments. Can
we do this for our point class in Jav?

Happily, the answer is “yes”.

2.4.2 Method and Constructor Overloading

Recall that the signature of a method is an ordered list of the types of its
arguments. Java supports method overloading: you may have several methods
bearing the same name, provided they have different signatures. This is why you
see several versions of indexOf in the String class. Java resolves the ambiguity
caused by overloading at compile time by looking at the types of arguments
given in the signature. It looks for the method with the right signature and it
then calls it.

Notice that the static typing of Java allows it to support method overloading.
Python has a feature that looks like method overloading. It allows arguments to
have default values, so it looks like it has method overloading. Here is another
example of Python default arguments at work.

def f(x = 0, y = 0, z = 0):

return x + y + z

print "f() = ", f()

print "f(3) = ", f(3)

print "f(3, 4) = ", f(3, 4)

print "f(3, 4, 5) = ", f(3, 4, 5)

$ python overload.py

f() = 0

f(3) = 3

f(3, 4) = 7

f(3, 4, 5) = 12

$

You can use principle on constructors, too. Let us now go back to our Point
class. We will make the default constructor (sensibly enough) initialize our point
to the origin.

54 CHAPTER 2. JAVA OBJECTS

public class Point

{

private int x;

private int y;

public Point(int _x, int _y)

{

x = _x;

y = _y;

}

public Point()

{

x = 0;

y = 0;

}

}

Compile this class. Then type in this interactive session.

> p = new Point(3,4)

Point@175ade6

> q = new Point()

Point@a7c45e

>

Voila! The default constructor is now working.

2.4.3 Get a load of this

The eleventh commandment reads, “Thou shalt not maintain duplicate code.”
This sounds Draconian, but it is for reasons of convenience and sanity. If you
want to modify your program, you want to do the modifications in ONE place.
Having duplicate code forces you to ferret out every copy of a duplicated piece
of code you wish to modify. You should strive to avoid this.

One way to avoid it is to write separate methods to perform tasks you do
frequently. Here, however, we are looking at our constructor. You see duplicate
code in the constructors. To eliminate it, you may use the this keyword to call
one constructor from another. We shall apply this here.

public class Point

{

private int x;

private int y;

public Point(int _x, int _y)

{

2.4. JAVA CLASSES KNOW THINGS: STATE 55

x = _x;

y = _y;

}

public Point()

{

this(0,0);

}

}

2.4.4 Now Let Us Make this Class DO Something

So far, our Point class is devoid of features. We can create points, but we
cannot see what their coördinates are. Now we shall provide accessor methods
that give access to the cöordinates. While we are in here we will also write a
special method called toString, which will allow our points to print nicely to
the screen.

First we create the accessor methods. Here is how they should work.

> p = new Point(3,4);

> p.getX()

3

> p.getY()

4

> q = new Point();

> q.getX()

0

> q.getY()

0

>

Making them is easy. Just add these methods to your point class.

public int getX()

{

return x;

}

public int getY()

{

return y;

}

These accessor or “getter” methods allow the user of your class to see the
coördinates of your point but the user cannot use the getter methods to change

56 CHAPTER 2. JAVA OBJECTS

the state of the point. So far, our point class is immutable. There is no way to
change its state variables, only a way to read their values.

To get your points to print nicely, create a toString method. Its header
must be

public String toString()

In this method we will return a string representation for a point. Place this
method inside of your Point class.

public String toString()

{

return "("+ x + ", " + y + ")";

}

Compile and run. The toString() method of an object’s class is called au-
tomatically whenever you print an object. Every Java object is born with a
toString method. We saw that this built–in method for our point class was
basically useless. By implementing the toString method in our class, we are
customizing it for our purposes. Here we see our nice representation of a Point.

> p = new Point(3,4)

(3, 4)

> System.out.println(p)

(3, 4)

>

You will see that many classes in the standard libarary customize this method.

Now let us write a method that allows us to compute the distance between
two points. To do this we will need to calculate a square-root. Fortunately,
Java has a scientific calculator. Go to the API guide and look up the class
Math. To use a Math function, just prepend its name with Math.; for example
Math.sqrt(5) computes

√
5. Many of the names of these functions are the same

as they are in Python’s math library and in and C/C++’s cmath and math.h

libraries.

Now add this method to your class. You will see that it is just carrying out
the distance formula between your point (x,y) and the point q.

public double distanceTo(Point q)

{

return Math.sqrt((x - q.x)*(x - q.x) + (y - q.y)*(y - q.y));

}

Compile and run.

2.4. JAVA CLASSES KNOW THINGS: STATE 57

> origin = new Point()

(0, 0)

> p = new Point(5,12);

> origin.distanceTo(p)

13.0

> p.distanceTo(origin)

13.0

>

Programming Exercises Here is a chance to try out some new terriitory in
Python. Python has special methods called hooks that do speical jobs. We have
met the init hook; all hooks are surrounded by double-underscores.

1. The Python hook str tells Python to represent a Python object as a
string. Its method header is

def __str__(self):

Make a method for the Python Point class that represents a Point as a
string.

2. The Python hook eq can check for equality of objects. You can cause
to points to be compared using == with this hook. Its header is

def __eq__(self):

Implement this for our Python Point class.

2.4.5 Who am I?

In Java there are two programming roles: that of the class developer and that of
the client programmer. You assume both roles, as all code in Java lives inside of
classes. You are the class developer of the class you are writing, and the client
programmer of the classes you are using. Any nontrivial Java program involves
at least two classes, the class itself and often the class String or System.out. In
practice, as you produce Java classes, you will often use several different classes
that you have produced or from the Java Standard Library.

So while we are creating the point class, we should think of ourselves as
being Points. A Points knows its coördinates. Since you are a point when
programming in the class Point, you have access to your private variables. You
also have access to the private variables of any instance of class Point. This is
why in the distanceTo method, we could use q.x and q.y.

In the last interactive session we made two points with the calls

origin = new Point();

p = new Point(5,12)

58 CHAPTER 2. JAVA OBJECTS

This resulted in the creation of two points. The call

p.distanceTo(origin)

returned 13.0. What is says is “Call p’s distanceTo method using the argument
origin.” In this case, you should think of “you” as p. The point origin is
playing the role of the point q in the method header. Likewise, the call

origin.distanceTo(p)

is calling p’s distance to origin. In the first case, “I” is origin, in the second,
“I” is p.

2.4.6 Mutator Methods

So far, all of our class methods have only looked at, but have not changed, the
state of a point object. Now we will make our points mutable. To this end,
create two “setter” methods and place them in your Point class.

public void setX(int a)

{

x = a;

}

public void setY(int b)

{

y = b;

}

Now compile and type in the following.

> p = new Point()

(0, 0)

> p.setX(5)

> p

(5, 0)

> p.setY(12)

> p

(5, 12)

>

Our point class is now mutable: We are now giving client programmers permis-
sion to reset each of the coördinates. These new methods are called “mutator”
methods, because they change the state of a Point object. Instances of our

2.4. JAVA CLASSES KNOW THINGS: STATE 59

Point class are mutable, much as are Python lists. Mutabliity can be conve-
nient, but it can be dangerous, too. Watch us get an ugly little surprise from
aliasing.

To this end, let us continue the interactive session we started above.

> q = p;

> q

(5, 12)

> q.setX(0)

> p

(0, 12)

> q

(0, 12)

>

Both p and q point at the same object in memory, which is initially storing
the point (5,12). Now we say, “q, set the x–coördinate of the point you are
pointing at to 0. Well, p happens to be pointing at precisely the same object.
In this case p and q are aliases of one another. If you call a mutator method on
either object, it changes the value pointed at by the other object!

If we wanted p and q to be independent copies of one another, a different
procedure is required. Let us now create a method called clone, which will
return an independent copy of a point.

public Point clone()

{

return new Point(x,y);

}

Hit F5, compile, and you will have a fresh interactive session. Now we will test–
drive our new clone method. We will make a point p, an alias for the point
alias, and a copy of the point copy.

> p = new Point(3,4)

(3, 4)

> alias = p

(3, 4)

> copy = p.clone();

> p

(3, 4)

Continuing, let us check all possible equalities.

> p == alias

60 CHAPTER 2. JAVA OBJECTS

true

> copy == alias

false

> p == copy

false

We can see that p and q are in fact aliases the same object, but that alias is
not synonymous with either p or q.

> p

(3, 4)

> alias

(3, 4)

> copy

(3, 4)

All three point at a point stored in memory that is (3,4). Now let us call the
mutator setX on p; we shall then inspect all three.

> p.setX(0)

> p

(0, 4)

> alias

(0, 4)

> copy

(3, 4)

The object pointeed to by both p and q was changed to (0,4). The copy,
however, was untouched.

Look at the body of the clone method. It says

return new Point(x,y);

This tells Java to make an entirely new point with coördinates x and y. The
call to new causes the constructor to spring into action and stamp out a fresh,
new Point.

2.5 The Scope of Java Variables

In this section, we shall describe the lifetime and visiblity of Java varibles. The
rules differ somewhat from Python, and you will need to be aware of these
differences to avoid unpleasant surprises.

2.5. THE SCOPE OF JAVA VARIABLES 61

There are two kinds of variables in Java, state variables and local variables.
Local variables are variables created inside of any method in Java. State vari-
ables are visible anywhere in a class. Where they are declared in a class is
immaterial. We will adhere to the convention that state variables are declared
at the beginning of the class. This makes them easy to find and manage. You
could move them to the end of the class with no effect.

The rest of our discussion pertains to local variables. All local variables in
Java have a block; this is delimited by the closest pair of matching curly braces
containing the variable’s declaration. The first rule is that no local variable is
visible outside of its block. The second rule is that a local variable is not visible
until it is created. You will notice that these rules are stricter than those of
Python. As in Python, variables in Java are not visible prior to their creation;
this rule is exactly the same.

Here is an important difference. Variables created inside of Python functions
are visible from their creation to the end of the function, even if they are declared
inside of a block in that function. Here is a quick example in a file named
laxPyScope.py.

def artificialExample(x):

k = 0

while k < len(x):

lastSeen = x[k]

k += 1

return lastSeen

x = "parfait"

print "artificialExample(" + x + ") = ", artificialExample(x)

It is easy to see that the function artificialExample simply returns the last
letter in a nonempty string. We run it here.

$ python laxPyScope.py

artificialExample(parfait) = t

$

Observe that the variable lastSeen was created inside a block belonging to a
while loop. In Java’s scoping rules, this variable would no longer be visible (it
would be destroyed) as soon as the loop’s block ends.

There are some immediate implications of this rule. Any variable declared
inside of a method in a class can only be seen inside of that method. That works
out the same as in Python. Let us code up exactly the same thing in Java in a
class StrictJavaScope. In this little demonstration, you will see Java’s while

loop at work.

public class StrictJavaScope

62 CHAPTER 2. JAVA OBJECTS

{

public char artificialExample(String x)

{

int k = 0;

while(k < x.length())

{

char lastSeen = x.charAt(k);

k += 1;

}

return lastSeen;

}

}

Now hit F5 and brace yourself for angry yellow.

1 error found:

File: /home/morrison/StrictJavaScope.java [line: 11]

Error: /home/morrison//StrictJavaScope.java:11: cannot find symbol

symbol : variable lastSeen

location: class StrictJavaScope

You will also see that the return statement is highlighted with angry yellow.
Your symbol lastSeen died when the while loop ended. Even worse, it got
declared each time the loop was entered and died on each completion of the
loop.

How do we fix this? We should declare the lastSeen variable before the
loop. Then its block is the entire function body, and it will still exist when we
need it. Here is the class with repairs effected.

public class StrictJavaScope

{

public char artificialExample(String x)

{

int k = 0;

char lastSeen = ’ ’;

while(k < x.length())

{

lastSeen = x.charAt(k);

k += 1;

}

return lastSeen;

}

}

Peace now reigns in the valley.

2.5. THE SCOPE OF JAVA VARIABLES 63

> s = new StrictJavaScope();

> s.artificialExample("parfait")

’t’

>

while We are at it The use of the while loop is entirely natural to us and
it looks a lot like Python. There are some differences and similarities. The
differences are largely cosmetic and syntactical. The semantics are the same,
save of this issue of scope we just discussed.

• similarity The while statement is a boss statement. No mark occurs in
Java at the end of a boss statement.

• difference Notice that there is NO colon or semicolon at the end of the
while statement. Go ahead, place a semicolon at the end of the while

statement in the example class. It compiles. Run it. Now figure out what
you did, Henry VIII.

• difference Notice that predicate for the while statement is enclosed in
parentheses. This is required in Java; in Python it is optional.

• similarity The while statement owns a block of code. This block can be
empty; just put an empty pair of curly braces after the loop header.

The scoping for methods and state variables is similar. State variables have
class scope and they are visible from anywhere inside of the class. They may
be modified by any of the methods of the class. Any method modifying a
state variable is a mutator method for the class. Be careful when using mutator
methods, as we have discussed some of their perils when we talked about aliasing.
A good general rule is that if a class creates small objects, give it no mutator
methods. For our Point class, we could just create new Points, rather than
resettiing coördinates. Then you do not have to think about alaiasing. In fact,
it allows you to share objects among variables freely and it can save space. It
also eliminates the need for copying objects.

Later, we will deal with larger objects, like graphics windows and displays.
We do not want to be unnecessarily calling constuctors for these large objects
and we will see that these objects in the standard libarary have a lot of mutator
methods.

All methods are visible inside of the class. To get to methods outside of the
class, you create an instance of the class using new and call the method via the
instance. Even if your state variables are (foolishly) public, you must refer to
them via an instance of the class. Let us discuss a brief example to make this
clear.

Suppose you have a class Foo with a method called doStuff() and public a
public state variable x. Then to get at doStuff or x we must first create a new
Foo by calling a constructor. In this example we will use the default.

64 CHAPTER 2. JAVA OBJECTS

Foo f = new Foo();

Then you can call doStuff by making the call

f.doStuff();

Here you are calling doStuff via the instance f of the class Foo. To make f’s x
be 5, we enter the code

f.x = 5;

Notice that the “naked” method name and the naked variable name are not
visible outside of the class. In practice, since all of our state variables wil be
marked private, no evidence of state variables is generally visible outside of
any class.

2.6 The Object-Oriented Weltanschauung

Much emphasis has been placed here on classes and objects. In this section
we will have a discussion of programming using objects. We will begin by
discussing the procedual programming methods we developed in Chapters 0-7
of the Python book.

2.6.1 Procedural Programming

When we first started to program in Python, we wrote very simple programs
that consisted only of a main routine. These programs carried out small tasks
and were short so there was little risk of confusion or of getting lost in the code.

As we got more sophisiticated, we began using Python functions as a means
to break down, or modularize, our program into managable pieces. We would
then code each part and integerate the functions into a program that became a
coherent whole. Good design in Python is “top down.” You should nail down
what you are trying to accomplish with your program. Then you should break
the program down into components. Each component could then be broken into
smaller components. When the components are of a manageable size, you then
code them up as functions.

To make this concrete, let us examine the case of writing a program that
accepts a string and which looks through an English wordlist, and which shows
all anagrams of the string you gave as input which appear in the wordlist.

To do this, you could write one monolithic procedure. However, the proce-
dure would get pretty long and it would be trying to accomplish many things
at once. Instead we might look at this and see we want to do the following

2.6. THE OBJECT-ORIENTED WELTANSCHAUUNG 65

Obtain the word from the user.
Open a wordlist file.
Generate all the anagrams on the user–supplied word.
Sort the list in alphabecial order
Go through the sorted list, checking each anagram to see if it is in

the wordlist
Return the list of words we obtained to the user.

Not all the tasks here are of the same difficulty. The first one, obtain the
word from the user, is quite easy to do. We, however have to make a design
decison and decide how to get the word from the user. This is a matter of
deciding the program’s user interface.

The job of sorting the (huge) list looks daunting, until we realize the Python
list objects have a method sort(), which enables you to easily put the list of
anagrams in order. Java, like Python offers a huge libary of classes and types.
The purpose of this library is to help keep you from wasting time reinventing
wheels. Use wheels whenever possible, do not reinvent them.

Python is an object-oriented language like Java with a library of classes.
Many of the Python classes are extremely useful; the same is true in Java.
Always look for a solution to your problem in the standard libarary before
trying to solve it yourself! If you create classes intelligently, you will see that
you will be able to reuse a lot of code you create.

Returning to our problem, you would revisit each subproblem you have
found. If the subproblem is simple enough to write a function for it, code
it. Otherwise, break it down further.

This is an example of top–down design for a procedural program. We keep
simplifying procedures until they become tractible enough to code in a single
function. We program with verbs.

The creation of functions gives us a layer of abstraction. Once we test our
functions, we use them and we do not concern ourselves with their internal
details (unless a function goes buggy on us), we use them for their behavior.
Once a function is created and its behavior is known, we no longer concern
ourselves with its local variables and the details of its implementation.

This is an example of encapsulation; we are thinking of a function in terms
of its behavior and not in terms of its inner workings.

2.6.2 Object–Oriented Programming

In object–oriented programming, we program with nouns. A class is a sophisti-
cated creature. It creates objects, which are computational creatures that have
state, identity and behavior. We shall see here that encapsulation plays a large
role in object-oriented programming. Good encapsulation dictates that we hide

66 CHAPTER 2. JAVA OBJECTS

things from client programmers they do not need to see. This is one reason we
make our state variables private. We may even choose to make certain methods
private, if the do think they are of real use other than that of a service role the
other methods of the class.

When you used the String class, you did not need to know how the char-
acters of a String are stored. You do not need to know how the substring()

method works: you merely know the behavior it embodies and you use it. What
you can see in the API guide is the interface of a class; this is a class’s public
portion. You are a client programmer for the entire standard libary, so you will
only use a class’s interface.

What you do not see is the class’s implementation. You do not know how
the String class works internally. You could make a good guess. It looks as if a
list of characters that make up the string is stored somewhere. That proabably
reflects the state of a String object.

A string, however, is a fairly simple object. The contents of a window in a
graphical user interface (GUI) in Java is stored in an object that is an instance
of the class JFrame. How do you store such a thing? Is it different on different
platforms? All of a sudden we feel the icy breath of the possibly unknown....
However, there is nothing to fear! In Java the JFrame class has behaviors that
allow you to work with a frame in a GUI and you do not have to know how the
internal details of the JFrame work. This is the beauty of encapsulation. Those
details are thannkfully hidden from us!

For an everyday example let us think about driving a car. You stick in the
key, turn it, and the ignition fires the engine. You then put the car in gear and
drive. Your car has an interface. There is the shifter, steering wheel, gas pedal,
the music and climate controls, the brakes and the parking brake. There are
other interface items like door locks, door openers and the dome light switch.

These constitute the “public” face of your car. You work with this familiar
interface when driving. It is similar across cars. Even if your car runs on diesel,
the interface you use to drive is not very different from that of a gasoline–fueled
car.

You know your car has “private parts” to which you do not have direct
access when driving. Your gas pedal acts as a mutator method does; it causes
more gas to flow to the fuel injection system and causes the RPM of the engine
to increase. The RPM of the engine is a state variable for your car. Your
tachometer (if your car has one) is a getter method for the RPM of your engine.
You affect the private parts (the implementation) of your car only indirectly.
Your actions occur through the interface.

Let’s not encapuslate things for a moment. Imagine if you had to think
about everything your car does to run. When you stick your key in the ignition,
if you drive a newer car, an electronic system analyzes your key fob to see if
your key is genuine. That then triggers a switch that allows the ignition to start

2.6. THE OBJECT-ORIENTED WELTANSCHAUUNG 67

the car. Then power flows to the starter motor....... As you are tooling down
the highway, it is a safe bet you are not thinking about the intracacies of your
car’s fuel injection system and the reactions occurring in its catalytic converter.
You get the idea. Encapsulation in classes simplifies things to the essence and
allows us to think about the problem (driving here) at hand. You use the car’s
interface to control it on the road. This frees your mind to think about your
actual driving.

So, a Java program is one or more classes working together. We create
instance of these classes and call methods via these instances to get things
done. In the balance of this book, you will gain skill using the standard libary
classes. You will learn how to create new classes and to create extensions of
existing ones. This will give you a rich palette from which to create programs.

68 CHAPTER 2. JAVA OBJECTS

Chapter 3

Translating Python to Java

3.0 Introduction

We are going to frame the concepts we learned in Python in Java. During
this chapter, we will do a comparison of the design and mechanics of the two
languages.

3.1 Java Data Structures

Recall that a data structure is a container by which we store a collection of re-
lated objects under a single name. In Python, we met the data structures list,
tuple and dict. Python lists are mutable heterogeneous sequences. Python
tuples are like lists, but they are immutable. Python dictionaries allow us to
store key-value pairs. Python lists grow according to our needs and they shrink
when we delete items from them.

Java has two data types comparable to Python lists. We begin by learning
about the array; it is a homogeneous mutable sequence type of fixed size. When
you create an array it must be of a fixed size. If you run out of room and wish
to add more entries, you must create a new, bigger array, copy your array into
its new home and then abandon the old array. You should only use arrays if
you want a list of a fixed size. All entries in the array must be of the same type.
Arrays can be of primitive or object type. The array itself is an object. We
see that an array lives up to its description as a homogeneous mutable sequence
type.

Open an interactive session in DrJava and hit F5 to reset the interactions
pane. We will use our first import statement here. The import statement
works much as it does in Python. Importing the class java.util.Arrays will

69

70 CHAPTER 3. TRANSLATING PYTHON TO JAVA

give us a convenient way to print the contents of an array; the built-in string
representation of an array is unsatisfactory.

Let us begin by declaring a variable of integer array type.

> import java.util.Arrays;

> int[] x;

Now let’s try to assign something to an entry.

> x[0] = 1

NullPointerException:

at java.lang.reflect.Array.get(Native Method)

We are greeted by a surly error message. Here is one sure reason why.

> Arrays.toString(x)

"null"

Right now, the array is pointing at Java’s “graveyard state” null. If you at-
tempt to use a method on a object pointing at null, you will get a run time
error called a NullPointerException. We need to give the array some actual
memory to point to; this is where we indicate the array’s size.

We call the special array constructor to attach an actual array to the array
pointer x. After we attach the array, notice how we obtain the array’s length.

> x = new int[10];

> Arrays.toString(x)

"[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]"

> x.length

10

Observe that Java politely placed a zero in each entry in this integer array. This
will happen for any primitive numerical type. If you make an array of booleans,
it will be populated with the value false. In a character array, watch what
happens.

> char[] y = new char[10];

> Arrays.toString(y)

"[, , , , , , , , ,]"

> (int) y[0]

0

The array is filled with the null character which has ASCII value 0. It is not a
printable character. An array of object type is filled with nulls. You will need
to loop through the array and use new to attach an object to each entry.

3.1. JAVA DATA STRUCTURES 71

Arrays have indices, just as lists do in Python. Remember, you should think
of the indices as living between the array entries. Arrays know their length, too;
just use .length. Notice that this is NOT a method and it is an error to use
parentheses.

3.1.1 Goodies inside of java.util.Arrays

The convenience class java.util.Arrays is a “service class” that has useful
methods for working with arrays. We will demonstrate some of its methods
here. If you are working on arrays, look to it first as as a means of doing routine
chores with arrays. Its methods are fast, efficient and tested.

Go to the API page; you will see some useful items there. Here is a summary
of the most important ones for us. We will use Type to stand for a primitive or
object type. Hence Type[] means an array of type Type. You call all of these
methods by using Arrays.method(arg(s)).

Header Action
Type[] copyOf(Type[]

original, int newLength)

This copies your array and returns the
copy. If the newLength is shorter than your
array, your array is truncated. Otherwise,
it is lengthened and the extra entries are
padded with the default value of Type.

Type[]

copyOfRange(Type[]

original, int from,

int to)

This returns a slice of your original array,
between indices from and to. Using illegal
entries generates a run time error.

boolean equals(Type[] array1,
Type[] array2)

This returns true if the two arrays have
the same length and contain the same val-
ues. It works just like Python’s == on lists.

void fill(Type[] array, Type
value)

This will replace all of the entries in the
array array with the value value.

void fill(Type[] array, int
from, int to, Type value)

This will replace the entries between in-
dices from and to with the value value.

String toString(Type[]

array

This pretty-prints your array as a string.
You have seen this used.

3.1.2 Fixed Size? I’m finding this very confining!

We now introduce a new class and a new piece of Java syntax. An ArrayList

is a variable-size array. There are two ways to work with ArrayLists and we
will show them both.

Let us create an ArrayList and put some items in it. To work with an
ArrayList you will need to import the class. The import statement in the inter-

72 CHAPTER 3. TRANSLATING PYTHON TO JAVA

active session below shows how to make the class visible. java.util.ArrayList
is the fully–qualified name of this class. The import statement puts us on a
“first-name” basis with the class.

How do I know what to import? Look the class ArrayList up in the API
guide. Near the top of the page, you will see this.

java.util
ArrayList<E>

This tells you that the ArrayList class lives in the package java.util.
Therefore you should place this at the top of your code. Do not put the <E> in
the import statement.

import java.util.ArrayList;

We will use the ArrayList’s add method to place new items on the list we
create.

> import java.util.ArrayList;

> ArrayList pool = new ArrayList();

> pool

[]

> pool.add("noodle")

true

> pool.add("chlorine")

true

> pool.add("algicide")

true

> pool

[noodle, chlorine, algicide]

> pool.get(0)

"noodle"

All looks pretty good here. But then there is an irritating snag.

> pool.get(0).charAt(0)

Error: No ’charAt’ method in ’}java.lang.Object’ with arguments: (int)

>

3.1.3 A Brief but Necessary Diversion: What is this Object
object?

To explain what just happened to us properly, we will take a look into the near
future that lurks in Chapter 4. Every object of object type in Java, logically

3.1. JAVA DATA STRUCTURES 73

enough, is an Object. Go into the API guide and look up the class Object.

Every Java class has a place in the Java class hierarchy, including the ones
you create. What is different from human family trees is that a Java class has
one parent class. A Java class can have any number of children. This hierarchy is
independent of the hierarchical structure imposed on the Java Standard Library
by packages.

The Java class hierarchy is an Australian (upside–down) tree, just like your
file system. In LINUX, your file system has a root directory called /. In the
Java class hierarchy, the class Object is the root class.

Heretofore, we have created seemingly stand–alone classes. Our classes, in
fact have not really been “stand–alone.” Automatically, Java enrolls them into
the class hierarchy and makes them children of the Object class. This is why
every object has a toString() method, even if you never created it.

The only stand–alone types are the primitive types. They are entirely outside
of the Java class hierarchy. At the end of this chapter, you will see that these,
too, have Object analogs.

What is entailed in this parent–child relationship? The child inherits the
public portion of the parent class. In a human inheritance, the heirs can decide
what to do with the property they receive. They can use the property for its
original purpose or redirect it to a new purpose. In Java, the same rule applies.
When we made a toString() method for our Point class, we decided to redirect
our inheritance. Every Java object is born with a toString() method. Unfor-
tunately the base toString() method gives us a default string representation
of our object that looks like this.

ClassName@ABunchOfHexDigits

We decided this is not terribly useful so we overrode the base toString() method
and replaced it with our own. To override a method in a parent class, just re–
implement the method, with exactly the same signature, in the child class. We
also overrode the clone() method in the parent class. If you intend to copy
objects, do not trust the clone() you inherit from Object.

This table describes the methods in the Object class and the relevance of
each of them to us now.

74 CHAPTER 3. TRANSLATING PYTHON TO JAVA

Object Method Description
clone() This method creates and returns a copy of an ob-

ject. You should override this if you intend to use
independent copies of instance of your class.

finalize() This method is automatically called when the
garbage collector arrives to reclaim the object’s
memory. We will rarely if ever use it.

getClass() This method tells you the class that an object was
created from.

notify() This method is used in threaded programs. We will
deal with this much later

The three wait methods and the notifyAll methods all apply in threaded
programming. Threads allow our programs to spawn subprocesses that run
independently of our main program. Since these are a part of Object, this tells
you that threading is built right into the core of the Java language. We will
develop threading much later.

3.1.4 And Now Back to the Matter at Hand

Everything is returned from an ArrayList is an Object. Strings have a charAt()
method, but an Object does not. As a result you must perform a cast to use
things you get from an ArrayList. Here is the (ugly) syntax. Ugh. It’s as ugly
as Scheme or Lisp.

> ((String)pool).get(0).charAt(0)

’n’

>

This is the way things were until Java 5. Now we have generics that allow
us to specify the type of object to go in an ArrayList. Generics make a lot
of the ugliness go away. The small price you pay is you must specify a type of
object you are placing in the ArrayList. The type you specify is placed in the
type parameter that goes inside the angle brackets < >. You may use any
object type as a type parameter; you may not do this for primitive types.

ArrayList<String> farm = new ArrayList<String>();

> farm.add("cow")

true

> farm.get(0).charAt(0)

’c’

>

Warning: Deception Reigns King Here! All here has a pleasing cosmetic
appearance. However, it’s time to take a peek behind the scenes and see the

3.1. JAVA DATA STRUCTURES 75

real way that generics work.

What happens behind the scenes is that the compiler enforces the type
restriction. It also automatically inserts the needed casts for the get() method.
Java then erases all evidence of generics prior to run time.

The generic mechanism should not work at run time. However, the wizards
who created DrJava made generics work at run-time.

At run time you actually could add any type of of object to an ArrayList of
strings in the interactions pane. So here is what happens behind the scenes.

1. You make an ArrayList of some type, say String by using the ArrayList<String>
syntax.

2. You put things on the list with add and friends and gain access to them
with the get() method.

3. The compiler will add the necessary casts to String type when you refer
to the entries of the ArrayList using get(), removing this annoyance
from your code.

4. The compiler then performs type erasure; it eliminates all mention of the
type parameter from the code, so to the run time environment, ArrayLists
look like old–style ArrayLists at run time.

This is a smart decision for two reason. One reason is that it prevents legacy
code from breaking. That code will get compiler growlings and warnings about
“raw types” but it will continue to work.

Secondly, if you declare ArrayLists of various type, each type of ArrayList
does not generate new byte code. If you are familiar with C++, you may have
heard that C++’s version of generics, templates, causes “code bloat;” each new
type declared using a C++ template creates new object code in your executable
file. Because of type erasure, Java does not do this.

Let us now make a sample class that takes full advantage of generics. First,
let us make a version without generics and see something go wrong.

import java.util.ArrayList;

public class StringList

{

ArrayList theList;

public StringList()

{

theList = new ArrayList();

}

public boolean add(String newItem)

{

return theList.add(newItem);

76 CHAPTER 3. TRANSLATING PYTHON TO JAVA

}

public String get(int k)

{

return theList.get(k);

}

}

Compile this program and you will get a nastygram like this.

1 error and 1 warning found:

*** Error ***

File: /home/morrison/book/texed/Java/StringList.java [line: 15]

Error: /home/morrison/book/texed/Java/StringList.java:15: incompatible types

found : java.lang.Object

required: java.lang.String

** Warning **

File: /home/morrison/book/texed/Java/StringList.java [line: 11]

Warning: /home/morrison/book/texed/Java/StringList.java:11:

warning: [unchecked] unchecked call to add(E) as a member

of the raw type java.util.ArrayList

The error is that we are advertising that get returns a String; the ArrayList’s
get() only returns an Object. Now let us add the type parameter <String> to
the code. Your code compiles. Let us now inspect our class interactively. We
can now cast aside our worries about casts.

> StringList s = new StringList();

> s.add("Babe Ruth")

true

> s.add("Mickey Mantle")

true

> s.add("Lou Gehrig")

true

> s.get(0)

"Babe Ruth"

> s.get(0).charAt(0)

’B’

>

You can see that s.get(0) in fact returns a String, not just an Object, since
it accepts the charAt() message.

3.2. CONDITIONAL EXECUTION IN JAVA 77

Programming Exercises These exercises will help familiarize you with the
ArrayList API page. This class offers an abundance of useful services. Create
a class called Al and place the indicated methods inside of it. Inspect them in
the interactions pane to test them.

1. Make a new ArrayList of strings named roster.

2. Add several lower-case words to the ArrayList; view its contents as you
add them.

3. Enter this command import java.util.Collections.

4. Type this command Collections.sort(roster); Tell what happens.

5. Type this command Collections.shuffle(roster); Tell what happens.

6. Add some upper-case words. How do they get sorted in the list using
Collections.sort()?

3.2 Conditional Execution in Java

Java, like Python, supports conditional execution. Python has if, elif and
else statements. These are all boss statements. All of this is the works the
same way in Java, but the appearance is a little different. Here is a comparison
method called ticketTaker in Python and Java. First we show the Python
version.

def ticketTaker(age):

if age < 13:

print "You may only see G movies."

elif age < 17:

print "You may only see PG or G movies."

elif age < 18:

print "You may only see R, PG, or G-rated movies."

else:

print "You may see any movie."

The Java version is quite similar. The keywords change a bit. Notice that
the predicates are enclosed in parentheses. This is required. Observe in this
example that you can put a one–line statement after an if, else if or else

without using curly braces. If you want one more than one line or an empty
block attached to any of these, you must use curly braces.

public void ticketTaker(int age):

if (age < 13)

{

System.out.println("You may only see G movies.");

78 CHAPTER 3. TRANSLATING PYTHON TO JAVA

}

else if (age < 17)

{

System.out.println("You may only see PG or G- movies.");

}

else if (age < 18)

{

System.out.println("You may only see R, PG or G movies.");

}

else

{

System.out.println("You may see any movie.);

}

Both languages support a ternary statement. We shall illustrate it in an absolute
value function for both languages. First here is the Python version.

def abs(x):

return x if x >= 0 else -x

Now we show Java’s ternary operator at work.

public int abs(int x)

{

return x >= 0 ? x : -x;

}

Use parenthesis to keep the order of operations from producing undesired results
where necessary.

Java supports an additional mechanism, the switch statement for forking.
We show an example of this statement and then explain its action.

public class Stand

{

public String fruit(char c)

{

String out = "";

switch(c)

{

case ’a’: case ’A’:

out = "apple";

break;

case ’b’: case ’B’:

out = "blueberry";

break;

3.3. EXTENDED–PRECISION INTEGER ARITHMETIC IN JAVA 79

case ’c’: case ’C’:

out = "cherry";

break;

default:

out = "No fruit with this letter";

}

return out;

}

}

Let us now instantiate the Stand class and test its fruit method.

Welcome to DrJava. Working directory is /home/morrison/book/texed/Java

> s = new Stand()

Stand@6504bc

> s.fruit(’A’)

"apple"

> s.fruit(’b’)

"blueberry"

> s.fruit(’z’)

"No fruit with this letter"

>

The switch–case statement only allows you to switch on a variable of integral
type, i.e. an integer or character type. Java 7 also allows you to switch on a
String.

This construct cannot be used on variables of floating-point type. Do not
use it on a boolean variable; for these, we use the if machinery. At the end of
each row of one or more cases, you place zero or more lines of code followed by
a break statement. Remove various break statements and note the behavior of
the function. You will see that they play an important role. If you do not like
switch–case, you can live without it with little or no deleterious effect.

3.3 Extended–Precision Integer Arithmetic in Java

We shall introduce a new class, BigInteger, which does extended–precision
integer arithmetic. Go into the Java API guide and bring up the page for
BigInteger. Just under the main heading

java.math
Class BigInteger

you well see this class’s family tree. Its parent is java.lang.Number and its
grandparent is java.lang.Object. The fully–qualified name of the class is

80 CHAPTER 3. TRANSLATING PYTHON TO JAVA

java.math.BigInteger. To use the class, you will need to put the import
statement

import java.math.BigInteger;

at the top of your program. You can always look at the bottom of the family
tree to see what import statement is needed.

Remember that you never need to import any class that is in java.lang,
such as java.lang.String. These are automatically imported for you. Python
seamlessly integrates super-long integers into the language. This is not so in
Java. Java class developers cannot override the basic operators like +, -, * and
/.

Begin by looking a the Constructor summary. The most useful constructor
to us seems to be

BigInteger(String val)

Now we shall experiment with this in an interactive session.

> import java.math.BigInteger;

> p = new BigInteger("1");

> p

1

>

We now have the number 1 stored as a BigInteger. Continuing our session, we
attempt to compute 1 + 1.

> p + p

Error: Bad type in addition

>

In a program this would be a compiler error. Now go into the method summary
and look for add.

> p.add(p)

2

> p

1

>

The add method computes 1 + 1 in BigInteger world and comes up with
2. Notice that the value of p did not change. This is no surprise, because
BigIntegers are immutable.

3.3. EXTENDED–PRECISION INTEGER ARITHMETIC IN JAVA 81

To find out if a class makes immutable objects, look in the preface on its
page in the API guide. First you see the header on this page, then the family
tree. Then there is a horizontal rule, and you see the text

public class BigInteger

extends Number

implements Comparable<BigInteger>

The phrase “extends Number” just means that the Number class is the parent
of BigInteger. We will learn what “implements” means when we deal with
interfaces; we do not need it now.

Next you see the preamble, which briefly describes the class. Here it says
“Immutable arbitrary–precision integers.” So, as with strings, you must orphan
what a variable points at to get the variable to point at anything new. Now let
us see exponentiation, multiplication, subtraction and division at work.

> import java.math.BigInteger;

> a = new BigInteger("1341121");

> b = a.pow(5);

> a

1341121

> b

4338502129107268229778644529601

> c = b.multiply(new BigInteger("100"))

433850212910726822977864452960100

> d = a.subtract(new BigInteger("1121"));

> d

1340000

> d.divide(new BigInteger("1000"))

1340

>

It would be convenient to have a way to convert a regular integer to a big integer.
There is a method

static BigInteger valueOf(long val)

that looks promising, but what is this static thing? For now it means you can
call this method without making an instance of the class. We will get more into
static methods later. To call this (static) method, the usage is

BigInteger.valueof(whateverIntegerYouWantConverted)

This is true of any static method. Use static items now without fear. You may
always call them using the class name as shown here. We already slipped this in

82 CHAPTER 3. TRANSLATING PYTHON TO JAVA

whilst you were not looking; every method in the classes Math and Arrays are
static. The BigInteger.valueOf() method is called a static factory method; it
is a “factory” that converts regular integers into their bigger brethren.

We now show an example or two. Be reminded of the need to use the equals
method when working with variables pointing at objects, so you do not get a
surprise.

> import java.math.BigInteger;

> p = BigInteger.valueOf(3)

3

> q = new BigInteger("3")

3

> p == q

false

> p.equals(q)

true

>

3.4 Recursion in Java

Java supports recursion, and subject to the new syntax you learned in Java, it
works nearly the same way. All of the pitfalls and benefits you learned about in
Python apply in Java. Let us write a factorial function using the BigInteger

class Recall the structure of the factorial function in Python.

def factorial(n):

return 1 if n <= 0 else n*factorial(n - 1)

Everything was so simple and snappy.

Now we have to convert this to Java using the operations provided by
BigInteger. We do have some tools at hand. BigInteger.valueOf() con-
verts regular integers into their leviathan brethren. We also have to deal with
the .multiply syntax to multiply. Finally, we must remember, we are returning
a BigInteger. Bearing all those consideration in mind, you should get some-
thing like this. If the ternary operators is not quite to your taste, use an if

statement instead. We have broken the big line here solely for typographical
convenience.

import java.math.BigInteger;

public class Recursion

{

public BigInteger factorial(int n)

3.4. RECURSION IN JAVA 83

{

return n > 0 ?

factorial(n - 1).multiply(BigInteger.valueOf(n)):

BigInteger.valueOf(1);

}

}

Now let us test our function.

> r = new Recursion();

> r.factorial(6)

720

> r.factorial(100)

933262154439441526816992388562667004907159682

643816214685929638952175999932299156089414639

761565182862536979208272237582511852109168640

00000000000000000000000

> r.factorial(1000)

40238726007709 ... (scads of digits) ...00000

>

Recursion can be used as a repetition mechanism. We add a second method
repeat to our class to character or string is passed it any specified integer
number of times to imitate Python’s string * int repeat mechanism. This
will serve as a nice example of method overloading. First let us work with
the String case. Let us call the String s and the integer n. If n <= 0, we
should return an empty string. Otherwise, let us glue a copy of s to the string
repeat(s, n - 1)

public String repeat(String s, int n)

{

String out = "";

if(n > 0)

{

out += s + repeat(s, n - 1);

}

return out;

}

Now we get the character case with very little work.

public String repeat(char ch, int n)

{

return repeat("" + ch, n)

}

84 CHAPTER 3. TRANSLATING PYTHON TO JAVA

Now our repeat method will repeat a character or a string. We do not need
to worry about the character or string we need to repeat. Method overloading
makes sure the right method is called.

3.5 Looping in Java

We have already seen the while loop in Java. It works in a manner entirely
similar to Python’s while loop. For your convenience, here is a quick comparison

while predicate:

bodyOfLoop

while(predicate)

{

bodyOfloop

}

It looks pretty much the same. All of the same warnings (beware of hanging
and spewing) apply for both languages.

Java also offers a second version of the while loop, the do-while loop. Such
a loop looks like this.

do

{

bodyOfloop

}

while(predicate);

The body of the loop executes unconditionally the first time, then the predicate
is checked. What is important to realize is that the predicate is checked after
each execution of the body of the loop. When the predicate evaluates to false,
the loop’s execution ends. Almost always, you should prefer the while loop
over the do-while loop. When using this loop, take note of the semicolon; you
will get angry yellow if you omit it.

Java has two versions of the for loop. One behaves somewhat like a variant
of the while loop and comes to us from C/C++. The other is a definite loop
for iterating through a collection.

First let us look at the C/C++ for loop; its syntax is

for(initializer; test; between)

{

loopBody

}

3.6. STATIC AND FINAL 85

This loop works as follows. The initializer runs once at when the loop is first
encountered. The initializer may contain variable declarations or initializations.
Any variable declared here has scope only in the loop.

The test is a predicate. Before each repetition of the loop, the test is run.
If the test fails (evaluates to false), the loop is done and control passes beyond
the end of the loop. If the test passes, the code represented by loopBody is
executed. The between code now executes. The test predicate is evaluated, if
it is true, the loopBody executes. This process continues until the test fails,
at which time the loop ends and control passes to the line of code immediately
beyond the loop. This loop is basically a modified while loop.

Java also has a for loop for collections that works similarly to Python’s for
loop. Observe that the loop variable k is an iterator, just as it is in Python’s for
loop. It has a look-but-don’t-touch relationship with the entries of the array.
It grants access but does not allow mutation. This works for both class and
primitive types.

import java.util.ArrayList;

> ArrayList<String> cats = new ArrayList<String> ();

> cats.add("siamese")

true

> cats.add("javanese")

true

> cats.add("manx")

true

> for(String k : cats){System.out.println(k);}

siamese

javanese

manx

> for(String k : cats){k = "";}//Look, but don’t touch!

> for(String k : cats){System.out.println(k);}

siamese

javanese

manx

3.6 Static and final

You have noticed that the static keyword appears sometimes in the API guide.
In Java, static means “shared.” Static portions of your class are shared by all
instances of the class. They must, therefore, be independent of any instance of
the class, or instance-invariant.

When you first instantiate a class in a program, the Java class loader first
sets up housekeeping. It loads the byte code for the class into RAM.

86 CHAPTER 3. TRANSLATING PYTHON TO JAVA

Before the constructor is called, any static items go in a special part of
memory that is visible to all instances of the class. Think of this portion of
memory as being a bulletin board visible to all instances of the class. You may
make static items public or private, as you see fit.

When state variable or method is static, it can be called by the class’s name.
For instance, BigInteger.valueOf() is a static method that converts any long

into a BigInteger. Recall we called this method a static factory method; it
is static and behaves as a “factory” that accepts longs and converts the to
BigIntegers.

Two other familiar examples are the Math and Arrays classes. In the
Math class, recall you find a square-root by using Math.sqrt(), in Arrays,
Arrays.toString(somearray) creates a string representation of the array passed
it. All of Math’s and Arrays methods are static. Neither has a public construc-
tor. Both are called convenience or service classes that exist as containers for
related methods.

You can also have state variables that are declared static. In the Math library,
there are Math.PI and Math.E. These instance variables are static. They are
also final; they are immutable variables. Variables anywhere in Java can be
marked final; this means you cannot change the datum the variables point to.
However, you can call mutator methods on that datum and change the state of
the object a final variable points to. Be aware that, in this context, finality is
a property of variables and not objects. What you cannot do is to make such
a variable point at a different object. Since primitive types have no mutator
methods, they cannot be changed at all if they are marked final. Primitive and
object variables are completely constant if they are marked final ; the values
they point at and the state of the objects they point at cannot be changed.

You can also have a static block at in your class. Code inside this block is
run when the class is first loaded. Use it to do things such as initializing static
data members. In fact, it is a desirable postcondition of your static block
running that all static state variables be initialized. Now let us put final and
static to work.

The Minter class shown here gives each new instance an ID number, starting
with 1. The static variable nextID acts as a “well” from which ID numbers are
drawn. The IDNumber instance variable is marked final, so the ID number
cannot be changed throughout any given Minter’s lifetime.

public class Minter

{

private static int nextID;

final private int ID;

static

{

nextID = 1;

3.6. STATIC AND FINAL 87

}

public Minter()

{

ID = nextID;

nextID++;

}

public String toString()

{

return "Minter, ID = " + ID;

}

}

3.6.1 Etiquette Between Static and Non-Static Members

Since the Java class loader creates the static data for a class before any instance
of the class is created, there is a separation between static and non–static por-
tions of a class.

Non–static methods and state variables may access static portions of a class.
This works because the static portion of the class is created before any instance
of the class is created, so everything needed is in place. Outside of your class,
other classes may see and use the static portions of your class that are marked
public. These client programmers do not need to instantiate your class. They
can gain access to any static class member, be it a method or a state variable
by using the

ClassName.staticMember

construct.

The reverse is not permitted. If a method of your class is static, it cannot
call non-static methods of your class. It is not allowed to use non–static state
variables.

The key to understanding why is to know that static data is shared by all
instances of the class. Hence, to be well-defined, static data must be instance–
invariant. Since your class methods can, and more often than not, do depend
on the state variables in your class, they in general are not instance–invariant.
Static methods and variables belong to the class as a whole, not any one instance.
This restriction will be enforced by the compiler. Even if a method does not
depend upon a class’s state, unless you declare it static, it is not static and
static methods may not call it.

To use any class method in the non-static portion of your class, you must
first instantiate the class and call the methods via that instance. We will see an
example this at work in the following subsection

88 CHAPTER 3. TRANSLATING PYTHON TO JAVA

3.6.2 How do I Make my Class Executable?

To make your class executable, add the following special method.

public static void main(String[] args)

{

yourExecutableCode

}

To run your class, compile it. Select the interactions pane in the bottom window
and hit F2. You can also type

> java YourClassName

at the prompt. Do not put any extension on YourClassName.

For a simple example, place this method in the Minter class we just studied.

public static void main(String[] args)

{

Minter m = new Minter();

System.out.println(m);

}

Run the class and you will see it is now executable. Hitting the F2 button in
your class’s code window automatically causes the java command to be placed
at the prompt.

> java Minter

Minter, IDNumber = 1

Observe that we made a tacit call to a method of the class Minter. To use
the class, we had to create an instance m of Minter first. When we called
System.out.println, we made a tacit call to m.toString(). You cannot make
naked (no-instance) methods calls to non-static methods in main. You can,
however, see the private parts of instances of the class.

Really, it is best to think of main as being outside the class and just use
instance of your or other classes and use their (public) interface.

Finally, notice that main has an argument list with one argument, String[]
args. This argument is an array of Strings. This is how command–line argu-
ments are implemented in Java. We now show a class that demonstrates this
feature.

public class CommandLineDemo

3.7. THE WRAPPER CLASSES 89

{

public static void main(String[] args)

{

int num = args.length;

System.out.println("You entered " + num + " arguments.");

int count = 0;

for (String k: args)

{

System.out.println("args[" + count + "] = " + k);

count ++;

}

}

}

Now we shall run our program with some command–line arguments. You need
to type in the java command yourself rather than just hitting F2.

> java CommandLineDemo one two three

You entered 3 arguments.

args[0] = one

args[1] = two

args[2] = three

>

Even if you do not intend for your class to be executable, the main method is an
excellent place for putting test code for your class. Making your class executable
can save typing into the interactions pane. It is also necessary if you ever want
to distribute your application in an Java archive, which is an executable file.

3.7 The Wrapper Classes

Every primitive type in Java has a corresponding wrapper class. Such a class
“wraps” the primitive object. These classes also supply various useful methods
associated with each primitive type. Here is a table showing the wrapper classes.

90 CHAPTER 3. TRANSLATING PYTHON TO JAVA

Wrapper Classes
Primitive Wrapper
byte Byte
short Short
int Integer
long Long
boolean Boolean
float Float
double Double
char Character

All of these classes have certain common features. You should explore the
API guide for each wrapper. They have many helpful features that will save
you from reinventing a host of wheels.

• Immutability Instances of these classes are immutable. You may not
change the datum. You may only orphan it. This should remind you of
Python.

• Finality These classes are final. You may not create child classes from
them.

• A toString() Method, which returns a string representation of the da-
tum.

• A static toString(primitiveType p) Method This method will con-
vert the object passed it into a string. For example, Integer.toString(45)
returns the string "45".

• A static parsePrimitive(String s) Method This method converts a
string into a value of the primitive type. For example,

Integer.parseInt("455")}

converts the string "455" into the integer 455. For numerical types, a
NumberFormatException is thrown if an malformed numerical string is
passed them. The Character wrapper does not have this feature. You
should take note of how this method works in a Boolean.

• Membership in java.lang All of these classes belong to the package
java.lang; you do not need to include anything to use these classes.

3.7.1 Autoboxing and Autounboxing

These Java 5 features make using the wrapper classes simple. Autoboxing auto-
matically promotes a primitive to a wrapper class type where appropriate. Here
is an example. The command

Integer i = 5;

3.8. A CAVEAT 91

really amounts to

Integer i = new Integer(5);

This call to new “boxes” the primitive 5 into an object of type Integer. The
command Integer i = 5; automatically boxes the primitive 5 inside an object
of type Integer. This results in a pleasing syntactical economy.

Autounboxing allows the following sensible–looking code.

Integer i = 5;

int x = i;

Here, the datum is automatically “unboxed” from the wrapper Integer type
and it is handed to the primitive type variable x.

The following convenience is also provided.

> Integer i = 5;

> int x = 5;

> i == x

true

>

Autoboxing and autounboxing eliminate a lot of verbosity from Java; we no
longer need to make most valueOf and equals calls.

3.8 A Caveat

Do not box primitive types gratuitously. If you can keep variables primitive
without a sacrifice of clarity or functionality, do so. Here is an example of a big
mistake caused by seemingly innocuous choice.

for(Integer i = 0; i < 1000000; i++)

{

//code

}

Here the integer i will be unboxed to be incremented and reboxed one million
times. This will be a significant performance hit. This is much better.

for(int i = 0; i < 1000000; i++)

{

//code

}

92 CHAPTER 3. TRANSLATING PYTHON TO JAVA

Note that if you wish to make an ArrayList of primitives, you should use
the wrapper type as the type parameter. For example

ArrayList<Integer> numbers = new ArrayList<Integer>();

creates an array list with integer entries.

Use the wrapper classes to do these exercises.

Programming Exercises

1. Write an expression to see if a character is an upper-case letter.

2. Write a method that converts an integer into a comma format string as
follows.

• 456 7→ 456

• 32768 7→ 32,768

• 1048576 7→ 1,048,576

3. Write a simple program that queries the user with a JOptionPane to enter
an integer and which converts the integer string entered by the user to an
int.

3.9 Case Study: An Extended-Precision Frac-
tion Class

We have achieved several goals in this chapter, the most important of which
are understanding what makes up a Java class and understanding the core Java
language so as to be Turing-complete.

To tie everything together, we will do a case study of creating a class called
BigFraction, which will work like the BigInteger class and provide many of
the same operations, except it will do exact fractional arithmetic.

We select this case study because it brings to the fore a variety of important
design questions. When we are done, we will have a nice facility for computing
with fractions. You will get to see the development of a moderately sophisiti-
cated class from scratch.

As we proceed we will place appropriate test code in an main method.

Let us begin by thinking about fractions. We know a fraction has two im-
portant items reflecting its state: its numerator and its denominator. Fractions
have some slippery properties. For example, we know that

1

4
=

256

1024
.

3.9. CASE STUDY: AN EXTENDED-PRECISION FRACTION CLASS 93

The representation of a fraction in terms of numerator and denominator is not
unique.

An interesting collection of numbers is the harmonic numbers; they are de-
fined by

Hn =

n∑
k=1

1

k
, n ∈ N.

Let us show the first few harmonic numbers. It is easy to see that H1 = 1. We
have

H2 = 1 +
1

2
=

3

2
.

Next,

H3 = H2 +
1

3
=

3

2
+

1

3
=

11

6
.

Now let’s skip down to H10.

H10 =
7381

2520
.

One thing is clear: as we keep adding fractions, their numerators and denom-
inators have a propensity to keep getting larger. We know that the primitive
int and long types are not going to cut the mustard here because they will
overflow and produce false results.

We will therefore use BigInteger for the numerator and denominator of our
BigFractionss. We should be able to compute H100 or even H1000.

3.9.1 Making a Proper Constructor and toString() Method

When starting out to build a class, we begin by creating a suitable constructor.
Along the way, you will need a toString() method so you can see what you
are doing.

We begin with this crude attempt. We are mimicing our work on the Point

class we developed earlier.

import java.math.BigInteger;

public class BigFraction

{

private BigInteger num;

private BigInteger denom;

public BigFraction(BigInteger _num, BigInteger _denom)

{

num = _num;

denom = _denom;

}

}

94 CHAPTER 3. TRANSLATING PYTHON TO JAVA

It is easy to see that there will be problems. Suppose a client programmer
writes this code.

BigInteger a = new BigInteger("256");

BigInteger b = new BigInteger("1024");

BigFraction f = new BigFraction(a, b);

It seems ridiculous that this fraction should be stored as 256/1024 when it is in
fact 1/4. Hence, it seems we should keep our fractions reduced.

To reduce a fraction, you compute the greatest common divisor of the nu-
merator and denominator and divide it out of both. Notice that the BigInteger
class computes gcds for you, so we can alter our constructor as folllows.

public BigFraction(BigInteger _num, BigInteger _denom)

{

num = _num;

denom = _denom;

BigInteger d = num.gcd(denom);

num = num.divide(d);

denom = denom.divide(d);

}

Let us now see what this looks like.

> import java.math.BigInteger;

> BigInteger a = new BigInteger("256");

> BigInteger b = new BigInteger("1024");

> BigFraction f = new BigFraction(a,b)

> f

BigFraction@6ad20835

>

Oops. The built-in toString() method is not doing such a great job. Let’s
override it so it make fractions that look like this: 45/17. Here is our revised
class.

import java.math.BigInteger;

public class BigFraction

{

private BigInteger num;

private BigInteger denom;

public BigFraction(BigInteger _num, BigInteger _denom)

{

num = _num;

3.9. CASE STUDY: AN EXTENDED-PRECISION FRACTION CLASS 95

denom = _denom;

BigInteger d = num.gcd(denom);

num = num.divide(d);

denom = denom.divide(d);

}

public String toString()

{

return "" + num + "/" + denom;

}

}

Now we try our unreduced fraction and find things in a happy state.

> import java.math.BigInteger;

> BigInteger a = new BigInteger("256");

> BigInteger b = new BigInteger("1024");

> BigFraction f = new BigFraction(a,b);

> f

1/4

>

There is yet one more thing to do to button this up. This little session should
prove convincing.

> BigInteger b = new BigInteger("-1024");

> BigFraction f = new BigFraction(a,b);

> f

1/-4

>

If we put the negative on the top, the toString() method will work nicely.
We also get the benefit that we can check fraction equality by just checking for
equality of numerator and denomonator.

All we need do is to add something like this to the constructor.

if(denom < 0)

{

denom = -denom;

}

However, we are indulging here in illegal operations on BigIntegers. Looking
on the API page, we can see that there is a negate() method that returns
a copy of the BigInteger with its sign changed. Also, there is a compareTo

method. The expression

96 CHAPTER 3. TRANSLATING PYTHON TO JAVA

foo.compareTo(goo)

returns a negative integer if foo < goo, a positive integer if foo > goo and 0
if foo == goo. We integrate these features into our class and we now have

import java.math.BigInteger;

public class BigFraction

{

private BigInteger num;

private BigInteger denom;

public BigFraction(BigInteger _num, BigInteger _denom)

{

num = _num;

denom = _denom;

BigInteger d = num.gcd(denom);

num = num.divide(d);

denom = denom.divide(d);

if(denom.compareTo(BigInteger.ZERO) < 0)

{

num = num.negate();

denom = denom.negate();

}

}

public String toString()

{

return "" + num + "/" + denom;

}

}

3.10 Overloading the Constructor

Wouldn’t it be nice to be able to make a BigFraction with ordinary integers. In
fact, it would be a smart play to use the long type, since a long type argument
will happily accept an int, short, or byte. We will use this to call the main
constructor, so we do not have to repeat all of the heavy lifting it does.

To this end, we avail ourselves of the valueOf method for BigInteger.

public BigFraction(long _num, long _denom)

{

this(BigInteger.valueOf(_num), BigInteger.valueOf(_denom));

}

While we are here, let’s make the (obvious) default.

3.10. OVERLOADING THE CONSTRUCTOR 97

public BigFraction()

{

this(0,1);

}

Finally we shall send an ugly message to the woebegone client programmer
who tries to create a BigFraction with a zero demoninator. Insert this line in
the main constructor, just after num and denom are initialized.

if(denom.equals(BigInteger.ZERO)

throw new IllegalArgumentException();

This will bring immediate program death to the miscreant client programmer
who calls it.

Here is our class with everything added to it.

import java.math.BigInteger;

public class BigFraction

{

private BigInteger num;

private BigInteger denom;

public BigFraction(BigInteger _num, BigInteger _denom)

{

num = _num;

denom = _denom;

if(denom.equals(BigInteger.ZERO))

throw new IllegalArgumentException();

BigInteger d = num.gcd(denom);

num = num.divide(d);

denom = denom.divide(d);

if(denom.compareTo(BigInteger.ZERO) < 0)

{

num = num.negate();

denom = denom.negate();

}

}

public BigFraction(long _num, long _denom)

{

this(BigInteger.valueOf(_num), BigInteger.valueOf(_denom));

}

public BigFraction()

{

this(0,1);

98 CHAPTER 3. TRANSLATING PYTHON TO JAVA

}

public String toString()

{

return "" + num + "/" + denom;

}

}

Finally, let’s take this all for a test-drive. First we look at our main “workhorse”
constuctor.

> import java.math.BigInteger;

> BigInteger a = new BigInteger("1048576");

> BigInteger b = new BigInteger("7776");

> BigFraction f = new BigFraction(a,b)

> f

32768/243

>

Our second constructor makes this process less verbose.

> BigFraction g = new BigFraction(1048576, 7776)

> g

32768/243

>

Here we see our default constructor.

> BigFraction z = new BigFraction()

> z

0/1

>

Finally we tempt and see death.

> BigFraction rotten = new BigFraction(5,0)

java.lang.IllegalArgumentException

at BigFraction.<init>(BigFraction.java:12)

at BigFraction.<init>(BigFraction.java:25)

>

This exception object will immediately halt any program that is running and
that calls the constructor illegally.

3.11. CREATING AN EQUALS METHOD 99

3.11 Creating an equals Method

This process is always the same. First do the species test. Then cast the Object
in the argument list to a BigFraction. Once this is done, creating equals is
easy, since all we need to is to compare equality of numerator and denominator.

public boolean equals(Object o)

{

if(! (o instanceof BigFraction))

return false;

BigFraction that = (BigFraction) o;

return num.equals(that.num) && denom.equals(that.denom);

}

Note that since we are comparing BigIntegers in the return statement, we
must use the equals method for BigInteger.

Now lets take this for a walk. We begin by making some instances.

> BigFraction f = new BigFraction(1,3);

> BigFraction g = new BigFraction(1,2);

> BigFraction h = new BigFraction(2,4);

> f

1/3

> g

1/2

> h

1/2

>

Notice that none are equal under ==.

> f == g

false

> f == h

false

> g == h

false

>

Next, we trot out our shiny new equals method.

> f.equals(g)

false

> f.equals(h)

100 CHAPTER 3. TRANSLATING PYTHON TO JAVA

false

> g.equals(h)

true

>

Finally, we violate the species test and watch a false come right back at us as
it should.

> f.equals("platypus")

false

>

3.12 Hello Mrs. Wormwood! Adding Arith-
metic

To as great an extent as posible, we shall imitate the interface that is presented
to us by the BigInteger class. We need to define four methods: add, subtract,
multiply, and divide. Each of these methods will take a BigFraction as an
argument, and will return a BigFraction. We begin with addition.

We learned from Mrs. Wormwood that

a

b
+
c

d
=
ad+ bc

bd
.

The header for our add method will be

public BigFraction add(BigFraction that)

Remember, since we are programing in BigFraction, we have a num and a
denom and we are

num

denom.

We are going to add ourself to that. Since that is a BigFraction has a num

and a denom, too. These are known as that.num and that.denom.

So, we will wind up doing this little arithmetic arabesque to provide us with
a framework for writing the actual code.

num

denom
+

that.num

that.denom
=

num ∗ that.denom + denom ∗ that.num
denom ∗ that.denom

Let’s take this a piece at a time, beginning with the first term in the numerator
of the sum. We are not allowed to write

num*that.denom

3.12. HELLO MRS. WORMWOOD! ADDING ARITHMETIC 101

We have to translate it into the language of BigInteger, which says we do the
following; we elect to store the result in the BigInteger term1.

BigInteger term1 = num.multiply(that.denom);

Now do the same thing with the second term.

BigInteger term2 = denom.multiply(that.num);

As a result, the numerator will be

term1.add(term2)

Now we deal with the denominator

BigInteger bottom = denom.multiply(that.denom);

Our entire fraction in these terms is

term1 + term2

bottom
.

So our return statement reads

return new BigFraction(term1.add(term2), bottom);

Assembing it all we have the completed add method.

public BigFraction add(BigFraction that)

{

BigInteger term1 = num.multiply(that.denom);

BigInteger term2 = denom.multiply(that.num);

BigInteger bottom = denom.multiply(that.denom);

return new BigFraction(term1.add(term2), bottom);

}

Let’s now do a little test.

> BigFraction f = new BigFraction(1,2)

> BigFraction g = new BigFraction(1,3)

> f.add(g)

5/6

>

Subtraction is easy, we just change an add into a subtract.

102 CHAPTER 3. TRANSLATING PYTHON TO JAVA

public BigFraction add(BigFraction that)

{

BigInteger term1 = num.multiply(that.denom);

BigInteger term2 = denom.multiply(that.num);

BigInteger bottom = denom.multiply(that.denom);

return new BigFraction(term1.subtract(term2), bottom);

}

Multiplication is done “straight across.”

public BigFraction multiply(BigFraction that)

{

BigInteger top = num.multiply(that.num);

BigInteger bottom = denom.multiply(that.denom);

return new BigFraction(top, bottom);

}

To divide, invert and multply.

public BigFraction divide(BigFraction that)

{

BigInteger top = num.multiply(that.denom);

BigInteger bottom = denom.multiply(that.num);

return new BigFraction(top, bottom);

}

Finally, since BigInteger has pow, we will add that too. We only define
this for integer powers, since noninteger powers of rational numbers are seldom
rational. If the power is negative, we invert the fraction, strip the sign off of the
power, then compute the power.

public BigFraction pow(int n)

{

if(n > 0)

return new BigFraction(num.pow(n), denom.pow(n));

if(n == 0)

return new BigFraction(1,1);

else

{

n = -n; //strip sign

return new BigFraction(denom.pow(n), num.pow(n));

}

}

3.13. THE ROLE OF STATIC AND FINAL 103

3.13 The Role of static and final

In keeping with the behavior of BigInteger we will make our BigFractions
immutable. You will notice that none of our methods we have created so far
allow changes in state.

To make this intent clear, we should mark the num and denom state vari-
ables final. Since BigIntegers are immutable, this renders the state variables
constant. Our class creates immutable objects.

The BigInteger class has static constants ONE and ZERO. We add constants
like this to our class as follows. First we create the static objects ONE and ZERO.
We shall make them public.

public static final BigFraction ZERO;

public static final BigFraction ONE;

Place these before the declarations for the state variables in the class. Note:
these are not state variables, since they reflect a property of the class as a whole,
not the state of any particular object. To initialize them, create a static block.
You do so as follows.

static

{

ZERO = new BigFraction();

ONE = new BigFraction(1,1);

}

Clients of your class can now use BigFraction.ZERO to get 0 as a BigFraction

and BigFraction.ONE to get 1 as a BigFraction.

If you compile now, you will get errors because the constructor performs some
reassignments. We can reëngineeer it as follows to get rid of the reassignments.

public BigFraction(BigInteger _num, BigInteger _denom)

{

if(_denom.equals(BigInteger.ZERO))

throw new IllegalArgumentException();

BigInteger d = _num.gcd(_denom);

if(_denom.compareTo(BigInteger.ZERO) < 0)

{

_num = _num.negate();

_denom = _denom.negate();

}

num = _num.divide(d);

denom = _denom.divide(d);

}

104 CHAPTER 3. TRANSLATING PYTHON TO JAVA

You will notice that BigInteger has a static valueOf method that con-
verts longs to BigIntegers. We now make two static factory methods named
valueOf. One will take a long and promote it to a BigFraction. The other
will do this service for BigInteger.

public static BigFraction valueOf(long n)

{

return new BigFraction(n, 1);

}

public static BigFraction valueOf(BigInteger num)

{

return new BigFraction(num, BigInteger.ONE);

}

Here is the current appearance of the entire class.

import java.math.BigInteger;

public class BigFraction

{

public static final BigFraction ZERO;

public static final BigFraction ONE;

static

{

ZERO = new BigFraction();

ONE = new BigFraction(1,1);

}

private final BigInteger num;

private final BigInteger denom;

public BigFraction(BigInteger _num, BigInteger _denom)

{

num = _num;

denom = _denom;

if(denom.equals(BigInteger.ZERO))

throw new IllegalArgumentException();

BigInteger d = num.gcd(denom);

num = num.divide(d);

denom = denom.divide(d);

if(denom.compareTo(BigInteger.ZERO) < 0)

{

num = num.negate();

denom = denom.negate();

}

}

public BigFraction(long _num, long _denom)

{

3.13. THE ROLE OF STATIC AND FINAL 105

this(BigInteger.valueOf(_num), BigInteger.valueOf(_denom));

}

public BigFraction()

{

this(0,1);

}

public String toString()

{

return "" + num + "/" + denom;

}

public boolean equals(Object o)

{

if(! (o instanceof BigFraction))

return false;

BigFraction that = (BigFraction) o;

return num.equals(that.num) && denom.equals(that.denom);

}

public BigFraction add(BigFraction that)

{

BigInteger term1 = num.multiply(that.denom);

BigInteger term2 = denom.multiply(that.num);

BigInteger bottom = denom.multiply(that.denom);

return new BigFraction(term1.add(term2), bottom);

}

public BigFraction subtract(BigFraction that)

{

BigInteger term1 = num.multiply(that.denom);

BigInteger term2 = denom.multiply(that.num);

BigInteger bottom = denom.multiply(that.denom);

return new BigFraction(term1.subtract(term2), bottom);

}

public BigFraction multiply(BigFraction that)

{

BigInteger top = num.multiply(that.num);

BigInteger bottom = denom.multiply(that.denom);

return new BigFraction(top, bottom);

}

public BigFraction divide(BigFraction that)

{

BigInteger top = num.multiply(that.denom);

BigInteger bottom = denom.multiply(that.num);

return new BigFraction(top, bottom);

}

public BigFraction pow(int n)

{

if(n > 0)

106 CHAPTER 3. TRANSLATING PYTHON TO JAVA

return new BigFraction(num.pow(n), denom.pow(n));

if(n == 0)

return new BigFraction(1,1);

else

{

n = -n; //strip sign

return new BigFraction(denom.pow(n), num.pow(n));

}

}

public static BigFraction valueOf(long n)

{

return new BigFraction(n, 1);

}

public static BigFraction valueOf(BigInteger num)

{

return new BigFraction(num, BigInteger.ONE);

}

}

Programming Exercises Add these methods to our existing BigFraction

class. These will make our BigFractions more resemble BigIntegers.

1. Write a method public BigInteger bigIntValue() that divides the de-
nominator into the numerator and which truncates towards zero.

2. Write the method public BigFraction abs() which returns the absolute
value of this BigFraction.

3. Write the method public BigFraction max(BigFraction) which returns
the larger of this BigFraction and that.

4. Write the method public BigFraction min(BigFraction) which returns
the smaller of this BigFraction and that.

5. Write a method public BigFraction negate() which returns a copy of
this BigFraction with its sign changed.

6. Write the method public int signum() which returns +1 if this BigFraction
is positive, -1 if it is negative and 0 if it is zero.

7. Write the method public int compareTo(BigFraction that) which re-
turns +1 if this BigFraction is larger than that, -1 if that is larger than
this BigFraction and 0 if this BigFraction equals that.

8. Add a static method public BigFraction harmonic(int n) which computes
the nth harmonic number. Throw an IllegalArgumentException if the
client passes an n that is negative.

9. (Quite Challenging) Write the method public double doubleValue()

which returns a floating point value for this BigFraction. It should re-

3.13. THE ROLE OF STATIC AND FINAL 107

turn Double.NEGATIVE INFINITY or Double.POSITIVE INFINITY where
appropriate. Test this very carefully; it is not easy to get it right.

108 CHAPTER 3. TRANSLATING PYTHON TO JAVA

Chapter 4

The Big Fraction Case
Study

4.0 Case Study: An Extended-Precision Frac-
tion Class

We have achieved several goals in the last chapter, the most important of which
are understanding what makes up a Java class and understanding the core Java
language so as to be Turing-complete.

To tie everything together, we will do a case study of creating a class called
BigFraction, which will work like the BigInteger class and provide many of
the same operations, except it will do exact fractional arithmetic. This class will
have a professional appearance, and an interface similar to that of BigInteger.

During this chapter, you will learn about javadoc; this allows you to create
an API page for your class that will have the same appearance as the page you
see on the web. When you are done with this chapter, you will have a class
suitable for others to use as clients who wish to perform extended-precision
rational arithmetic. The javadoc feature can be done at the UNIX command
line. It can also be created for you by DrJava.

4.0.1 A Brief Weltanschauung

Before we begin let us remind ourselves of some basic mathematical facts and
provide a rationale for what we are about to do. We are all familiar with the
natural (counting) numbers

N = {1, 2, 3, 4,}.

109

110 CHAPTER 4. THE BIG FRACTION CASE STUDY

We can also start counting at zero because we are C family language geeks with

N0 = {0, 1, 2, 3,}.

The set of all integers (with signs) is often denoted by Z. Why the letter Z?
This comes from the German word zahlen, meaning “to count.”

The BigInteger class creates a computational environment for computing
in Z without danger of overflow, unless you really go bananas.

The rational numbers consist of all numbers that can be represented as a
ratio of integers; the symbol used for them is Q. The Q is for “quotient.” So,

Q = {m/n : m ∈ Z, n ∈ N}.

The BigFraction class will create an environment for computing in Q similar
to that which BigInteger provides for Z.

Not all real numbers (which we represent with double) are rational. It is a
well-known fact that

√
2 and the beloved constant π are not rational. In fact,

most of the time you take a square root, you will despoil the rationality of any
rational number you operate on.

This explains why BigInteger’s pow method accepts only non-negative in-
tegers. It becomes irate and produces an abrasive run-time error if you attempt
to compute a negative power for an BigInteger. You will see that when we
create a pow method for our BigFractions it will only accept integers (any
integer in fact), but not any other kind of rational number.

We select this case study because it brings to the fore a variety of important
design questions. When we are done, we will have a nice facility for computing
with fractions. You will get to see the development of a moderately sophisticated
class from scratch.

4.1 Start your Engines!

Let us begin by thinking about fractions. We know a fraction has two important
items reflecting its state: its numerator and its denominator. Fractions have
some slippery properties. For example, we know that

1

4
=

256

1024
.

The representation of a fraction in terms of numerator and denominator is not
unique.

An interesting collection of numbers is the harmonic numbers; they are de-
fined by

Hn =

n∑
k=1

1

k
, n ∈ N.

4.2. MAKING A PROPER CONSTRUCTOR AND TOSTRING() METHOD111

Let us show the first few harmonic numbers. It is easy to see that H1 = 1. We
have

H2 = 1 +
1

2
=

3

2
.

Next,

H3 = H2 +
1

3
=

3

2
+

1

3
=

11

6
.

Now let’s skip down to H10.

H10 =
7381

2520
.

One thing is clear: as we keep adding fractions, their numerators and denom-
inators have a propensity to keep getting larger. We know that the primitive
int and long types are not going to cut the mustard here because they will
overflow and produce false results.

We will therefore use BigInteger for the numerator and denominator of our
BigFractions. We should be able to compute H100 or even H1000.

4.2 Making a Proper Constructor and toString()

Method

When starting out to build a class, we begin by creating a suitable constructor.
Along the way, you will need a toString() method so you can see what you
are doing.

We begin with this crude attempt. We are mimicking our work on the Point
class we developed earlier.

import java.math.BigInteger;

public class BigFraction

{

private BigInteger num;

private BigInteger denom;

public BigFraction(BigInteger _num, BigInteger _denom)

{

num = _num;

denom = _denom;

}

}

It is easy to see that there will be problems. Suppose a client programmer
writes this code.

112 CHAPTER 4. THE BIG FRACTION CASE STUDY

BigInteger a = new BigInteger("256");

BigInteger b = new BigInteger("1024");

BigFraction f = new BigFraction(a, b);

It seems ridiculous that this fraction should be stored as 256/1024 when it is in
fact 1/4. Hence, it seems we should keep our fractions reduced.

To reduce a fraction, you compute the greatest common divisor of the nu-
merator and denominator and divide it out of both. Notice that the BigInteger
class computes GCDs for you, so we can alter our constructor as follows.

public BigFraction(BigInteger _num, BigInteger _denom)

{

num = _num;

denom = _denom;

BigInteger d = num.gcd(denom);

num = num.divide(d);

denom = denom.divide(d);

}

Let us now see what this looks like.

> import java.math.BigInteger;

> BigInteger a = new BigInteger("256");

> BigInteger b = new BigInteger("1024");

> BigFraction f = new BigFraction(a,b)

> f

BigFraction@6ad20835

>

Oops. The built-in toString() method is not doing such a great job. Let’s
override it so it make fractions that look like this: 45/17. Here is our revised
class.

import java.math.BigInteger;

public class BigFraction

{

private BigInteger num;

private BigInteger denom;

public BigFraction(BigInteger _num, BigInteger _denom)

{

num = _num;

denom = _denom;

BigInteger d = num.gcd(denom);

num = num.divide(d);

4.2. MAKING A PROPER CONSTRUCTOR AND TOSTRING() METHOD113

denom = denom.divide(d);

}

public String toString()

{

return "" + num + "/" + denom;

}

}

Now we try our unreduced fraction and find things in a happy state.

> import java.math.BigInteger;

> BigInteger a = new BigInteger("256");

> BigInteger b = new BigInteger("1024");

> BigFraction f = new BigFraction(a,b);

> f

1/4

>

There is yet one more thing to do to button this up. This little session should
prove convincing.

> BigInteger b = new BigInteger("-1024");

> BigFraction f = new BigFraction(a,b);

> f

1/-4

>

If we put the negative on the top, the toString() method will work nicely.
We also get the benefit that we can check fraction equality by just checking for
equality of numerator and denominator.

All we need do is to add something like this to the constructor.

if(denom < 0)

{

denom = -denom;

}

However, we are indulging here in illegal operations on BigIntegers. Looking
on the API page, we can see that there is a negate() method that returns
a copy of the BigInteger with its sign changed. Also, there is a compareTo

method. The expression

foo.compareTo(goo)

returns a negative integer if foo < goo, a positive integer if foo > goo and 0
if foo == goo. We integrate these features into our class and we now have

114 CHAPTER 4. THE BIG FRACTION CASE STUDY

import java.math.BigInteger;

public class BigFraction

{

private BigInteger num;

private BigInteger denom;

public BigFraction(BigInteger _num, BigInteger _denom)

{

num = _num;

denom = _denom;

BigInteger d = num.gcd(denom);

num = num.divide(d);

denom = denom.divide(d);

if(denom.compareTo(BigInteger.ZERO) < 0)

{

num = num.negate();

denom = denom.negate();

}

}

public String toString()

{

return "" + num + "/" + denom;

}

}

4.3 Overloading the Constructor

Wouldn’t it be nice to be able to make a BigFraction with ordinary integers? In
fact, it would be a smart play to use the long type, since a long type argument
will happily accept an int, short, or byte. We will use this to call the main
constructor, so we do not have to repeat all of the heavy lifting it does.

To this end, we avail ourselves of the valueOf method for BigInteger.

public BigFraction(long _num, long _denom)

{

this(BigInteger.valueOf(_num), BigInteger.valueOf(_denom));

}

While we are here, let’s make the (obvious) default.

public BigFraction()

{

this(0,1);

}

4.3. OVERLOADING THE CONSTRUCTOR 115

Finally we shall send an ugly message to the woebegone client programmer
who tries to create a BigFraction with a zero denominator. Insert this line in
the main constructor, just after num and denom are initialized.

if(denom.equals(BigInteger.ZERO)

throw new IllegalArgumentException();

This will bring immediate program death to the miscreant client programmer
who calls it.

Here is our class with everything added to it.

import java.math.BigInteger;

public class BigFraction

{

private BigInteger num;

private BigInteger denom;

public BigFraction(BigInteger _num, BigInteger _denom)

{

num = _num;

denom = _denom;

if(denom.equals(BigInteger.ZERO))

throw new IllegalArgumentException();

BigInteger d = num.gcd(denom);

num = num.divide(d);

denom = denom.divide(d);

if(denom.compareTo(BigInteger.ZERO) < 0)

{

num = num.negate();

denom = denom.negate();

}

}

public BigFraction(long _num, long _denom)

{

this(BigInteger.valueOf(_num), BigInteger.valueOf(_denom));

}

public BigFraction()

{

this(0,1);

}

public String toString()

{

return "" + num + "/" + denom;

}

116 CHAPTER 4. THE BIG FRACTION CASE STUDY

}

Finally, let’s take this all for a test-drive. First we look at our main “workhorse”
constructor.

> import java.math.BigInteger;

> BigInteger a = new BigInteger("1048576");

> BigInteger b = new BigInteger("7776");

> BigFraction f = new BigFraction(a,b)

> f

32768/243

>

Our second constructor makes this process less verbose.

> BigFraction g = new BigFraction(1048576, 7776)

> g

32768/243

>

Here we see our default constructor.

> BigFraction z = new BigFraction()

> z

0/1

>

Finally we tempt and see death.

> BigFraction rotten = new BigFraction(5,0)

java.lang.IllegalArgumentException

at BigFraction.<init>(BigFraction.java:12)

at BigFraction.<init>(BigFraction.java:25)

>

This exception object will immediately halt any program that is running and
that calls the constructor illegally.

4.4 Creating an equals Method

This process is always the same. First do the species test. Then cast the Object
in the argument list to a BigFraction. Once this is done, creating equals is
easy, since all we need to is to compare equality of numerator and denominator.

4.4. CREATING AN EQUALS METHOD 117

public boolean equals(Object o)

{

if(! (o instanceof BigFraction))

return false;

BigFraction that = (BigFraction) o;

return num.equals(that.num) && denom.equals(that.denom);

}

Note that since we are comparing BigIntegers in the return statement, we
must use the equals method for BigInteger.

Now lets take this for a walk. We begin by making some instances.

> BigFraction f = new BigFraction(1,3);

> BigFraction g = new BigFraction(1,2);

> BigFraction h = new BigFraction(2,4);

> f

1/3

> g

1/2

> h

1/2

>

Notice that none are equal under ==.

> f == g

false

> f == h

false

> g == h

false

>

Next, we trot out our shiny new equals method.

> f.equals(g)

false

> f.equals(h)

false

> g.equals(h)

true

>

Finally, we violate the species test and watch a false come right back at us as
it should.

118 CHAPTER 4. THE BIG FRACTION CASE STUDY

> f.equals("platypus")

false

>

4.5 Hello Mrs. Wormwood! Adding Arithmetic

To as great an extent as possible, we shall imitate the interface that is presented
to us by the BigInteger class. We need to define four methods: add, subtract,
multiply, and divide. Each of these methods will take a BigFraction as an
argument, and will return a BigFraction. We begin with addition.

We learned from Mrs. Wormwood that

a

b
+
c

d
=
ad+ bc

bd
.

The header for our add method will be

public BigFraction add(BigFraction that)

Remember, since we are programming in BigFraction, we have a num and a
denom and we are

num

denom.

We are going to add yourself to that. Since that is a BigFraction has a num

and a denom, too. These are known as that.num and that.denom.

So, we will wind up doing this little arithmetic arabesque to provide us with
a framework for writing the actual code.

num

denom
+

that.num

that.denom
=

num ∗ that.denom + denom ∗ that.num
denom ∗ that.denom

Let’s take this a piece at a time, beginning with the first term in the numerator
of the sum. We are not allowed to write

num*that.denom

We have to translate it into the language of BigInteger, which says we do the
following; we elect to store the result in the BigInteger term1.

BigInteger term1 = num.multiply(that.denom);

Now do the same thing with the second term.

BigInteger term2 = denom.multiply(that.num);

4.5. HELLO MRS. WORMWOOD! ADDING ARITHMETIC 119

As a result, the numerator will be

term1.add(term2)

Now we deal with the denominator

BigInteger bottom = denom.multiply(that.denom);

Our entire fraction in these terms is

term1 + term2

bottom
.

So our return statement reads

return new BigFraction(term1.add(term2), bottom);

Assembling it all we have the completed add method.

public BigFraction add(BigFraction that)

{

BigInteger term1 = num.multiply(that.denom);

BigInteger term2 = denom.multiply(that.num);

BigInteger bottom = denom.multiply(that.denom);

return new BigFraction(term1.add(term2), bottom);

}

Let’s now do a little test.

> BigFraction f = new BigFraction(1,2)

> BigFraction g = new BigFraction(1,3)

> f.add(g)

5/6

>

Subtraction is easy, we just change an add into a subtract.

public BigFraction add(BigFraction that)

{

BigInteger term1 = num.multiply(that.denom);

BigInteger term2 = denom.multiply(that.num);

BigInteger bottom = denom.multiply(that.denom);

return new BigFraction(term1.subtract(term2), bottom);

}

Multiplication is done “straight across.”

120 CHAPTER 4. THE BIG FRACTION CASE STUDY

public BigFraction multiply(BigFraction that)

{

BigInteger top = num.multiply(that.num);

BigInteger bottom = denom.multiply(that.denom);

return new BigFraction(top, bottom);

}

To divide, invert and multiply.

public BigFraction divide(BigFraction that)

{

BigInteger top = num.multiply(that.denom);

BigInteger bottom = denom.multiply(that.num);

return new BigFraction(top, bottom);

}

Finally, since BigInteger has pow, we will add that too. We only define
this for integer powers, since non-integer powers of rational numbers are seldom
rational. If the power is negative, we invert the fraction, strip the sign off of the
power, then compute the power.

public BigFraction pow(int n)

{

if(n > 0)

return new BigFraction(num.pow(n), denom.pow(n));

if(n == 0)

return new BigFraction(1,1);

else

{

n = -n; //strip sign

return new BigFraction(denom.pow(n), num.pow(n));

}

}

4.6 The Role of static and final

In keeping with the behavior of BigInteger we will make our BigFractions
immutable. You will notice that none of our methods we have created so far
allow changes in state.

To make this intent clear, we should mark the num and denom state vari-
ables final. Since BigIntegers are immutable, this renders the state variables
constant. Our class creates immutable objects.

4.6. THE ROLE OF STATIC AND FINAL 121

The BigInteger class has static constants ONE and ZERO. We add constants
like this to our class as follows. First we create the static objects ONE and ZERO.
We shall make them public.

public static final BigFraction ZERO;

public static final BigFraction ONE;

Place these before the declarations for the state variables in the class. Note:
these are not state variables, since they reflect a property of the class as a whole,
not the state of any particular object. To initialize them, create a static block.
You do so as follows.

static

{

ZERO = new BigFraction();

ONE = new BigFraction(1,1);

}

Clients of your class can now use BigFraction.ZERO to get 0 as a BigFraction

and BigFraction.ONE to get 1 as a BigFraction.

If you compile now, you will get errors because the constructor performs some
reassignments. We can reëngineer it as follows to get rid of the reassignments.

public BigFraction(BigInteger _num, BigInteger _denom)

{

if(_denom.equals(BigInteger.ZERO))

throw new IllegalArgumentException();

BigInteger d = _num.gcd(_denom);

if(_denom.compareTo(BigInteger.ZERO) < 0)

{

_num = _num.negate();

_denom = _denom.negate();

}

num = _num.divide(d);

denom = _denom.divide(d);

}

Now you should be glad you used this in the sibling constructors. No modifi-
cation of these is necessary.

You will notice that BigInteger has a static valueOf method that con-
verts longs to BigIntegers. We now make two static factory methods named
valueOf. One will take a long and promote it to a BigFraction. The other
will do this service for BigInteger.

public static BigFraction valueOf(long n)

122 CHAPTER 4. THE BIG FRACTION CASE STUDY

{

return new BigFraction(n, 1);

}

public static BigFraction valueOf(BigInteger num)

{

return new BigFraction(num, BigInteger.ONE);

}

Here is the current appearance of the entire class.

import java.math.BigInteger;

public class BigFraction

{

public static final BigFraction ZERO;

public static final BigFraction ONE;

static

{

ZERO = new BigFraction();

ONE = new BigFraction(1,1);

}

private final BigInteger num;

private final BigInteger denom;

public BigFraction(BigInteger _num, BigInteger _denom)

{

num = _num;

denom = _denom;

if(denom.equals(BigInteger.ZERO))

throw new IllegalArgumentException();

BigInteger d = num.gcd(denom);

num = num.divide(d);

denom = denom.divide(d);

if(denom.compareTo(BigInteger.ZERO) < 0)

{

num = num.negate();

denom = denom.negate();

}

}

public BigFraction(long _num, long _denom)

{

this(BigInteger.valueOf(_num), BigInteger.valueOf(_denom));

}

public BigFraction()

4.6. THE ROLE OF STATIC AND FINAL 123

{

this(0,1);

}

public String toString()

{

return "" + num + "/" + denom;

}

public boolean equals(Object o)

{

if(! (o instanceof BigFraction))

return false;

BigFraction that = (BigFraction) o;

return num.equals(that.num) && denom.equals(that.denom);

}

public BigFraction add(BigFraction that)

{

BigInteger term1 = num.multiply(that.denom);

BigInteger term2 = denom.multiply(that.num);

BigInteger bottom = denom.multiply(that.denom);

return new BigFraction(term1.add(term2), bottom);

}

public BigFraction subtract(BigFraction that)

{

BigInteger term1 = num.multiply(that.denom);

BigInteger term2 = denom.multiply(that.num);

BigInteger bottom = denom.multiply(that.denom);

return new BigFraction(term1.subtract(term2), bottom);

}

public BigFraction multiply(BigFraction that)

{

BigInteger top = num.multiply(that.num);

BigInteger bottom = denom.multiply(that.denom);

return new BigFraction(top, bottom);

}

public BigFraction divide(BigFraction that)

{

BigInteger top = num.multiply(that.denom);

BigInteger bottom = denom.multiply(that.num);

return new BigFraction(top, bottom);

}

public BigFraction pow(int n)

{

if(n > 0)

return new BigFraction(num.pow(n), denom.pow(n));

if(n == 0)

return new BigFraction(1,1);

124 CHAPTER 4. THE BIG FRACTION CASE STUDY

else

{

n = -n; //strip sign

return new BigFraction(denom.pow(n), num.pow(n));

}

}

public static BigFraction valueOf(long n)

{

return new BigFraction(n, 1);

}

public static BigFraction valueOf(BigInteger num)

{

return new BigFraction(num, BigInteger.ONE);

}

}

Programming Exercises Add these methods to our existing BigFraction

class. These will make our BigFractions more resemble BigIntegers.

1. Write a method public BigInteger bigIntValue() that divides the de-
nominator into the numerator and which truncates towards zero.

2. Write the method public BigFraction abs() which returns the absolute
value of this BigFraction.

3. Write the method public BigFraction max(BigFraction) which returns
the larger of this BigFraction and that.

4. Write the method public BigFraction min(BigFraction) which returns
the smaller of this BigFraction and that.

5. Write a method public BigFraction negate() which returns a copy of
this BigFraction with its sign changed.

6. Write the method public int signum() which returns +1 if this BigFraction
is positive, -1 if it is negative and 0 if it is zero.

7. Write the method public int compareTo(BigFraction that) which re-
turns +1 if this BigFraction is larger than that, -1 if that is larger than
this BigFraction and 0 if this BigFraction equals that.

8. Add a static method public BigFraction harmonic(int n) which computes
the nth harmonic number. Throw an IllegalArgumentException if the
client passes an n that is negative.

9. (Quite Challenging) Write the method public double doubleValue()

which returns a floating point value for this BigFraction. It should re-
turn Double.NEGATIVE INFINITY or Double.POSITIVE INFINITY where
appropriate. Test this very carefully; it is not easy to get it right.

4.7. USING JAVADOC 125

4.7 Using Javadoc

The kind of class we have created represents a real extension of the Java language
that could be useful to others. Now we need to give our class an API page so it
has a professional appearance and so it can easily be used by others.

Javadoc comments are delimited by the starting token /** and the ending
token */. C and C++ style comments delimited by // and /* */

do not appear on Javadoc pages.

You may use HTML markup in your javadoc where needed.

Use Javadoc to document your interface, the public portion of your class.
Do not javadoc private methods or state variables.

We will produce a full javadoc page for our BigFraction class. Let us begin
with the constructors.

/**

* This constructor stores a <tt>BigFraction</tt> in

* reduced form, with any negative factor appearing in

* the numerator.

* @param _num the numerator of the <tt>BigFraction</tt>

* @param _denom the denominator of the <tt>BigFraction</tt>

* @throws <tt>IllegalArgumentException</tt> if the creation

* of a zero-denominator <tt>BigFraction</tt> is attempted.

*/

public BigFraction(BigInteger _num, BigInteger _denom)

{

if(_denom.equals(BigInteger.ZERO))

throw new IllegalArgumentException();

BigInteger d = _num.gcd(_denom);

if(_denom.compareTo(BigInteger.ZERO) < 0)

{

_num = _num.negate();

_denom = _denom.negate();

}

num = _num.divide(d);

denom = _denom.divide(d);

}

/**

* This creates the <tt>BigFraction</tt> <tt>_num/_denom</tt>

* This fraction will be fully reduced and any negative factor

* appears in the numerator.

* @param _num the numerator

* @param _denom the denominator

126 CHAPTER 4. THE BIG FRACTION CASE STUDY

* @throws <tt>IllegalArgumentException</tt> if the creation

* of a zero-denominator <tt>BigFraction</tt> is attempted.

*/

public BigFraction(long _num, long _denom)

{

this(BigInteger.valueOf(_num), BigInteger.valueOf(_denom));

}

/**

* This default constructor produces BigFraction 0/1.

*/

public BigFraction()

{

this(0,1);

}

We see the special markup @param; this is the description given for each
parameter. The markup @throws warns the client that an exception can be
thrown by a method. You should always tell exactly what triggers the throwing
of an exception, as the penalty for an exception can be program death.

4.7.1 Triggering Javadoc

First we give instructions for DrJava. Bring up the Preferences by hitting
control-; or by selecting the Preferences item from the bottom of the Edit menu.
Under Web browser put the path to your web browser. An example of a valid
path is

/usr/lib/firefox/firefox.sh

If you use Windoze, your path should begin with \tt C:\. If you use a Mac,
it will be in your Applications folder. You can browse for it by hitting the ...

button just to the right of the Web Browser text field.

The javadoc will be saved in a directory called doc that is created in same
directory as your class’s code. Allow the javadoc to be saved in that folder, or
files will “spray” all over your directory and make a big mess.

You can also javadoc at the command line with

$ javadoc -d someDirectory BigFraction.java

The javadoc output will be placed in the directory someDirectory that you
specify. Make sure you use the -d option to avoid spraying.

Do this DrJava will open your shiny new Javadoc page in the browser you
anointed for that purpose. Scroll down to the constructors area and you will
see your documentation. Click on each constructor and see its method detail.

4.7. USING JAVADOC 127

In either case, the program must compile before any javadoc will be gener-
ated.

I don’t see my javadoc! Make sure you are using the javadoc comment
tokens like so.

/**

* stuff

*/

and not regular multiline comment token that look like this.

/*

* stuff

*/

4.7.2 Documenting toString() and equals()

You will see a new markup device @return and overrides which tells you what
these methods override. You will notice if you look in the javadoc you generated,
that an overrides tag is already in the method detail.

/**

* @return a string representing this BigFraction of the form

* numerator/denominator.

*/

@Override

public String toString()

{

return "" + num + "/" + denom;

}

Note the use of the @Override construct just after our javadoc markup. This
is called an annotation, and the compiler checks that you have used the right
signature to actual override the method. If you don’t it will be flagged as a
compiler error. Always use this annotation if you are implementing the methods
public boolean equals(Object o) or public String toString().

Now we deal similarly with the equals method.

/**

* @param o an Object we are comparing this BigFraction to

* @return true iff this BigFraction and that are equal numerically.

* A value of <tt>false</tt> will be returned if the Object o is not

128 CHAPTER 4. THE BIG FRACTION CASE STUDY

* a BigFraction.

*/

@Override

public boolean equals(Object o)

{

if(! (o instanceof BigFraction))

return false;

BigFraction that = (BigFraction) o;

return num.equals(that.num) && denom.equals(that.denom);

}

4.7.3 Putting in a Preamble and Documenting the Static
Constants

We show where to preamble goes, after the imports and before the head for the
class. Place a succinct description of your class here to let your clients know
what it does.

import java.math.BigInteger

/**

* This is a class of immutable arbitrary-precision

* rational numbers. BigFraction provides

* extended-precision fractional arithmetic

* operations, including + with the <tt>add</tt> method,

* - with the <tt>subtract</tt>

* method, * with the <tt>multiply</tt> method,

* and / with the <tt>divide</tt> method.

* It computes integer powers

* of fractions using the <tt>pow</tt> method.

*/

public class BigFraction

{

//code

}

Documenting the static constants is very straightforward.

/**

* This is the BigFraction constant 0, which is 0/1.

*/

public static final BigFraction ZERO;

/**

* This is the BigFraction constant 1, which is 1/1.

4.7. USING JAVADOC 129

*/

public static final BigFraction ONE;

4.7.4 Documenting Arithmetic

Next we javadoc all of the arithmetic operations we have provided the client.
Notice how we add an exception if the client attempts to divide by zero.

/**

* This add BigFractions.

* @param that a BigFraction we are adding to this BigFraction

* @return <tt>this</tt> + <tt>that</tt>

*/

public BigFraction add(BigFraction that)

{

BigInteger term1 = num.multiply(that.denom);

BigInteger term2 = denom.multiply(that.num);

BigInteger bottom = denom.multiply(that.denom);

return new BigFraction(term1.add(term2), bottom);

}

/**

* This subtracts BigFractions.

* @param that a BigFraction we are adding to this BigFraction

* @return <tt>this</tt> - <tt>that</tt>

*/

public BigFraction subtract(BigFraction that)

{

BigInteger term1 = num.multiply(that.denom);

BigInteger term2 = denom.multiply(that.num);

BigInteger bottom = denom.multiply(that.denom);

return new BigFraction(term1.subtract(term2), bottom);

}

/**

* This multiplies BigFractions.

* @param that a BigFraction we are adding to this BigFraction

* @return <tt>this</tt> * <tt>that</tt>

*/

public BigFraction multiply(BigFraction that)

{

BigInteger top = num.multiply(that.num);

BigInteger bottom = denom.multiply(that.denom);

return new BigFraction(top, bottom);

}

/**

* This divides BigFractions.

130 CHAPTER 4. THE BIG FRACTION CASE STUDY

* @param that a BigFraction we are adding to this BigFraction

* @return <tt>this</tt>/<tt>that</tt>

* @throws <tt>IllegalArgumentException</tt> if division by

* 0 is attempted.

*/

public BigFraction divide(BigFraction that)

{

if(that.equals(BigFraction.ZERO))

throw new IllegalArgumentException();

BigInteger top = num.multiply(that.denom);

BigInteger bottom = denom.multiply(that.num);

return new BigFraction(top, bottom);

}

/**

* This computes an integer power of BigFraction.

* @param n an integer power

* @return <tt>this</tt>^{<tt>n</tt>}

*/

public BigFraction pow(int n)

{

if(n > 0)

return new BigFraction(num.pow(n), denom.pow(n));

if(n == 0)

return new BigFraction(1,1);

else

{

n = -n; //strip sign

return new BigFraction(denom.pow(n), num.pow(n));

}

}

Finally, we will take care of our two valueOf methods.

/**

* @param n a long we wish to promote to a BigFraction.

* @return A BigFraction object wrapping n

*/

public static BigFraction valueOf(long n)

{

return new BigFraction(n, 1);

}

/**

* @param num a BigInteger we wish to promote to a BigFraction.

* @return A BigFraction object wrapping num

*/

public static BigFraction valueOf(BigInteger num)

4.7. USING JAVADOC 131

{

return new BigFraction(num, BigInteger.ONE);

}

4.7.5 The Complete Code

Here it is!

import java.math.BigInteger;

/**

* This is a class of immutable arbitrary-precision

* rational numbers. BigFraction provides

* extended-precision fractional arithmetic

* operations, including + with the <tt>add</tt> method,

* - with the <tt>subtract</tt>

* method, * with the <tt>multiply</tt> method,

* and / with the <tt>divide</tt> method.

* It computes integer powers

* of fractions using the <tt>pow</tt> method.

*/

public class BigFraction

{

/**

* This is the BigFraction constant 0, which is 0/1.

*/

public static final BigFraction ZERO;

/**

* This is the BigFraction constant 1, which is 1/1.

*/

public static final BigFraction ONE;

static

{

ZERO = new BigFraction();

ONE = new BigFraction(1,1);

}

private final BigInteger num;

private final BigInteger denom;

/**

* This constructor stores a <tt>BigFraction</tt> in

* reduced form, with any negative factor appearing in

* the numerator.

* @param _num the numerator of the <tt>BigFraction</tt>

* @param _denom the denominator of the <tt>BigFraction</tt>

* @throws <tt>IllegalArgumentException</tt> if the creation

132 CHAPTER 4. THE BIG FRACTION CASE STUDY

* of a zero-denominator <tt>BigFraction</tt> is attempted.

*/

public BigFraction(BigInteger _num, BigInteger _denom)

{

if(_denom.equals(BigInteger.ZERO))

throw new IllegalArgumentException();

BigInteger d = _num.gcd(_denom);

if(_denom.compareTo(BigInteger.ZERO) < 0)

{

_num = _num.negate();

_denom = _denom.negate();

}

num = _num.divide(d);

denom = _denom.divide(d);

}

/**

* This creates the <tt>BigFraction</tt> <tt>_num/_denom</tt>

* This fraction will be fully reduced and any negative factor

* appears in the numerator.

* @param _num the numerator

* @param _denom the denominator

* @throws <tt>IllegalArgumentException</tt> if the creation of a

* zero-denominator <tt>BigFraction</tt> is attempted.

*/

public BigFraction(long _num, long _denom)

{

this(BigInteger.valueOf(_num), BigInteger.valueOf(_denom));

}

/**

* This default constructor produces BigFraction 0/1.

*/

public BigFraction()

{

this(0,1);

}

/**

* @return a string representing this BigFraction of the form

* numerator/denominator.

*/

@Override

public String toString()

{

return "" + num + "/" + denom;

}

/**

4.7. USING JAVADOC 133

* @param o an Object we are comparing this BigFraction to

* @return true iff this BigFraction and that are equal numerically.

* A value of <tt>false</tt> will be returned if the Object o is not

* a BigFraction.

*/

@Override

public boolean equals(Object o)

{

if(! (o instanceof BigFraction))

return false;

BigFraction that = (BigFraction) o;

return num.equals(that.num) && denom.equals(that.denom);

}

/**

* This add BigFractions.

* @param that a BigFraction we are adding to this BigFraction

* @return <tt>this</tt> + <tt>that</tt>

*/

public BigFraction add(BigFraction that)

{

BigInteger term1 = num.multiply(that.denom);

BigInteger term2 = denom.multiply(that.num);

BigInteger bottom = denom.multiply(that.denom);

return new BigFraction(term1.add(term2), bottom);

}

/**

* This subtracts BigFractions.

* @param that a BigFraction we are adding to this BigFraction

* @return <tt>this</tt> - <tt>that</tt>

*/

public BigFraction subtract(BigFraction that)

{

BigInteger term1 = num.multiply(that.denom);

BigInteger term2 = denom.multiply(that.num);

BigInteger bottom = denom.multiply(that.denom);

return new BigFraction(term1.subtract(term2), bottom);

}

/**

* This multiplies BigFractions.

* @param that a BigFraction we are adding to this BigFraction

* @return <tt>this</tt> * <tt>that</tt>

*/

public BigFraction multiply(BigFraction that)

{

BigInteger top = num.multiply(that.num);

BigInteger bottom = denom.multiply(that.denom);

134 CHAPTER 4. THE BIG FRACTION CASE STUDY

return new BigFraction(top, bottom);

}

/**

* This divides BigFractions.

* @param that a BigFraction we are adding to this BigFraction

* @return <tt>this</tt>/<tt>that</tt>

* @throws <tt>IllegalArgumentException</tt> if division by

* 0 is attempted.

*/

public BigFraction divide(BigFraction that)

{

if(that.equals(BigFraction.ZERO))

throw new IllegalArgumentException();

BigInteger top = num.multiply(that.denom);

BigInteger bottom = denom.multiply(that.num);

return new BigFraction(top, bottom);

}

/**

* This computes an integer power of BigFraction.

* @param n an integer power

* @return <tt>this</tt>^{<tt>n</tt>}

*/

public BigFraction pow(int n)

{

if(n > 0)

return new BigFraction(num.pow(n), denom.pow(n));

if(n == 0)

return new BigFraction(1,1);

else

{

n = -n; //strip sign

return new BigFraction(denom.pow(n), num.pow(n));

}

}

/**

* @param n a long we wish to promote to a BigFraction.

* @return A BigFraction object wrapping n

*/

public static BigFraction valueOf(long n)

{

return new BigFraction(n, 1);

}

/**

* @param num a BigInteger we wish to promote to a BigFraction.

* @return A BigFraction object wrapping num

*/

4.7. USING JAVADOC 135

public static BigFraction valueOf(BigInteger num)

{

return new BigFraction(num, BigInteger.ONE);

}

}

Programming Exercises

1. Add javadoc for all of the methods you wrote in the previous set of pro-
gramming exercises.

2. Write a second class called TestBigFraction. Place a main in this class
and have it test BigFraction and its methods. Place the classes in the
same directory.

136 CHAPTER 4. THE BIG FRACTION CASE STUDY

Chapter 5

Interfaces, Inheritance and
Java GUIs

5.0 What is ahead?

So far, we have been programming “in the small.” We have created simple
classes that carry out fairly straightforward chores. Our programs have been
little two–class programs. One class has been the class you are writing, the
other has been the interactions pane.

Java programs often consist of many classes, which work together to do a job.
Sometimes we will create classes from scratch, and sometimes we will customize
classes using inheritance. We will also use classes from Java’s vast class libraries.
We will see how to tie related classes together by using interfaces.

To get started, we will first create a modest GUI program that places a
button in a window on your screen. We will discuss what is happening in some
detail, so you will be able to see why inheritance and interfaces are important
and how they can help you develop surprisingly sophisticated applications in a
small program.

5.1 A Short GUI Program

We shall also begin to explore the Java GUI classes. Quickly, we will be able
to make classes that create windows, graphics, menus and buttons. We will use
the term widget for graphical objects of this sort. We will introduce many core
ideas in the language using graphical objects.

Three packages will become important to us as we develop GUI technique.

137

138 CHAPTER 5. INTERFACES, INHERITANCE AND JAVA GUIS

• java.awt This is the “old brain” of Java GUIs.

• javax.swing This is the “new brain” of Java GUIs. This includes a
panoply of things we will press into service, including frames, which hold
applications, menus, buttons, and slider bars. This is the home of many
of Java’s widgets.

• java.awt.event This package holds classes that are useful in responding
to such things as keystrokes, mouse clicks, and the selection of menu items.
Things in this package make buttons and other widgets “live.”

Let us begin with a little exercise, in which we use the interactions pane
to produce a program that makes a window and puts a button in the window.
Start by entering this code. When you are done, you will see a window pop up
on your screen. In the title bar, you will see “My First GUI.” Notice that the
window will not appear until you enter f.setVisible(true).

> import javax.swing.JFrame;

> f = new JFrame("My First GUI");

> f.setSize(400,400);

> f.setVisible(true);

>

If you are jaded and unimpressed, here is a look at Microsoft Foundation
Classes. Feast your eyes below and be appalled at the huge and puzzling pro-
gram you have to write just to replicate the modest result here we just produced
with four lines of code.

#include <afxwin.h>

class HelloApplication : public CWinApp

{

public:

virtual BOOL InitInstance();

};

HelloApplication HelloApp;

class HelloWindow : public CFrameWnd

{

CButton* m_pHelloButton;

public:

HelloWindow();

};

BOOL HelloApplication::InitInstance()

5.1. A SHORT GUI PROGRAM 139

{

m_pMainWnd = new HelloWindow();

m_pMainWnd->ShowWindow(m_nCmdShow);

m_pMainWnd->UpdateWindow();

return TRUE;

}

HelloWindow::HelloWindow()

{

Create(NULL,

"Hello World!",

WS_OVERLAPPEDWINDOW|WS_HSCROLL,

CRect(0,0,140,80));

m_pHelloButton = new CButton();

m_pHelloButton->Create("Hello World!",

WS_CHILD|WS_VISIBLE,CRect(20,20,120,40),this,1);

}

Keep your DrJava session open; we will now add to it.

A JFrame is a container that holds other graphical elements that appear in
an applications; you can think of it as outer skin for your app. A JFrame is a
container widget because other widgets can reside inside it. It is also a top-level
widget, because it can contain an entire application.

Now let us make a button.

> b = new JButton("Panic");

We have made a button, but we have not yet placed it in the JFrame. The
content of a frame lives, logically enough, in the frame’s content pane. The
JFrame class has a method called getContenPane(), which returns the content
pane of the frame, allowing you to add widgets to it. Let us now get the button
in the window.

> f.getContentPane().add(b);

This is quite a hairy–looking construct, but if we deconstruct things, we will see
it is very understandable. Look in the API guide. The call

f.getContentPane()

returns the content pane of our JFrame f. The content pane is an instance of
the class Container, which lives in package java.awt. You can see that because
Container is the return type of getContentPane(). In the API guide, click on
the return type link, Container. Go to Container’s method summary. The
first method is

140 CHAPTER 5. INTERFACES, INHERITANCE AND JAVA GUIS

Component add(Component comp)

This is the method that is adding the JButton to the content pane. Now look at
JButton’s API page. If you look up the family tree, you will see that, directly
below java.awt.Object, there is java.awt.Component. What we learn here is
that JButton is a Component. Thus, the add method in Container will happily
accept a JButton.

Finally, we make the button appear in the window. The trick from the
interactions pane is to set the frame to be invisible, then to be visible.

> f.setVisible(false);

> f.setVisible(true);

Your frame should have a big, fat button occupying the entire content pane.
Click on the button. You will see it blinks in response to the click, but the
button does not trigger any action in the program. This is no surprise, because
we have just told the button to appear, not to do anything.

We just saw a practical example of inheritance at work; the JButton we
added to the content pane is a Component, so we can add it to the content
paine. Now let us look at the idea of inheritance in general.

5.2 Inheritance

Inheritance provides a mechanism by which we can customize the capabilities
of classes to meet our needs. It can also be used as a tool to eliminate a lot
of duplicate code which is a continuing maintenance headache. Finally, it will
provide us with a means of enjoying the advantages of polymorphism, the ability
of a variable to point at objects of a variety of different types.

Be wary, however of the peril that the possession of a hammer makes ev-
erything look like a nail. Inheritance, as we shall see, is a tool that should be
used judiciously. One reason you need to be careful is that any class (save for
Object) has exactly one parent. Java does not support “multiple inheritance”
that you can see in Python or C++. It has another mechanism called interfaces
which does nearly the same thing. We will discuss the problems with multiple
inheritance schemes shortly.

The new keyword you will see is extends; the relationship you create is an
“is-a” relationship. We will create a small example by creating a suite of classes
pertaining to geometric shapes.

Let us begin by creating a class for general shapes and putting method
appropriate method stubs into it.

public class Shape

5.2. INHERITANCE 141

{

public double area()

{

return 0;

}

public double perimeter()

{

return 0;

}

public double diameter()

{

return 0;

}

}

Since we have no idea what kind of shape we are going to be working with, this
seems the best possible solution. We will use it for now and discuss better ways
of doing things later.

Now we will create a Rectangle class.

public class Rectangle extends Shape

{

private double width;

private double height;

public Rectangle(double _width, double _height)

{

width = _width;

height = _height;

}

public Rectangle()

{

this(0,0);

}

public double area()

{

return height*width;

}

public double perimeter()

{

return 2*(height + width);

}

public double diameter()

{

return Math.hypot(height, width);

}

142 CHAPTER 5. INTERFACES, INHERITANCE AND JAVA GUIS

}

Then we create a Circle class. Both these classes extend Shape, so they are
sibling classes.

public class Circle extends Shape

{

private double radius;

public Circle(double _radius)

{

radius = _radius;

}

public Circle()

{

this(0);

}

public double area()

{

return Math.PI*radius*radius;

}

public double perimeter()

{

return 2*Math.PI*radius;

}

public double diameter()

{

return 2*radius;

}

}

A square is indeed, a rectangle, so we will create a Square class by extending
Rectangle.

public class Square extends Rectangle

{

private double side;

public Square(double _side)

{

super(_side, _side);

side = _side;

}

}

5.2. INHERITANCE 143

So in our little class hierarchy here, we have the root class Shape. Then
Rectangle and Circle are children of Shape. Finally, Square is a child of
Rectangle.

Now you shall see that the type of variable you use is very important. Let
us begin an interactive session. In this session we create a 6 × 8 rectangle and
find its area, perimeter and circumference. The type of r is Rectangle.

> Rectangle r = new Rectangle(6,8);

> r.area()

48.0

> r.diameter()

10.0

> r.perimeter()

28.0

Now watch this.

> r = new Square(5);

> r.area()

25.0

> r.perimeter()

20.0

> r.diameter()

7.0710678118654755

>

We have been saying all along that a variable can only point at an object of its
own type. But now we have a Rectangle pointing at a Square. Why can we
do this?

The Square class is a child class of Rectangle, so that means a Squre is a
Rectangl! To wit, if you have a variable of a given type, it can point at any
object of a descendant type. This phenomenon is a form of polymorphism. So,
one of the benefits of inheritance is polymorphism.

You might ask now, “Why not make everything an Object and save a lot of
work?” Let us try that here.

> Object o = new Square(5);

> o.diameter()

Error: No ’diameter’ method in

’java.lang.Object’ with arguments: ()

> ((Square) o).diameter()

7.0710678118654755

>

144 CHAPTER 5. INTERFACES, INHERITANCE AND JAVA GUIS

We are quickly rebuked. Variables of type Object can only see the methods of
the Object class. Since our Square has a method diameter(), we would have
to cast the Object variable to a Square before calling diameter. That is really
a graceless solution to the problem and a last resort. There is an important
tradeoff here: variables of more general type can see more types of objects, but
at the same time, they may see fewer methods.

The moral of this fable is thus: Use variable types that are as general as you
need but not too general. In our case, here, it would make sense to have Shape

variables point at the various shapes.

Now let us have a Shape variable point at the different shapes and call their
methods. Here we have a Shape variable pointing at all the different kinds of
shapes. Notice how all of the methods work. Go ahead and test all three for
each type.

> Shape s = new Circle(10);

> s.area()

314.1592653589793

> s = new Rectangle(12,5);

> s.diameter()

13.0

> s = new Square(10);

> s.perimeter()

40.0

>

5.2.1 Polymorphism and Delegation

How does this polymorphism thing work? We had the Shape variable pointing
at a 12× 5 rectangle. When we said “s.diameter(),” here is what happened.
The variable s sent the message to its object, “compute your diameter.” The
actual job of computing the diameter is delegated to the object to which s is
pointing. Since the object pointed at by s is is a Shape object, we can be
confident it will know how to compute its diameter. In fact, at that point in the
code, s was pointing at a Rectangle, so the Rectangle computes its diameter
and returns it when commanded to do so.

The variable type determines what methods can be seen and the job of
actually carrying out the method is delegated to the object being pointed at by
the variable.

We summarize here with two principles

• The Visibility Principle The type of a variable pointing at an object
determines what methods are visible. Only methods in the variable’s class
may be seen.

5.2. INHERITANCE 145

• The Delegation Principle If a variable is pointing at an object and a
visible method is called, the object is responsible for executing the method.
Regardless of a variable’s type, if a given method in the object is visible,
the object’s method will be called.

5.2.2 Understanding More of the API Guide

Go to the API guide and bring up JFrame. Here is the family tree for JFrame

java.lang.Object

java.awt.Component

java.awt.Container

java.awt.Window

java.awt.Frame

javax.swing.JFrame

The JFrame class in the javax.swing package extends the old Frame class
in java.awt, the Abstract Window Toolkit package. We now now each class in
the list above extends the one above it. Notice that the package structure of
the java class libaries and the inheritance structure are two different structures.

You are not limited to using the methods listed in the method summary for
JFrame. Scroll down below the method summary. You will see links for all the
methods inherited from Frame. Below this, methods are listed for all ancestor
classes right up to Object. You can click on any named method and view its
method detail on its home API page from the ancestor class.

Also on this page, you will see a Field Summary. Fields are just another
name for state or instance variables. You will notice that many of these are in
caps. It is common to put a variable name in caps when the variable is marked
final.

Fields can be inherited from ancestor classes and these are also listed on the
API page. One field we will commonly use with the JFrame class is

JFrame.EXIT_ON_CLOSE,

which we will use to tell an app to quit when its go–away box is clicked. Oth-
erwise, your app remains running in memory; it just is not visible.

One new keyword you should know about is protected. This is an access
specifier that says, “Descendants can see but nobody else.” It allows descen-
dant classes access to state variables in ancestor classes. It is better to avoid
protected, to make everything private. You will learn how to use super to
initialize state variables in a parent class. You will see the protected keyword
fairly often in the API guide.

146 CHAPTER 5. INTERFACES, INHERITANCE AND JAVA GUIS

5.2.3 Deprecated Can’t be Good

Do not use deprecated elements. This is the Java community’s way of telling
you something is on the way out. Often, when something is deprecated, the
API guide will indicate the correct way to accomplish your goal.

5.2.4 Why Not Have Multiple Inheritance?

Class designers often speak of the “deadly diamond;” this is a big shortcoming
of multiple inheritance and can cause it to produce strange behaviors. Shortly,
we will see that Java has a clever alternative that is nearly as good with none
of the error-proneness.

Imagine you have these four classes, Root, Left, Right and Bottom. Suppose
that Left and Right extend Root and that Bottom were allowed to extend Left

and Right.

Before proceeding, draw yourself a little inheritance diagram. Graphically
these four classes create a cycle in the inheritance graph (which in Java must
be a rooted tree).

Next, imagine that both the Left and Right classes implement a method
f with identical signature and return type. Further, suppose that Bottom does
not have its own version of f; it just decides to inherit it. Now imagine seeing
this code fragment

Bottom b = new Bottom(....);

b.f(...)

There is a sticky problem here: Do we call the f defined in the class Left or
Right? If there is a conflict between these methods, the call is not well–defined
in our scheme of inheritance.

5.2.5 A C++ Interlude

There is a famous example of multiple inheritance at work in C++. There is
a class ios, with children istream and ostream. The familiar iostream class
inherits from both istream and ostream. Since the methods for input and
output do not overlap this works well.

However, the abuse of multiple inheritance in C++ has lead to a lot of very
bad errors in code. Java’s creators decided this advantage was outweighed by
the error vulnerabilities of multiple inheritance.

The One-Parent Rule Every class has exactly one parent, except for Object,
which is the root class. When you inherit from a class, you “blow your inheri-

5.3. EXAMINING FINAL 147

tance.” The ability to inherit is very valuable, so we should only inherit when
it yields significant benefits with little downside. We will see how to circumnav-
igate this and obtain the benefits of polymorphism with interfaces. First, we
shall dispense with an important technical detail.

5.3 Examining Final

The keyword final pops up in some new contexts involving inheritance. Let
us begin with a little sample code here

public class APString extends String

{

}

We compile this, expecting no trouble, and we get angry yellow, along with this
error message.

1 error found:

File: /home/morrison/book/texed/Java/APString.java [line: 1]

Error: /home/morrison/book/texed/Java/APString.java:1:

cannot inherit from final java.lang.String

The String class is a final class, and this means that you cannot extend it.
Why do this? The creators of Java wanted the String class to be a standard.
Hence they made it final, so that every organization under the sun does not
decide that it would like to create (yet another annoying....) implementation of
the String class. An example of this undesirable phenomenon existed during
the days of the AP exam in C++. Subclasses of the string and vector classes
were created for the the exam. Near the top of the API page for the String

class, you will see it says

public final class String extends Object

Look here on any API page to see if a given class is final. Methods in classes
can also be declared final, which prevents them from being overridden. We
present a table with all of the uses of final, including a new context in which
we mark the argument of a method final.

148 CHAPTER 5. INTERFACES, INHERITANCE AND JAVA GUIS

final Exam!
primitive When a variable of primitive type is marked final, it

is immutable
Object When a variable of object type is marked final, it

can never point at an object other than the object
with which it is initialized. Mutator methods, how-
ever can change the state of a final object. What is
immutable here is the pointing relationship between
the identifier marked final and its object.

class When a class is marked final, you cannot inherit
from it.

method When a method is marked final, you cannot over-
ride it in a descendant class.

argument When an argument of a method is marked final,
it is treated as a final local variable inside of the
method.

5.4 Back to the ’70’s with Cheesy Paneling, or
I Can’t Stand it, Call the Cops!

In this section, we will return to the graphical world We will produce a more
elaborate example of a simple GUI app. This will allow us to introduce some
new Swing classes and apply them. Also, watch for a nice, natural use of a two–
dimensional array to arise. The result will be part of an interface to a graphical
calculator.

Java supplies a class called a JPanel that is an ideal tool for corralling a
group of related graphical widgets. You can add JPanels to the content pane.
You can also add a Container. Remember, this is the type of the content pane
of a JFrame. The problem is, that graphical widgets are like badly–behaved
children. They don’t play nicely without supervision.

To see this, let us repair to the interactions pane for an enlightening session
in which we try to place two buttons in a window. We begin by building the
frame and adding the left button.

> import javax.swing.JFrame

> import javax.swing.JButton

> f = new JFrame("Two buttons, I hope");

> f.setSize(500,500);

> left = new JButton("left");

> right = new JButton("right");

> f.getContentPane().add(left);

> f.setVisible(true);

5.4. BACK TO THE ’70’S WITH CHEESY PANELING, OR I CAN’T STAND IT, CALL THE COPS!149

You should see a frame with the title “Two buttons, I hope” in the title bar.
It features a button with "left" emblazoned on it. All is calm and ironic.

Now let us try to add the right button. As a concession to reality, we know
we have to make the frame invisible, add the button and make it visible again.
We now do so.

> f.setVisible(false)

> f.getContentPane().add(right);

> f.setVisible(true);

Whoa! we only see one button in the window. It reminds us of one of those
nature shows where the first chick in the nest kills its sibling so it gets all the
food. This is a problem. How do we get these (childish) widgets to play nicely?

A cop is needed. The cop comes in the form of a layout manager, who
tells the widgets how to play nicely. It will lay down the law. Widgets by
themselves are terrible children who try to hog everything for themselves. They
are undisciplined and will appear anywhere but where you want them. They
need a layout manager to impose order and to make things work. Now hit F5
to clear the interactions pane and we shall start from scratch.

We will use a GridLayout; the full name of this class is

java.awt.GridLayout

Here is our interactive session. We will “peek” as we build the GUI. You can
open the GridLayout API page. It forces widgets to occupy a grid. We wil make
four buttons and we will peek after each one is added to see what is happening.
Begin by creating the window. Keep this session open, as we will add to it.

> import java.awt.GridLayout;

> import javax.swing.JFrame;

> import javax.swing.JButton;

> f = new JFrame("Four Buttons Playing Nicely");

> f.setSize(500,500);

> f.setVisible(true);

Now add this line. It will make the widgets live in a 2× 2 grid.

> f.getContentPane().setLayout(new GridLayout(2,2));

We add theses lines. They add the JButton labeled 0 to the window. Notice
that this lone button occupies the upper half of the content pane.

> b00 = new JButton("0");

150 CHAPTER 5. INTERFACES, INHERITANCE AND JAVA GUIS

> f.getContentPane().add(b00);

> f.setVisible(false);

> f.setVisible(true);

Now add the second button. Set visible to false then true to refresh everything.

> b01 = new JButton("1");

> f.getContentPane().add(b01);

> f.setVisible(false);

> f.setVisible(true);

The result is two buttons, one occupying the top half of the content pane, the
other occupying the bottom half. Next, we add the third button to the content
pane.

> b10 = new JButton("2");

> f.getContentPane().add(b10);

> f.setVisible(false);

> f.setVisible(true);

The result here is that the buttons marked 0 and 1 occupy the top row and
that the button marked 2 occupies the left half of the bottom row. Now let us
administer the coup d’grace.

> b11 = new JButton("3");

> f.getContentPane().add(b11);

> f.setVisible(false);

> f.setVisible(true);

Voila! Four buttons are playing nicely in a 2×2 grid. The unruly children have
been disciplined into their appropriate roles.

There are several types of layout managers we will be interested in. You
should instantiate them all and, add buttons and watch them work.

5.4. BACK TO THE ’70’S WITH CHEESY PANELING, OR I CAN’T STAND IT, CALL THE COPS!151

Layout Managers
null This is an absence of a layout manager. You po-

sition components by using setLocation and size
them with setSize.

GridLayout The constructor of the GridLayout accepts as its
first argument a number of rows, then a number of
columns. It places widgets in which it is the law of
the land in a grid.

FlowLayout It enforces a “Jimmy Buffet” policy in which widgets
go with the flow. It has several constructors that
give it additional guidance. In a JPanel, this is the
default layout manager.

BorderLayout This has fields for NORTH, SOUTH, EAST, WEST
and CENTER. The CENTER field is “piggy” and
will devour the entire content pane. The other fields
occupy the edges of the container. This is the default
layout in a Container. If you simply add something
to a container, by default it adds to CENTER, which
hogs all the space.

BoxLayout This positions widgets vertically in a Jimmy Buf-
fetesque fashion.

There is one other layout manager, called a GridBagLayout, which gives
incredible control over the placement of widgets. This, however, is usually used
by front-end programs such as NetBeans, that generate GUIs. You do not want
to work manually with these.

5.4.1 Recursion is our Friend

You can create JPanels, and impose a layout manager on each. You can then
add these, using layout managers for other panels and containers. Using the
basic layout managers and this principle, you have huge latitude. This phe-
nomenon may be used recursively.

For example, if we were writing a calculator, we might have a panel hold the
a 4X3 number pad that looks like this.

1 2 3
4 5 6
7 8 9
0 . (-)

The (-) button is for changing the sign of a number. To its right we might
have a vertical panel of operator buttons that includes +, -, *, / and =. We
shall do this, but first let us attend to an important matter.

152 CHAPTER 5. INTERFACES, INHERITANCE AND JAVA GUIS

5.5 A Framework for our GUI Programs

We are going to create a simple framework for creating GUI classes. As you
are about to see, this is necessary to keep your applications running sanely and
cleanly.

What we have not discussed so far is that Java has a capability called thread-
ing built into it. A thread in Java is a subprocess launched within a Java
program; you can have several threads running concurrently within any given
program. Threads run almost like independent programs within your program’s
process. Having several threads running at once is called multithreading. Every
thread has its own call stack which is independent of the other threads.

Whether you know it or not, all Java programs of any size at all are multi-
threaded. The garbage collector runs it its own thread, monitoring your program
for orphaned objects and deallocating their memory. The method main starts
the main thread, so a Java program always has the garbage collector and main
threads running concurrently.

When you interact with a modern GUI program, your communications to the
computercome in the form of events Events include such things as keystrokes,
mouse clicks, and button pushes.

Java manages events with a data structure called a queue. Queues are just
like lines in a cafeteria. You enter the line at the end, and are enqueued in the
line. You go through the line to the service end, where you get what is needed
(food and paying), at which time you are dequeued, and leave the queue, having
got what you were seeking. This completely severs your relationship with the
queue and as far as the queue is concerned, you are gone for good.

In Java there is a queue called the event dispatch queue or event queue for
short. In a GUI, there is a separate thread for the event queue, called logicaly
enough, the it event dispatch thread. As your program processes events, they
are placed on a queue, which is a first in, first out data structure. The events
go into the queue, wait to be processed and then are processed and are removed
from the queue. We want to ensure that the events from our GUI enter the event
queue in an orderly fashion. If we do not ensure this, strange things can happen
to your GUI that are patently undesirable. In particular, you want events to be
processed in the order in which the user causes them to occur. This way, your
program will not have sudden magical, nonsensical behavior.

To accomplish this we must do something called “implementing the Runnable
interface.” Happily this is quite uncomplicated. For now, that means two things,
insert implements Runnable as shown in the class Pfooie.java here.

public class Pfooie implements Runnable

{

//constructors and other methods and instance variables

5.5. A FRAMEWORK FOR OUR GUI PROGRAMS 153

public void run()

{

//your run code. Build your GUI here.

}

public static void main(String[] args)

{

Pfooie pf = new Pfooie(anyArgumentsYouNeedIfAny);

javax.swing.SwingUtilities.invokeLater(pf);

}

}

The other thing required is for you to have a run method tht looks like this.

public void run()

{

}

What is that ugly stuff in main? On the first line, you are making an instance
of your class named pf. You then pass this instance to

javax.swing.SwingUtilities.invokeLater

This function runs your run method so that the event queue behaves itself.
Later, when we discuss interfaces in full, you will see that “implements Runnable”
is just a promise you will implement the method public void run(). Below
we furnish a quick summary of what to do.

1. Implement the Runnable interface.

2. Implement a public void run(), as is required by the Runnable inter-
face. Use this method to run your GUI. If the GUI is large, you can call
other methods from run. This method must orchestrate the enire activity
of your GUI.

3. Run your GUI by using the static method invokeLater(Runnable r) in
main as shown above. This method lives in the class SwingUtilities.
Since you only use it once, just use the fully-qualified class name and no
import statement is needed.

Your events will now join the event queue in an orderly fashion and they
will execute in the order in which the user creates them. Let us now return to
building a simple application that has holds the number and operator keys for
a calculator.

154 CHAPTER 5. INTERFACES, INHERITANCE AND JAVA GUIS

5.6 Creating a Complex View

Begin by entering this code into the DrJava code window.

import javax.swing.JFrame;

import javax.swing.JButton;

import javax.swing.JPanel;

import java.awt.BorderLayout;

import java.awt.GridLayout;

public class Calculator extends JFrame

{

}

Compile right away to ensure you have entered it correctly. We have several
import statements which will be the ones we will need as we develop this appli-
cation. Now we add more code. We need two JPanels to hold the number keys
and the op keys. We need to set layouts for each panel and then, in turn, add
them to the content pane.

import javax.swing.JFrame;

import javax.swing.JButton;

import javax.swing.JPanel;

import java.awt.BorderLayout;

import java.awt.GridLayout;

public class Calculator extends JFrame

{

JPanel numberPanel;

JPanel opPanel;

public Calculator()

{

numberPanel = new JPanel();

numberPanel.setLayout(new GridLayout(4,3));

opPanel = new JPanel();

opPanel.setLayout(new GridLayout(5,1));

getContentPane().add(BorderLayout.CENTER, numberPanel);

getContentPane().add(BorderLayout.EAST, opPanel);

}

}

So far, nothing is visible. Let us now put in a main method and a run

method to build the GUI.

import javax.swing.JFrame;

5.6. CREATING A COMPLEX VIEW 155

import javax.swing.JButton;

import javax.swing.JPanel;

import java.awt.BorderLayout;

import java.awt.GridLayout;

public class Calculator extends JFrame

{

JPanel numberPanel;

JPanel opPanel;

public Calculator()

{

numberPanel = new JPanel();

opPanel = new JPanel();

}

public void run()

{

opPanel.setLayout(new GridLayout(5,1));

numberPanel.setLayout(new GridLayout(4,3));

getContentPane().add(BorderLayout.CENTER, numberPanel);

getContentPane().add(BorderLayout.EAST, opPanel);

}

public static void main(String[] args)

{

Calculator c = new Calculator();

javax.swing.SwingUtilities.invokeLater(c);

}

}

Now let us add a little code to the run method so the application will be
visible when it runs.

import javax.swing.JFrame;

import javax.swing.JButton;

import javax.swing.JPanel;

import java.awt.BorderLayout;

import java.awt.GridLayout;

public class Calculator extends JFrame

{

JPanel numberPanel;

JPanel opPanel;

public Calculator()

{

numberPanel = new JPanel();

156 CHAPTER 5. INTERFACES, INHERITANCE AND JAVA GUIS

opPanel = new JPanel();

}

public void run()

{

setSize(500,400);

opPanel.setLayout(new GridLayout(5,1));

numberPanel.setLayout(new GridLayout(4,3));

getContentPane().add(BorderLayout.CENTER, numberPanel);

getContentPane().add(BorderLayout.EAST, opPanel);

setDefaultCloseOperation(EXIT_ON_CLOSE);

setVisible(true);

}

public static void main(String[] args)

{

Calculator c = new Calculator();

javax.swing.SwingUtilities.invokeLater(c);

}

}

When you compile this, next hit F2 to run it. An empty, title-less window
will appear on your screen. Go to the first line of the constructor and place the
line at the beginning of the constructor.

super("Calculator Demo");

Your window will get a title in the title bar. Recall that the super keyword
launches a call to the parent constructor. This constructor causes a title to be
placed in the title bar. Our calculator, however, is still bereft of buttons. Let
us create these next. Add two new state variables

JButton [][]numberKeys;

JButton [] opKeys;

These are arrays of buttons. The numberKeys array is a two-dimensional array,
i.e. a grid of buttons. Think of the first number as specifying the number of
rows and the second as specifying the number of columns. It makes sense to
use an array since we are keeping related things all in one place. It will now be
necessary to get this live by initializing the buttons in the constructor. First we
will take care of the number keys. Add this code to the constructor.

numberKeys = new JButton[4][3];

//get in digits 1-9 with a dirty trick

for(int k = 0; k < 3; k++)

{

5.6. CREATING A COMPLEX VIEW 157

for(int l = 0; l < 3; l++)

{

numberKeys[k][l] = new JButton("" + (3*k + l + 1));

numberPanel.add(numberKeys[k][l]);

}

}

//fill in the rest of the number keys manually

numberKeys[3][0] = new JButton("0");

numberPanel.add(numberKeys[3][0]);

ys[3][1] = new JButton(".");

numberPanel.add(numberKeys[3][1]);

numberKeys[3][2] = new JButton("(-)");

numberPanel.add(numberKeys[3][2]);

Let us explain some of the things occurring here. The line

numberKeys = new JButton[4][3];

directs that we create an object capable of pointing at an array of JButtons
with four rows and three columns. Next comes a for loop for getting each entry
of the array to point at an actual button. It then causes that button to be added
to the panel of number keys. Do you see how this dirty trick got the digits 1-9
in their proper places? Notice the exploitation of lazy evaluation as well.

for(int k = 0; k < 3; k++)

{

for(int l = 0; l < 3; l++)

{

numberKeys[k][l] = new JButton("" + 3*k + l + 1);

numberPanel.add(numberKeys[k][l]);

}

}

After the for loop, we just added the remaining buttons in one–by–one.

Now compile and run; you will see a numerical keyboard occupying the
content pane. Since we haven’t put anything in the op panel, it does not yet
appear. We shall now create the op panel. Append these pieces of code to the
constructor. Compile and check after you add each one. We begin by creating
all of the op buttons. They live in an array with five elements.

opKeys = new JButton[5];

opKeys[0] = new JButton("+");

opKeys[1] = new JButton("-");

opKeys[2] = new JButton("*");

158 CHAPTER 5. INTERFACES, INHERITANCE AND JAVA GUIS

opKeys[3] = new JButton("/");

opKeys[4] = new JButton("=");

This handy little for loop finishes the job.

for(int k = 0; k < 5; k++)

{

opPanel.add(opKeys[k]);

}

Compile and run and you will see the completed product. You can see that
we can integrate various containers into the content pane, each with a different
layout manager to achieve professional–looking effects.

Let us conclude by showing the entire program.

import javax.swing.JFrame;

import javax.swing.JButton;

import javax.swing.JPanel;

import java.awt.BorderLayout;

import java.awt.GridLayout;

public class Calculator extends JFrame implements Runnable

{

JPanel numberPanel;

JPanel opPanel;

JButton [][]numberKeys;

JButton [] opKeys;

public Calculator()

{

super("Calculator Demo");

numberPanel = new JPanel();

opPanel = new JPanel();

}

public void run()

{

setSize(500,400);

opPanel.setLayout(new GridLayout(5,1));

numberPanel.setLayout(new GridLayout(4,3));

getContentPane().add(BorderLayout.CENTER, numberPanel);

getContentPane().add(BorderLayout.EAST, opPanel);

setDefaultCloseOperation(EXIT_ON_CLOSE);

numberKeys = new JButton[4][3];

//get in digits 1-9 with a dirty trick

5.6. CREATING A COMPLEX VIEW 159

for(int k = 0; k < 3; k++)

{

for(int l = 0; l < 3; l++)

{

numberKeys[k][l] = new JButton("" + (3*k + l + 1));

numberPanel.add(numberKeys[k][l]);

}

}

//fill in the rest of the number keys manually

numberKeys[3][0] = new JButton("0");

numberPanel.add(numberKeys[3][0]);

numberKeys[3][1] = new JButton(".");

numberPanel.add(numberKeys[3][1]);

numberKeys[3][2] = new JButton("(-)");

numberPanel.add(numberKeys[3][2]);

opKeys = new JButton[5];

opKeys[0] = new JButton("+");

opKeys[1] = new JButton("-");

opKeys[2] = new JButton("*");

opKeys[3] = new JButton("/");

opKeys[4] = new JButton("=");

for(int k = 0; k < 5; k++)

{

opPanel.add(opKeys[k]);

}

setVisible(true);

}

public static void main(String[] args)

{

Calculator c = new Calculator();

javax.swing.SwingUtilities.invokeLater(c);

}

}

Programming Exercises

1. Look up the class JTextField in the API guide. Modify the calculator
code to place a JTextField with a white background on the top of the
calculator. This is preparation for producing a display in which to show
numbers. Cause the JTextField to display some text.

2. Look up the class Font in the API guide. Look in the JButton class and
see if you can set the font to be bold and to have size 36 numbers on the
buttons.

3. Make the text in the JTextField right-justified. You may need to look in
fields or methods from parent classes.

160 CHAPTER 5. INTERFACES, INHERITANCE AND JAVA GUIS

4. Make the background of the JTextField black and the type red, as you
might see on an old-fashioned calculator.

5.7 Interfaces

In the last section, we created a GUI with buttons, and in the exercises, you
made an application with menus. However, these pretty things do nothing. How
do we make feature like buttons live? How do we get our programs to respond to
mouse clicks or keyboard hits? To accomplish these goals, we will first need to
understand interfaces. The discussion ahead will at first seem totally unrelated
to the issue of GUIS, but in the next section, all will snap into place.

Let us go back to the suite of Shape classes we created earlier. We blew our
inheritance in the Shape class example. The big advantage yielded there was
that a Shape variable could point at a Rectangle, Circle, or a Square. We
could see obtain the diameter, perimeter or area of any such shape. The waste
is that the code in the Shape class is useless. You cannot compute geometric
quantities of a shape without first knowing what kind of shape it actually is.

Let us now create an interface, which we shall call IShape for handling
shapes. We shall decided that the essence of being a shape here is knowledge of
your diameter, perimeter and area. Save it in a file named IShape.java.

public interface IShape

{

public double area();

public double perimeter();

public double diameter();

}

What you see inside of the IShape interface is disembodied method headers.
You are not allowed to have any code inside of an interface. You may only place
method headers in it.

An interface is a contract in Java. You can sign the contract as follows. You
know, for instance, that a Rectangle should be a IShape. To make this so,
modify the class header header to read

public class Rectangle implements IShape

You will see that, when you type the word implements into DrJava, it turns
blue. (Note: forgetting the ‘s’ on implements is a common error.) This indicates
that implements is a language keyword. By saying you implement an interface,
you warrant that your class will implement all methods specified in the interface.
This contract is enforced by the compiler.

5.7. INTERFACES 161

You have already used his construct: the Runnable interface has only one
method: public void run().

Interfaces are not classes. You may not create an instance of an interface
using the new keyword. This would make absolutely no sense, because none of
its methods have any code.

Because of the visibility principle, you can create variables of interface type.
Such variables may point at any instance of any class implementing that inter-
face. This works because the method’s type is specified by its method header.
It is the actual object that contains the code which executes.

You can also have arguments for methods of interface type and pass any
object whose class implements that interface as an argument to the method.

Go back to the classes we created earlier that descended from Shape. Modify
them to implement IShape instead, and polymorphism will work perfectly! Here
is a driver program.

public class IShapeDriver

{

public static void main(String[] args)

{

IShape s = new Rectangle(6,8);

System.out.println("6X8 rectangle diameter = " + s.diameter());

s = new Square(10);

System.out.println("10X10 square area = " + s.area());

s = new Circle(5);

System.out.println("circle of radius 5 perimeter = " + s.perimeter());

}

}

Run it and get this output.

> java IShapeDriver

6X8 rectangle diameter = 10.0

10X10 square area = 100.0

circle of radius 5 perimeter = 31.41592653589793

Successfully, the variable of interface type pointed at all of the different shapes.
Now append this line to the code

IShape s = new IShape();

and see the angry yellow.

1 error found:

162 CHAPTER 5. INTERFACES, INHERITANCE AND JAVA GUIS

File: /home/morrison/Java/IShapeDriver.java [line: 11]

Error: /home/morrison/Java/IShapeDriver.java:11:

IShape is abstract; cannot be instantiated

You cannot create instances of interfaces.

5.7.1 The API Guide, Again

The Java libraries contain an abundance of interfaces; these serve as a means
for organizing classes. If you look in the class window, you can tell an item
listed is an interface if it is italicized. An example of this, which we shall
soon use is ActionListener. Click on it to view its documentation. It has a
superinterface called EventListener. Interfaces can be extended in the same
manner as classes. A child interface simply adds more method headers. A
superinterface is a parent interface. ActionListener has a subinterface called
Action.

Next, you will see a list of all classes that implement ActionListener; it is
quite large. ActionListener has one method,

public void actionPerformed(ActionEvent e);

so any implementing class must have a method with this header. Click on some
of the implementing classes and hunt for their actionPerformed methods.

Consider its parent interface. It must have no methods! Let us explore
EventListener. Indeed, it is devoid of methods. It is simply a “bundler”
interface that ties a bunch of classes together with a common bond. There are
several interfaces like this in the Java standard libraries.

You will see that the ActionListener will be the tool we use to make a
button live. First we have some simple exercises to get you used to interfaces.

Programming Exercises

1. Create a new class Triangle, which implements IShape. Look up Herron’s
formula to find the area of a triangle from its three sides. Remember, the
diameter of a shape is the greatest distance between any two points in the
shape. This should make computing the diameter of a Triangle simple.

2. Create a new class EquilateralTriangle. From whom should it inherit?

3. Extend the interface IShape to a new interface IPolygon, which has an
additional method

public int numberOfSides();

5.8. MAKING A JBUTTON LIVE WITH ACTIONLISTENER 163

Decide which shapes should implement IPolygon and make the appropriate
changes. The extends keyword is used for making child interfaces, just
as it is used for making child classes.

5.8 Making a JButton live with ActionListener

A button requires a class that implements ActionListener to make it live.

We begin by creating the graphical shell with the button.

import javax.swing.JButton;

import javax.swing.JFrame;

public class LiveButton extends JFrame implements Runnable

{

private JButton b;

public LiveButton()

{

super("Live Button Demo");

b = new JButton("Panic");

}

public void run()

{

getContentPane().add(b);

setSize(300,300);

setDefaultCloseOperation(EXIT_ON_CLOSE);

setVisible(true);

}

public static void main(String[] args)

{

LiveButton l = new LiveButton();

javax.swing.SwingUtilities.invokeLater(l);

}

}

Compile and run; you will have a window with a button in it. Next, create
another class called ButtonListener that implements ActionListener. Note
the necessary import statements.

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

public class ButtonListener implements ActionListener

{

164 CHAPTER 5. INTERFACES, INHERITANCE AND JAVA GUIS

public void actionPerformed(ActionEvent e)

{

System.out.println("AAAAAAAAAAAAAAAAAAAAHHHH!!");

}

}

Now add the following line of code to run inside of LiveButton.

b.addActionListener(new ButtonListener());

When you click on the button, it broadcasts an event, telling your program, “I
have been pushed.” When a button is not live, no one is listening. Now we create
an instance of a ButtonListener. That is like buying a radio allowing you to
listen for ActionEvents, which are broadcast by pushed buttons. When you
do b.addActionListener(new ButtonListener()), you are now telling that
ButtonListener to tune in on b and to execute its actionPerformed method
each time the button b is clicked. For any given button, you may attach as
many ActionListeners as you wish.

5.9 Inheritance and Graphics

We will begin by creating the standard graphical shell.

import javax.swing.JFrame;

public class DrawFrame extends JFrame implements Runnable

{

public void run()

{

setSize(500,500);

setDefaultCloseOperation(EXIT_ON_CLOSE);

setVisible(true);

}

public static void main(String[] args)

{

DrawFrame df = new DrawFrame();

javax.swing.SwingUtilities.invokeLater(df);

}

}

To draw, we do the following. We create a class that inherits from JPanel.
We then override the method public void paintComponent(Graphics g).

5.9. INHERITANCE AND GRAPHICS 165

This method is called automatically by the OS whenever the window re-
freshes. You can also call it by using the repaint() method. Windows refreshe
when they are maximized, minimized or resized.

So, to get started we create a class such as DrawPanel.java shown here.

import javax.swing.JPanel;

import java.awt.Graphics;

import java.awt.Color;

public class DrawPanel extends JPanel

{

@Override

public void paintComponent(Graphics g)

{

//Place instructions here to draw all of the

//stuff that goes in this window.

}

}

Now add one of these panels to the DrawFrame. Just add this line in run()

method.

getContentPane().add(new DrawPanel());

That embeds the DrawFrame inside of your app. You can impose a layout
manager on the content pane and add several panels for drawing if you wish.

What is a Graphics? It is a combined pen and paintbrush that has 16,777,216
colors. You should visit the API page and experiment with the methods. We
will show a few examples here. Note that you can set the color of the pen by
using g.setColor().

Place these lines in paintComponent().

g.setColor(Color.BLACK);

g.fillRect(0,0,getWidth(), getHeight());

This will fill the pen with black pixels and then paint the entire window black.
Try resizing the window. The entire window will be filled with black. Why?
When the window is resized, the window repaints. A JPanel knows its width and
height; we obtain these with the accessor methods getWidth() and getHeight().
Now augment the paintComponent() method with these lines.

System.out.printf("height = %s\n", getHeight());

System.out.printf("width = %s\n", getWidth());

166 CHAPTER 5. INTERFACES, INHERITANCE AND JAVA GUIS

Resize the window and watch the stdout window. As the window resizes,
updates the height and width to the terminal. Experiment with this and watch
its behavior.

Now let’s make a Carolina blue rectangle in the window. Just add this.

g.setColor(new Color(0xabcdef));

g.fillRect(100,100,75,75);

Here is a little magic; we can make a red rectangle that resizes with the window.

g.setColor(Color.RED);

g.fillRect(getWidth()/4,getHeight()/4,getWidth()/2,getHeight()/2);

Now make some colorful circles. Add this.

g.setColor(Color.BLUE);

g.fillOval(200, 200, 50, 50);

g.setColor(Color.YELLOW);

g.drawOval(250,250,100,100);

Finally put it all in a green jail.

g.setColor(Color.GREEN);

for(int k = 0; k < getHeight(); k+= 20)

{

g.drawLine(0, k, getWidth(), k);

}

5.10 Abstract Classes

You see now that we have classes, which are blueprints for manufacturing ob-
jects. They are blueprints for creating objects that have state, identity and
behavior. A logical question is this: Is is possible to “partially implement” a
class? Can you create a class stub that has some methods implemented, some
data members and some unimplemented methods?

Suppose you have a closely related group of classes. You are remembering
the eleventh commandment, “Thou shalt not maintain duplicate code!” This
animadversion reminds us that, to maintain programs, we sometimes need to
change code. When we do, we do not want to be ferreting out identical code
segments in a group of classes and making the same edit on all of them. That
is folly–filled nonsense to be avoided at any cost.

Such a thing, does, indeed exist. It is called an abstract class. Like an
interface, an abstract class cannot be instantiated. Like an interface, you can

5.10. ABSTRACT CLASSES 167

create variables of abstract class type that can point at any descendant class.
The abstract class is the item that lies between the empty–looking interface and
the fully furnished class.

We shall create an example of a related group of classes. Suppose you are
Old MacDonald and you have a farm. You are going to write code to keep track
of the many things that are on your farm. There are several broad categories you
might have: Animal, Implement, Building and Crop might be some of these
categories. These sorts of things are good choices for being abstract classes or
interfaces.

The main thing that motivates you to use abstract classes is that you might
actually have classes that share code. This is when you use abstract classes. If
the classes merely share functionality, you might want to use an interface.

We will build small it class hierarchy. All classes live in a family tree. All
of our farm classes descend from the root class tt FarmAsset.

public abstract class FarmAsset

{

private String name;

public FarmAsset(String _name)

{

name = _name;

}

public String getName()

{

return name;

}

}

This looks like a regular class, save for the addition of the word abstract. Since
this class is marked abstract, it cannot be instantiated. You must produce a
new descendant class to make an actual instance. Now let us make an Animal

class. Some class designers would make their variables protected for conve-
nience, but we make them private and initialize them via calls to super. This
is consistent with the design principle that we make our internal working of our
classes private. Observe that Animal inherits getName from its parent.

public abstract class Animal extends FarmAsset

{

private String noise;

private String meatName;

public Animal(String _name, String _noise, String _meatName)

{

super(_name);

168 CHAPTER 5. INTERFACES, INHERITANCE AND JAVA GUIS

noise = _noise;

meatName = _meatName;

}

public String getNoise()

{

return noise;

}

public String getMeatName()

{

return meatName;

}

}

Next we create a class for crops.

public abstract class Crop extends FarmAsset

{

private double acreage;

public Crop(String _name, double _acreage)

{

super(_name);

acreage = _acreage;

}

}

Finally, we create a concrete (non-abstract) class which we can instantiate.
We shall begin with the honorable pig. Notice the brevity of the code. What we
did here was to push the common features of farm assets as high up the tree as
possible. You do not need to create the getName, getMeatName and getNoise

for each animal. We added a toString method for Pig so it would print nicely.

public class Pig extends Animal

{

public Pig(String _name)

{

super(_name, "Reeeeet! Snort! Snuffle!", "pork");

}

public String toString()

{

return "Pig named " + getName();

}

}

i> p = new Pig("Wilbur");

> p.getNoise()

5.10. ABSTRACT CLASSES 169

"Reeeeet! Snort! Snuffle!"

> p.getName()

"Wilbur"

> p.getMeatName()

"pork"

> p

Pig named Wilbur

Can Methods be Left Unimplemented? Yes. If you do not implement a
method, you can declare it abstract and just specify a method header. Any
concrete child class will be required to implement that method. In this way an
abstract class can behave like a class and like an interface. If a class has any
abstract methods, it must be declared abstract.

Here is a simple example. Suppose you run a school and are in charge of
keeping track of all people on campus. You might have a class called Employee,
with an abstract method computePay(). You know that all employees are paid,
so you place this line in your Employee class.

public abstract double computePay(double hoursWorked);

Your school likely has hourly and salaried employees. A salaried employee’s
paycheck is fixed each pay period. An hourly employee’s pay is computed by
multiplying the hours worked by the hourly rate of pay, and adding in the legally
required time-and-a-half for overtime. You would likely have two classes extend-
ing the abstract Employee class, HourlyEmployee and SalariedEmployee. All
employees have many things in common: these go into the parent class. You
have to know their social security number, mail location, and department. Your
Employee class might have a parent class Person, which would keep track of
such details common to everyone on a school campus, including, name, address,
and emergency contact information. From Person, you might have child class
Student. A Student should know his locker number, class list, and grade.

Using classes, we model the school in a “real-life” way. We create a hierarchy
of classes, some of which are abstract. We look at various bits of information
germane to each class, and we keep that information as high as possible in the
class hierarchy; for instance, the name of an individual is really a property of
Person, so this class should have a getName() method. All employees have a
paycheck, so we create the abstract computePay() method so that every class of
employee we ever create is required to to have the computePay() method. That
requirement is enforced by the compiler, just as it is for interfaces. It confers
an additional benefit. A variable of type Employee can call the computePay()

method on the object it points to, and that object will compute its pay, regard-
less of the type of employee it represents.

Programming Exercises

170 CHAPTER 5. INTERFACES, INHERITANCE AND JAVA GUIS

1. Create a class for Cow and Goat. Instantiate these and have a variable of
type FarmAsset point at them. What methods can you call successfully?
Have a variable of type Animal point at them. What methods can you
call now?

2. Have you ever noticed that the meat name for fowl is the same as the
animal’s name. For instance, we call chicken meat “chicken” and duck
meat “duck.” Create a new abstract class Fowl that exploits this. Then
create classes Chicken, Goose and Duck. Point at these with an Animal

variable, and see what methods you can call.

3. Create a new abstract class Implement to encompass farm implements
such as tractors, combines, or planters. Make some child classes for farm
implements.

Chapter 6

The Tricolor Case Study

6.0 Introduction

This chapter consists of a case study. We are going to get a fully functioning
application to draw shapes in its content pane called Tricolor. It will be
menu-driven and fully graphical.

6.1 Building the View for Tricolor

The Tricolor application will feature three menus: File, Color and Position.
The File menu will have one item, quit, which will quit the application. The
color menu will have three colors: red, green and blue. The Position menu will
have three positions, left middle and right.

The content pane will contain three panels, a left, middle and right panel.
When a panel is selected, the panel will be painted the color of the item in the
Color menu. All panels will be white when the app starts.

We begin by creating a graphical shell as follows.

import javax.swing.JFrame;

public class Tricolor extends JFrame implements Runnable

{

public Tricolor()

{

super("Tricolor");

}

public void run()

171

172 CHAPTER 6. THE TRICOLOR CASE STUDY

{

setSize(500,500);

setVisible(true);

}

public static void main(String[] args)

{

Tricolor t = new Tricolor();

javax.swing.SwingUtilities.invokeLater(t);

}

}

6.2 Our Panels Need to Know their Colors

Now it is time to make some design decisions. We need three panels that know
their color. To this end, we create a new class called ColorPanel, which extends
JPanel and which knows its color. It will paint itself its color.

From this point, we know that we will need to change the color of these
panels. Since graphical elements tend to be big, we favor mutability here and
allow changes of state. We will allow this panel to change its color.

import javax.swing.JPanel;

public class ColorPanel extends JPanel

{

private Color color;

}

Let us now make this panel white in the constructor. Also, let us implement
a method setColor that sets the color of this panel. The color of this panel
will be controlled by the items in the Color menu. As a result, we know now
that it must be mutable. We insert the method setColor so the panel’s color
can change in response to the selection of a menu item.

import javax.swing.JPanel;

import java.awt.Color;

import java.awt.Graphics;

public class ColorPanel extends JPanel

{

private Color color;

public ColorPanel()

{

color = Color.WHITE;

}

public void setColor(Color c)

6.3. INSERTING COLORPANELS INTO THE TRICOLOR APP 173

{

color = c;

}

}

Finally, we will tell the panel to paint itself its color. While we are here, let’s
create a toString() method in case we want to check anything along the way.
Note the use of the @Override annotation to get the compiler to check that we
are overriding correctly.

import javax.swing.JPanel;

import java.awt.Color;

import java.awt.Graphics;

public class ColorPanel extends JPanel

{

private Color color;

public ColorPanel()

{

color = Color.WHITE;

}

public void setColor(Color c)

{

color = c;

}

@Override

public void paintComponent(Graphics g)

{

g.setColor(color);

g.fillRect(0,0,getWidth(), getHeight());

}

@Override

public String toString()

{

return "I am a color panel of color" + color;

}

}

6.3 Inserting ColorPanels into the Tricolor App

The Tricolor app will now have four state variables. One will be for each of
the three panels. The fourth will be for a variable that points at the current
panel. By default, and before the Position menu is created, we will make the
current panel point at the left panel.

174 CHAPTER 6. THE TRICOLOR CASE STUDY

import javax.swing.JFrame;

import javax.swing.JMenuBar;

import javax.swing.JMenu;

import javax.swing.JMenuItem;

import java.awt.Color;

import java.awt.Container;

import java.awt.GridLayout;

public class Tricolor extends JFrame implements Runnable

{

private ColorPanel leftPanel;

private ColorPanel middlePanel;

private ColorPanel rightPanel;

private ColorPanel currentPanel;

public Tricolor()

{

super("Tricolor");

leftPanel = new ColorPanel();

middlePanel = new ColorPanel();

rightPanel = new ColorPanel();

currentPanel = leftPanel;

}

public void run()

{

setSize(500,500);

Container c = getContentPane();

c.setLayout(new GridLayout(1,3));

c.add(leftPanel);

c.add(middlePanel);

c.add(rightPanel);

setVisible(true);

}

If you have doubt as to whether the ColorPanels got inserted, just go into the
ColorPanel constructor and temporarily set it to be green. Then it will be
obvious. The Tricolor app now knows four panels: the three in the content
pane, plus the one to be colored.

6.4 Le Carte

It’s time to begin making the menus. We will produce the menu bar and the
menus. This is akin to carpentry. We must make and nail in the menu bar, a
container in which the menus live. Then we install the menus. So let us begin.

6.4. LE CARTE 175

We will create a method called makeMenus to keep run from becoming a run-on
method. So, add the call makeMenus() to your run method. Your run method
should look like this. As long as you place this before setVisible, it does not
matter greatly where you put it.

public void run()

{

setSize(500,500);

makeMenus();

Container c = getContentPane();

c.setLayout(new GridLayout(1,3));

c.add(leftPanel);

c.add(middlePanel);

c.add(rightPanel);

setVisible(true);

}

Now we will make the menu bar and nail it in. Place this code in makeMenus.

JMenuBar mbar = new JMenuBar();

setJMenuBar(mbar);

The JMenuBar is a container that holds widgets. In particular it holds
JMenus. We make these and add them using ... duh ... add.

private void makeMenus()

{

JMenuBar mbar = new JMenuBar();

setJMenuBar(mbar);

JMenu fileMenu = new JMenu("File");

mbar.add(fileMenu);

JMenu colorMenu = new JMenu("Color");

mbar.add(colorMenu);

JMenu positionMenu = new JMenu("Position");

mbar.add(positionMenu);

}

Run this. You will see menu headers living in the menu bar. Before we begin
generating menu items, we need to think. You will now see an app with three
menus and its three panels put into place.

Now we begin with the Color menu. We will create menu items that are
smart enough to know their colors. Be warned that this class will undergo an
evolution as we proceed.

176 CHAPTER 6. THE TRICOLOR CASE STUDY

When designing a class ask: What does the class need to know? This tells
us what its state must be. Then ask: what does the class need to do? This tells
us what methods we need to write.

Note we created a ColorPanel that knows its color. We will now create
a ColorMenuItem that knows its color. Since this color will be permanently
assigned to this menu item, we will mark it final.

Note that because there is no canonical association between colors and their
names, our constructor must allow us to pass both the color and its name. Since
we can pass the color name off to the parent constructor, we never bother to
store it as a state variable. We can do this if the need arises. But it will never
do so in this example.

import javax.swing.JMenuItem;

import java.awt.Color;

public class ColorMenuItem extends JMenuItem

{

private final Color color;

public ColorMenuItem(Color _color, String colorName)

{

super(colorName);

color = _color;

}

}

6.5 It’s time to build the controller!

We begin with the low-hanging fruit. Our sole item in the File menu is a quit
item. So let us make that. Just add these two lines into the makeMenus()

method just after you create and add the File menu.

JMenuItem quitItem = new JMenuItem("Quit");

fileMenu.add(quitItem);

To make this live we will need an action listener that shuts the app down when
its actionPerformed code gets called. We will call this class QuitListener. In
the file QuitListener.java, place the following code.

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

public class QuitListener implements ActionListener

{

6.6. THE COLOR MENU AND THE CONTROLLER 177

public void actionPerformed(ActionEvent e)

{

System.exit(0);

}

}

This small class is all we need. Now we attach an instance of it to quitItem as
follows.

quitItem.addActionListener(new QuitListener());

Insert this line of code in makeMenus() just after you add the quitItem to the
File menu. Now run the code. Pull down the File menu and choose Quit. The
application will quit! We have the first element of the controller.

6.6 The Color Menu and the Controller

Next we will take care of the Color menu. You might think we are going to do
this.

1. Create the three menu items.

2. Create a listener class

3. If the red menu item is chosen, turn the panel red.

4. If the green menu item is chosen, turn the panel green.

5. If the blue menu item is chosen, turn the panel blue.

But that is not going to happen. Every time we want to add a new color, we
are forced to do a lot of work. Another way to proceed might be to create
separate listeners for each item. Then, when that item is chosen, that item’s
color is used. All of the listeners would look alike. This is a violation of the
11th commandment: Thou shalt not maintain duplicate code! What, then, is
the best course of action?

Remember: The power to delegate is the power to accomplish! We will make
the menu items responsible for knowing their colors and for having a listener
that causes their colors to be used.

Previously we created ColorMenuItem.java.

import javax.swing.JMenuItem;

import java.awt.Color;

public class ColorMenuItem extends JMenuItem

178 CHAPTER 6. THE TRICOLOR CASE STUDY

{

private final Color color;

public ColorMenuItem(Color _color, String colorName)

{

super(colorName);

color = _color;

}

}

We can populate the Color menu with items that are instances of this class.
Add these lines to makeMenus after you add the Color menu.

colormenu.add(new ColorMenuItem(Color.RED, "red"));

colormenu.add(new ColorMenuItem(Color.GREEN, "green"));

colormenu.add(new ColorMenuItem(Color.BLUE, "blue"));

Once you do this, run your program and see that the menu items are now
present. Note that their controllers are not yet written, so they do not yet
work.

Next, we must begin to write a controller for a color menu item. Begin by
creating this new class, ColorMenuItemListener.java. Our color menu items
must know their colors, so we included that as a state variable. We also include
a constructor to initialize the state variable. So our class compiles we put in
the actionPerformed method required by the ActionListener interface. We
put in some code that prints to stdout so we can test if the listener is properly
attached when the time comes.

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.awt.Color;

public class ColorMenuItemListener implements ActionListener

{

private final Color color;

public ColorMenuItemListener(Color _color)

{

color = _color;

}

public void actionPerformed(ActionEvent e)

{

//tell the current panel to change color

System.out.println("fooment");

}

}

6.6. THE COLOR MENU AND THE CONTROLLER 179

Now that we have a listener, we can go back to our ColorMenuItem class
and attach a listener as follows in the last line of the constructor.

import javax.swing.JMenuItem;

import java.awt.Color;

public class ColorMenuItem extends JMenuItem

{

private final Color color;

public ColorMenuItem(Color _color, String _colorName)

{

super(_colorName);

color = _color;

addActionListener(new ColorMenuItemListener(color));

}

}

Now compile all and run. When you select a ColorMenuItem, you will see
"fooment put to stdout. But life is not that simple.

Next, we need to think about the code needed to make the listener work.
We must think about the lines of communication necessary to accomplish this.
The listener must know the current panel and tell it to change its color. There
is a problem: ColorMenuItemListener has no way to communicate back to the
application object, Tricolor. The ColorMenuItem is the intermediary: it needs
to know of Tricolor so it can pass it on to its listener.

How do we set that up? We add a state variable that is a Tricolor. We
will make this final since there will be only one Tricolor as the program runs.
So Let us modify the menu item class first. We insert a new state variable and
initialize it in the constructor.

import javax.swing.JMenuItem;

import java.awt.Color;

public class ColorMenuItem extends JMenuItem

{

private final Color color;

private final Tricolor tc;

public ColorMenuItem(Color _color, String _colorName, Tricolor _tc)

{

super(_colorName);

color = _color;

tc = _tc;

addActionListener(new ColorMenuItemListener(tc));

}

}

180 CHAPTER 6. THE TRICOLOR CASE STUDY

Compile and see brokenness. Look in makeMenus() to find the offending code.
We have changed the constructor for the ColorMenuItem and must therefore fix
the constructor calls in the calling routine makeMenus() in Tricolor. Here is
how they currently look

colormenu.add(new ColorMenuItem(Color.RED, "red"));

colormenu.add(new ColorMenuItem(Color.GREEN, "green"));

colormenu.add(new ColorMenuItem(Color.BLUE, "blue"));

Modify them to this. You are now passing an instance of the Tricolor class to
each of them.

colormenu.add(new ColorMenuItem(Color.RED, "red", this));

colormenu.add(new ColorMenuItem(Color.GREEN, "green", this));

colormenu.add(new ColorMenuItem(Color.BLUE, "blue", this));

We are not done yet. Now we must modify the constructor of the ColorMenuItemListener
to accept a reference to a Tricolor as follows.

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.awt.Color;

public class ColorMenuItemListener implements ActionListener

{

private final Tricolor tc;

private final Color color;

public ColorMenuItemListener(Tricolor _tc, Color _color)

{

tc = _tc;

color = _color;

}

public void actionPerformed(ActionEvent e)

{

//tell the current panel to change color

//System.out.println("fooment");

}

}

and then change the constructor calls to this class back in ColorMenuItem. We
just modify the line where we add the action listener.

addActionListener(new ColorMenuItemListener(tc, color));

We need in the actionPeformed method to be able to get the current panel
and change its color. We need the following accessor in Tricolor.

6.6. THE COLOR MENU AND THE CONTROLLER 181

public ColorPanel getCurrentPanel()

{

return currentPanel;

}

To tell the current panel to change to our color, we use

tc.getCurrrentPanel().setColor(color);

Place this code in the listener to see the following

tc.getCurrentPanel().setColor(color);

tc.repaint();

We use the repaint() to refresh the window and have our change take effect.
Use a call to repaint() whenever you want the graphics to update.

We now show the finished appearance of the two classes. First ColorMenuItem.java
is shown here.

import javax.swing.JMenuItem;

import java.awt.Color;

public class ColorMenuItem extends JMenuItem

{

private final Color color;

private final Tricolor tc;

public ColorMenuItem(Color _color, String _colorName, Tricolor _tc)

{

super(_colorName);

color = _color;

tc = _tc;

addActionListener(new ColorMenuItemListener(tc, color));

}

}

Now here is the listener class.

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.awt.Color;

public class ColorMenuItemListener implements ActionListener

{

private final Tricolor tc;

182 CHAPTER 6. THE TRICOLOR CASE STUDY

private final Color color;

public ColorMenuItemListener(Tricolor _tc, Color _color)

{

tc = _tc;

color = _color;

}

public void actionPerformed(ActionEvent e)

{

//Tell the current panel to change

//color and refresh the whole thing.

tc.getCurrentPanel().setColor(color);

tc.repaint();

}

}

Now run this. You will see that the Color menu now functions.

Programming Exercises

1. Add a new menu item for the color white. How much code do you have
to add?

2. Add a new menu item called tarheel which uses color 0xabcdef.

6.7 The Position Menu and Its Controller

We now go to work on the Position menu. Again we will be subclassing
JMenuItem. We will make the menu item know two things: which panel be-
longs to it and we will make it know the application so it can communicate with
it.

Let us sketch in PositionMenuItem.java.

import javax.swing.JMenuItem;

public class PositionMenuItem extends JMenuItem

{

private final Tricolor tc;

private final ColorPanel attachedPanel;

}

We now create a constructor. We will pass a string along to label the menu
item called pos.

6.7. THE POSITION MENU AND ITS CONTROLLER 183

import javax.swing.JMenuItem;

public class PositionMenuItem extends JMenuItem

{

public final Tricolor tc;

public final ColorPanel attachedPanel;

public PositionMenuItem(Tricolor _tc, ColorPanel _attachedPanel,

String pos)

{

super(pos);

tc = _tc;

attachedPanel = _attachedPanel;

}

}

Now we create the listener class. This will need to know the application and
the attached panel. We comment in a procedure for the action listener to carry
out.

import java.awt.event.ActionListener;

import java.awt.event.ActionEvent;

public class PositionMenuItemListener implements ActionListener

{

private final Tricolor tc;

private final ColorPanel attachedPanel;

public PositionMenuItemListener(Tricolor _tc, ColorPanel _attachedPanel)

{

tc = _tc;

attachedPanel = _attachedPanel;

}

public void actionPerformed(ActionEvent e)

{

//set the current panel to the selected value

}

}

We need the ability to set the current panel. To to this add this accessor method
to Tricolor

public void setCurrentPanel(ColorPanel c)

{

currentPanel = c;

}

184 CHAPTER 6. THE TRICOLOR CASE STUDY

import java.awt.event.ActionListener;

import java.awt.event.ActionEvent;

public class PositionMenuItemListener implements ActionListener

{

private final Tricolor tc;

private final ColorPanel attachedPanel;

public PositionMenuItemListener(Tricolor _tc, ColorPanel _attachedPanel)

{

tc = _tc;

attachedPanel = _attachedPanel;

}

public void actionPerformed(ActionEvent e)

{

//set the current panel to the selected value

tc.setCurrentPanel(attachedPanel);

}

}

We are now ready to make the menu items. Notice that we do not re-
paint because a change of panel does not cause any graphics to need updating.
The panel to be colored changed, and it will change the next time we select a
ColorMenuItem.

Now let us add our items to the position menu.

positionMenu.add(new PositionMenuItem(this, leftPanel, "left"));

positionMenu.add(new PositionMenuItem(this, middlePanel, "middle"));

positionMenu.add(new PositionMenuItem(this, rightPanel, "right"));

Now everything is going to work. Below, we see all of the classes in their entirety.

6.8 All Code Shown

This shows all of the classes.

6.8.1 Tricolor.java

This is the main application class.

import javax.swing.JFrame;

import javax.swing.JMenuBar;

import javax.swing.JMenu;

6.8. ALL CODE SHOWN 185

import javax.swing.JMenuItem;

import java.awt.Color;

import java.awt.Container;

import java.awt.GridLayout;

public class Tricolor extends JFrame implements Runnable

{

ColorPanel leftPanel;

ColorPanel rightPanel;

ColorPanel middlePanel;

ColorPanel currentPanel;

public Tricolor()

{

super("Tricolor");

leftPanel = new ColorPanel();

middlePanel = new ColorPanel();

rightPanel = new ColorPanel();

currentPanel = leftPanel;

}

public ColorPanel getCurrentPanel()

{

return currentPanel;

}

public void setCurrentPanel(ColorPanel c)

{

currentPanel = c;

}

public void run()

{

setSize(500,500);

makeMenus();

//install Color Panels

Container c = getContentPane();

c.setLayout(new GridLayout(1,3));

c.add(leftPanel);

c.add(middlePanel);

c.add(rightPanel);

setVisible(true);

}

private void makeMenus()

{

//make and install menu bar

JMenuBar mbar = new JMenuBar();

setJMenuBar(mbar);

//File menu

186 CHAPTER 6. THE TRICOLOR CASE STUDY

JMenu fileMenu = new JMenu("File");

mbar.add(fileMenu);

JMenuItem quitItem = new JMenuItem("Quit");

fileMenu.add(quitItem);

quitItem.addActionListener(new QuitListener());

// Color Menu

JMenu colorMenu = new JMenu("Color");

mbar.add(colorMenu);

colorMenu.add(new ColorMenuItem(Color.RED, "red", this));

colorMenu.add(new ColorMenuItem(Color.GREEN, "green", this));

colorMenu.add(new ColorMenuItem(Color.BLUE, "blue", this));

JMenu positionMenu = new JMenu("Position");

// Position Menu

mbar.add(positionMenu);

positionMenu.add(new PositionMenuItem(this, leftPanel, "left"));

positionMenu.add(new PositionMenuItem(this, middlePanel, "middle"));

positionMenu.add(new PositionMenuItem(this, rightPanel, "right"));

}

public static void main(String[] args)

{

Tricolor t = new Tricolor();

javax.swing.SwingUtilities.invokeLater(t);

}

}

6.8.2 ColorPanel.java

This is the class for the three panels that fill the content pane.

import java.awt.Color;

import java.awt.Graphics;

import javax.swing.JPanel;

public class ColorPanel extends JPanel

{

Color color;

public ColorPanel()

{

super();

color = Color.WHITE;

}

@Override

public void paintComponent(Graphics g)

{

g.setColor(color);

6.8. ALL CODE SHOWN 187

g.fillRect(0,0,getWidth(), getHeight());

}

public void setColor(Color c)

{

color = c;

}

}

6.8.3 QuitListener.java

This is the part of the controller that quits when the quit item is selected from
the File menu.

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

public class QuitListener implements ActionListener

{

public void actionPerformed(ActionEvent e)

{

System.exit(0);

}

}

6.8.4 ColorMenuItem.java

This is the class for the menu items in the Color menu.

import javax.swing.JMenuItem;

import java.awt.Color;

public class ColorMenuItem extends JMenuItem

{

private final Color color;

private final Tricolor tc;

public ColorMenuItem(Color _color, String _colorName, Tricolor _tc)

{

super(_colorName);

color = _color;

tc = _tc;

addActionListener(new ColorMenuItemListener(tc, color));

}

}

188 CHAPTER 6. THE TRICOLOR CASE STUDY

6.8.5 ColorMenuItemListener.java

This is the part of the controller that handles menu selections from the Color
menu.

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.awt.Color;

public class ColorMenuItemListener implements ActionListener

{

private final Tricolor tc;

private final Color color;

public ColorMenuItemListener(Tricolor _tc, Color _color)

{

tc = _tc;

color = _color;

}

public void actionPerformed(ActionEvent e)

{

//tell the current panel to change color

//System.out.println("fooment");

tc.getCurrentPanel().setColor(color);

tc.repaint();

}

}

6.8.6 PositionMenuItem.java

This is the class for menu items determining which panel is to be colored.

import javax.swing.JMenuItem;

public class PositionMenuItem extends JMenuItem

{

public final Tricolor tc;

public final ColorPanel attachedPanel;

public PositionMenuItem(Tricolor _tc, ColorPanel _attachedPanel,

String pos)

{

super(pos);

tc = _tc;

attachedPanel = _attachedPanel;

addActionListener(new PositionMenuItemListener(tc, attachedPanel));

}

6.8. ALL CODE SHOWN 189

}

6.8.7 PositionMenuItemListener.java

This is the controller for the position menu items.

import java.awt.event.ActionListener;

import java.awt.event.ActionEvent;

public class PositionMenuItemListener implements ActionListener

{

private final Tricolor tc;

private final ColorPanel attachedPanel;

public PositionMenuItemListener(Tricolor _tc, ColorPanel _attachedPanel)

{

tc = _tc;

attachedPanel = _attachedPanel;

}

public void actionPerformed(ActionEvent e)

{

//set the current panel to the selected value

tc.setCurrentPanel(attachedPanel);

}

}

Programming Exercises

1. Add a fourth panel to your app. How much code do you need to do this?

190 CHAPTER 6. THE TRICOLOR CASE STUDY

Chapter 7

Inner Classes, Anonymous
Classes and Java GUIs

7.0 What is ahead?

Java allows you to create classes inside of other classes and, even inside of
methods. Creating classes in these places gives us access to the outer class’s state
variables. We will find that this technique is very useful for GUI programming
and for creating our own data structures. While we are in this chapter, we learn
about Java’s graphics libraries and we will make our programs responsive to
mouse and keyboard activity.

7.1 Improving Tricolor

We are going to study the Tricolor application and improve it via the use of
inner classes.

Let us begin with the quit menu item. We have a whole external class in
our project that is used in one place: on the quit menu item. Can we get rid of
this complexity and place the code necessary to drive the menu item inside of
Tricolor.java?

The answer is, “yes.” What we will do is to create an anonymous inner class.
This is a class with no name. Go into the makeMenus method of Tricolor.java
and find the lines on which the quit item is created and its action listener
attached.

JMenuItem quitItem = new JMenuItem("Quit");

191

192CHAPTER 7. INNER CLASSES, ANONYMOUS CLASSES AND JAVA GUIS

fileMenu.add(quitItem);

quitItem.addActionListener(new QuitListener());

We will now obviate the need for the external QuitListener class. Change the
code as follows.

JMenuItem quitItem = new JMenuItem("Quit");

fileMenu.add(quitItem);

quitItem.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

System.exit(0);

}

});

Then by add these two import statements to the beginning of the Tricolor.java.

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

Now close the QuitListener class, compile, and run. You will see that the quit
menu item is still working.

7.2 Deconstructing this Arabesque

You can see we have added some very mysterious code to quitItem. What does
it all mean. Notice what is inside of the parentheses.

new ActionListener(){

public void actionPerformed(ActionEvent e)

{

System.exit(0);

}

}

You see a call to new, so you know an object is being created. You also know
that ActionListener is an interface, so we can never create an instance of
ActionListener.

So, what is happening? This is an example of an anonymous inner class. It
is a class with no name. What you are saying here is, “make an instance of an
ActionListener with this actionPerformed method.” Since we never refer to
it after we add it to the quitItem menu item object, we never do need to name
it.

7.3. HAMMERTIME 193

Anonymous inner classes provide a quick and easy way to attach actions to
menu item or buttons. This is especially true if the menu item performs an iso-
lated function, such as shutting an application down. The entire anonymous in-
ner class is an argument you are sending to the call quitItem.addActionListener()!

We have now obviated the need for the QuitListener class, which just adds
another name for a single-use object.

Take note of the way we formatted the code.

quitItem.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

System.exit(0);

}

});

Observe that the entire class declaration

new ActionListener()

{

public void actionPerformed(ActionEvent e)

{

currentColor = Color.red;

leftPanel.setColor(currentColor);

leftPanel.repaint();

}

}

is part of the argument in the call quitItem.addActionListener(....);. This
explains the seemingly strange construct \tt });. In one shot we have imple-
mented an object’s class and instantiated it as well.

We will refer to this funny closing object,\tt });, as “sad Santa.” If you
format this way, you should see Sad Santa as the last line of an anonymous
listener class. It is very important to be fanatically consistent in this matter. It
helps you avoid mysterious error messages that will vex and confuse.

7.3 Hammertime

Just because you have a shiny new hammer the entire world does not become a
nail. You might be tempted to do this. And if you succomb to this impulse, it
is going to work. You should go ahead and try it!

red = new ColorMenuItem(Color.RED, "red", this);

194CHAPTER 7. INNER CLASSES, ANONYMOUS CLASSES AND JAVA GUIS

red.addActionListener(new ActionListener()

{

public void actionPerformed(ActionEvent e)

{

currentColor = Color.red;

currentPanel.setColor(currentColor);

currentPanel.repaint();

}

});

You can now repeat this procedure for the green and blue menus as follows.

green = new ColorMenuItem(Color.GREEN, "green", this);

green.addActionListener(new ActionListener()

{

public void actionPerformed(ActionEvent e)

{

currentColor = Color.green;

leftPanel.setColor(currentColor);

leftPanel.repaint();

}

});

blue = new ColorMenuItem(Color.BLUE, "blue", this);

blue.addActionListener(new ActionListener()

{

public void actionPerformed(ActionEvent e)

{

currentColor = Color.blue;

leftPanel.setColor(currentColor);

leftPanel.repaint();

}

});

But you can see this is the sort of violation of the 11th commandment that you
were earlier warned of.

7.4 Using Inner Classes to Improve our Design

The implementaton we just showed works, but it exhibits duplicate and slack
code in the implementation of the action listeners. We begin to think: Can we
attach the action listener directly to the color menu item?. Let us return to our
original design for the ColorMenuitem We can convert it to being an inner class
to Tricolor and obviate the need for the Tricolor tc state variable. So we
begin with this.

7.4. USING INNER CLASSES TO IMPROVE OUR DESIGN 195

import javax.swing.JMenuItem;

import java.awt.Color;

public class ColorMenuItem extends JMenuItem

{

private final Color color;

private final Tricolor tc;

public ColorMenuItem(Color _color, String _colorName, Tricolor _tc)

{

super(_colorName);

color = _color;

tc = _tc;

addActionListener(new ColorMenuItemListener(tc, color));

}

}

Now we trim this down to be an inner class. Both JMenuItem and Color are
imported so we can lop the imports off.

Since we are going to make this into an inner class of Tricolor, we will have
access to Tricolor’s state variables. As a result, we will get rid of the instance
of Tricolor that is a state variable inside of the class. We will also get rid of
the call to ColorMenuItemListener. This will be replaced by an inner class.

class ColorMenuItem extends JMenuItem

{

private final Color color;

public ColorMenuItem(Color _color, String _colorName)

{

super(_colorName);

color = _color;

addActionListener(); TODO: Write action listener!

}

}

Now let us pop this inside of Tricolor. We will need to do some adjustment
before this will compile. First, chage the lines in makeMenus

colorMenu.add(new ColorMenuItem(Color.RED, "red", this));

colorMenu.add(new ColorMenuItem(Color.GREEN, "green", this));

colorMenu.add(new ColorMenuItem(Color.BLUE, "blue", this));

to

colorMenu.add(new ColorMenuItem(Color.RED, "red"));

196CHAPTER 7. INNER CLASSES, ANONYMOUS CLASSES AND JAVA GUIS

colorMenu.add(new ColorMenuItem(Color.GREEN, "green"));

colorMenu.add(new ColorMenuItem(Color.BLUE, "blue"));

Also add these two imports.

import java.awt.event.ActionListener;

import java.awt.event.ActionEvent;

Our class now looks like this. You can close the QuitListener and ColorMenuItem

classes. These are now obviated.

import javax.swing.JFrame;

import javax.swing.JMenuBar;

import javax.swing.JMenu;

import javax.swing.JMenuItem;

import java.awt.Color;

import java.awt.Container;

import java.awt.GridLayout;

import java.awt.event.ActionListener;

import java.awt.event.ActionEvent;

public class Tricolor extends JFrame implements Runnable

{

ColorPanel leftPanel;

ColorPanel rightPanel;

ColorPanel middlePanel;

ColorPanel currentPanel;

public Tricolor()

{

super("Tricolor");

leftPanel = new ColorPanel();

middlePanel = new ColorPanel();

rightPanel = new ColorPanel();

currentPanel = leftPanel;

}

public ColorPanel getCurrentPanel()

{

return currentPanel;

}

public void setCurrentPanel(ColorPanel c)

{

currentPanel = c;

}

public void run()

7.4. USING INNER CLASSES TO IMPROVE OUR DESIGN 197

{

setSize(500,500);

makeMenus();

//install Color Panels

Container c = getContentPane();

c.setLayout(new GridLayout(1,3));

c.add(leftPanel);

c.add(middlePanel);

c.add(rightPanel);

setVisible(true);

}

private void makeMenus()

{

//make and install menu bar

JMenuBar mbar = new JMenuBar();

setJMenuBar(mbar);

//File menu

JMenu fileMenu = new JMenu("File");

mbar.add(fileMenu);

JMenuItem quitItem = new JMenuItem("Quit");

fileMenu.add(quitItem);

quitItem.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

System.exit(0);

}

});

// Color Menu

JMenu colorMenu = new JMenu("Color");

mbar.add(colorMenu);

colorMenu.add(new ColorMenuItem(Color.RED, "red"));

colorMenu.add(new ColorMenuItem(Color.GREEN, "green"));

colorMenu.add(new ColorMenuItem(Color.BLUE, "blue"));

JMenu positionMenu = new JMenu("Position");

// Position Menu

mbar.add(positionMenu);

positionMenu.add(new PositionMenuItem(this, leftPanel, "left"));

positionMenu.add(new PositionMenuItem(this, middlePanel, "middle"));

positionMenu.add(new PositionMenuItem(this, rightPanel, "right"));

}

class ColorMenuItem extends JMenuItem

{

private final Color color;

public ColorMenuItem(Color _color, String _colorName)

{

super(_colorName);

198CHAPTER 7. INNER CLASSES, ANONYMOUS CLASSES AND JAVA GUIS

color = _color;

//addActionListener(); //TODO: Write action listener!

}

}

public static void main(String[] args)

{

Tricolor t = new Tricolor();

javax.swing.SwingUtilities.invokeLater(t);

}

}

Now let us get the action listener working. We will attach this as an anony-
mous inner class inside of ColorMenuItem. Begin by creating a shell for it.

public ColorMenuItem(Color _color, String _colorName)

{

super(_colorName);

color = _color;

addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

}

});

}

Before doing anything else, compile and make sure you have all of your format-
ting ducks in a row. Now we write the body. What do we want to happen? The
current panel should be set to this menu item’s color. We should then update
the graphics. You now insert this code.

public ColorMenuItem(Color _color, String _colorName)

{

super(_colorName);

color = _color;

addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

currentPanel.setColor(color);

repaint();

}

});

}

Now you run this shiny new code and uh oh... we appear to have a repaint
error. What happened? Only the menu item is repainting itself! There are two
ways to handle this. One is to tell the current panel to repaint. Change

7.5. THE POSITION MENU 199

repaint();

to

currentPanel.repaint();

Another way is to tell the whole app to repaint. You do have access to the this

of an enclosing class. In this case just use

Tricolor.this.repaint();

We use the former solution, since it does the minimum work needed and accom-
plishes the goal. The color menu is now completely operational as it was before.
We have relieved our code of some complexity. Since the state variables of the
enclosing class are visible we can shorten our constructor and the complexity of
the code inside of the ColorMenuItem. We make the listener a totally anony-
mous class, and cut complexity there too. You no longer need the two external
classes that controlled the Color menu.

7.5 The Position Menu

Now we are ready to adjust the position menu. Here is the current state of
PositionMenuItem.java.

import javax.swing.JMenuItem;

public class PositionMenuItem extends JMenuItem

{

public final Tricolor tc;

public final ColorPanel attachedPanel;

public PositionMenuItem(Tricolor _tc, ColorPanel _attachedPanel,

String pos)

{

super(pos);

tc = _tc;

attachedPanel = _attachedPanel;

addActionListener(new PositionMenuItemListener(tc, attachedPanel));

}

}

We now slim this down to be an inner class.

public class PositionMenuItem extends JMenuItem

{

200CHAPTER 7. INNER CLASSES, ANONYMOUS CLASSES AND JAVA GUIS

public final ColorPanel attachedPanel;

public PositionMenuItem(ColorPanel _attachedPanel, String pos)

{

super(pos);

attachedPanel = _attachedPanel;

//TODO: write new listener

//addActionListener(new PositionMenuItemListener(tc, attachedPanel));

}

}

Now go into makeMenus and change

positionMenu.add(new PositionMenuItem(this, leftPanel, "left"));

positionMenu.add(new PositionMenuItem(this, middlePanel, "middle"));

positionMenu.add(new PositionMenuItem(this, rightPanel, "right"));

to

positionMenu.add(new PositionMenuItem(leftPanel, "left"));

positionMenu.add(new PositionMenuItem(middlePanel, "middle"));

positionMenu.add(new PositionMenuItem(rightPanel, "right"));

Once you do this, the program will compile. You no longer need either external
class controlling the position menu. Close them.

Next we write the listener as an anonymous inner class. Begin by making
the shell.

class PositionMenuItem extends JMenuItem

{

public final ColorPanel attachedPanel;

public PositionMenuItem(ColorPanel _attachedPanel, String pos)

{

super(pos);

attachedPanel = _attachedPanel;

addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

}

});

}

}

What needs to happen when a new position is selected? We just change the
current panel. No graphical change is needed. So let’s add the code.

7.6. CRUFT PATROL! 201

class PositionMenuItem extends JMenuItem

{

public final ColorPanel attachedPanel;

public PositionMenuItem(ColorPanel _attachedPanel, String pos)

{

super(pos);

attachedPanel = _attachedPanel;

addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

currentPanel = attachedPanel;

}

});

}

}

7.6 Cruft Patrol!

It seems some getter and setter methods in Tricolor are obviated. What can
we trim out? Comment these out.

public ColorPanel getCurrentPanel()

{

return currentPanel;

}

public void setCurrentPanel(ColorPanel c)

{

currentPanel = c;

}

Everything still works, so you can get rid of them.

7.7 The Product

We are left with two classes. Here is ColorPanel.java, which we never changed

import javax.swing.JPanel;

import java.awt.Color;

public class ColorPanel extends JPanel

{

private Color color;

public ColorPanel()

202CHAPTER 7. INNER CLASSES, ANONYMOUS CLASSES AND JAVA GUIS

{

color = Color.white;

}

public void setColor(Color _color)

{

color = _color;

}

public Color getColor()

{

return color;

}

}

import javax.swing.JFrame;

import javax.swing.JMenuBar;

import javax.swing.JMenu;

import javax.swing.JMenuItem;

import java.awt.Color;

import java.awt.Container;

import java.awt.GridLayout;

import java.awt.event.ActionListener;

import java.awt.event.ActionEvent;

public class Tricolor extends JFrame implements Runnable

{

ColorPanel leftPanel;

ColorPanel rightPanel;

ColorPanel middlePanel;

ColorPanel currentPanel;

public Tricolor()

{

super("Tricolor");

leftPanel = new ColorPanel();

middlePanel = new ColorPanel();

rightPanel = new ColorPanel();

currentPanel = leftPanel;

}

public void run()

{

setSize(500,500);

makeMenus();

//install Color Panels

Container c = getContentPane();

c.setLayout(new GridLayout(1,3));

7.7. THE PRODUCT 203

c.add(leftPanel);

c.add(middlePanel);

c.add(rightPanel);

setVisible(true);

}

private void makeMenus()

{

//make and install menu bar

JMenuBar mbar = new JMenuBar();

setJMenuBar(mbar);

//File menu

JMenu fileMenu = new JMenu("File");

mbar.add(fileMenu);

JMenuItem quitItem = new JMenuItem("Quit");

fileMenu.add(quitItem);

quitItem.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

System.exit(0);

}

});

// Color Menu

JMenu colorMenu = new JMenu("Color");

mbar.add(colorMenu);

colorMenu.add(new ColorMenuItem(Color.RED, "red"));

colorMenu.add(new ColorMenuItem(Color.GREEN, "green"));

colorMenu.add(new ColorMenuItem(Color.BLUE, "blue"));

JMenu positionMenu = new JMenu("Position");

// Position Menu

mbar.add(positionMenu);

positionMenu.add(new PositionMenuItem(leftPanel, "left"));

positionMenu.add(new PositionMenuItem(middlePanel, "middle"));

positionMenu.add(new PositionMenuItem(rightPanel, "right"));

}

class ColorMenuItem extends JMenuItem

{

private final Color color;

public ColorMenuItem(Color _color, String _colorName)

{

super(_colorName);

color = _color;

addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

currentPanel.setColor(color);

currentPanel.repaint();

204CHAPTER 7. INNER CLASSES, ANONYMOUS CLASSES AND JAVA GUIS

}

});

}

}

class PositionMenuItem extends JMenuItem

{

public final ColorPanel attachedPanel;

public PositionMenuItem(ColorPanel _attachedPanel, String pos)

{

super(pos);

attachedPanel = _attachedPanel;

addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

currentPanel = attachedPanel;

}

});

}

}

public static void main(String[] args)

{

Tricolor t = new Tricolor();

javax.swing.SwingUtilities.invokeLater(t);

}

}

Programming Exercises

1. Add a new item to the color menu that sets the current panel to white.

2. Add a new panel and modify the position menu to accomodate it.

7.8 Inner Classes in General

We have inner classes in several guises during the study of the tricolor applica-
tion. Let us now summarize and consolidate what we have seen.

Inner classes can be static. Such classes have access to private methods and
varibles of the enclosing class, but only via an instance of that class. In the
code, shown here, note the illegal and legal examples.

public class Outer

7.8. INNER CLASSES IN GENERAL 205

{

int x;

int y;

public Outer(...)

{

//constructor code

}

private foo(...)

{

//code

}

static class Inner

{

public void go()

{

x = 5 //Illegal

Outer o new Outer(...);

o.x = 5 //OK

foo(....); // Illegal

o.foo(...) //OK

}

}

}

Remember, non-static portions of a class have access to static portions, but
direct access (not via an instance) is not allowed. If you are declaring an inner
class static you should closely consider making it a separate class, unless it
relieves a lot of complexity.

This is in contrast to the non-static inner classes we used to control the
menus. These were created so as to have access to the state variables of the
enclosing outer class. We created the named inner classes PositionMenuItem

and ColorMenuItem.

The anonymous class we created as an event handler for quitItem is an ex-
ample of a local class, since it is created inside of a method of the enclosing class.
Local classes do not have access to the local variables of their enclosing method,
unless the variable is declared final. Accessing a local nonfinal variable is a
compiler error.

We will return to this topic when we discuss Java collections; inner classes
can play an important role in the creation of data structures.

206CHAPTER 7. INNER CLASSES, ANONYMOUS CLASSES AND JAVA GUIS

7.9 Adding and Deleting Components from a
JFrame

We will show a program that adds and removes buttons from a window “on the
fly.” Begin by creating a graphical shell.

import javax.swing.JFrame;

public class Adder extends JFrame implements Runnable

{

public Adder()

{

super("Add and Remove Buttons Demo");

}

public void run()

{

setSize(600,600);

setDefaultCloseOperation(EXIT_ON_CLOSE);

setVisible(true);

}

public static void main(String[] args)

{

Adder a = new Adder();

javax.swing.SwingUtilities.invokeLater(a);

}

}

Run and compile this; the result is an empty window with a title in the title
bar specified by the constructor.

Next, on the top of the window, we will add buttons named "Add" and
"Remove". To do this we will take take the following steps.

1. Make a JPanel with a 1 row 2 column grid layout.

2. Add the two buttons to it

3. Add it to the north side of the content pane using the BorderLayout static
constant NORTH.

We modify the run() method as follows.

public void run()

{

setSize(600,600);

setDefaultCloseOperation(EXIT_ON_CLOSE);

7.9. ADDING AND DELETING COMPONENTS FROM A JFRAME 207

JPanel topPanel = new JPanel(new GridLayout(1,2));

JButton addButton = new JButton("Add");

topPanel.add(addButton);

JButton removeButton = new JButton("Remove");

topPanel.add(removeButton);

getContentPane().add(BorderLayout.NORTH, topPanel);

setVisible(true);

}

Do not neglect to add these imports.

import javax.swing.JButton;

import javax.swing.JPanel;

import java.awt.BorderLayout;

import java.awt.GridLayout;

You will see that the add and remove buttons now appear at the top of the
content pane.

Next, we shall make an inner class that extends JPanel and which overrides
its paintCompnent method. We will put at 10× 10 grid layout in this panel.

Here it is. Do not forget to import java.awt.Graphics.

class ButtonPanel extends JPanel

{

public ButtonPanel()

{

super(new GridLayout(10,10));

}

@Override

public void paintComponent(Graphics g)

{

}

}

This is the panel in which we will keep our buttons. Let’s make an array list
of buttons and make it a state variable. We will also make the button panel a
state variable and add it to the window. We will initialize it in the constructor.
Add this to your the top of the class

private ArrayList<JButton> buttons;

private ButtonPanel bp;

Inside the constructor add

208CHAPTER 7. INNER CLASSES, ANONYMOUS CLASSES AND JAVA GUIS

buttons = new ArrayList<JButton>();

bp = new ButtonPanel();

To your imports add

import java.util.ArrayList;

Now let us add code to cause pushing the Add button to addd buttons to
the array list buttons. We do this by creating an action listener and attaching
it to addButton in the run method as follows. Note the use of the if statement
to prevent overpopulation.

addButton.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

int n = buttons.size();

if(n < 100)

{

buttons.add(new JButton("" + buttons.size()));

repaint();

}

}

});

If you hit the add button, you will not see any buttons added to the screen.
Stick in this line of code to see the listener is working.

System.out.printf("buttons.size() = %s\n", buttons.size());

Hit the add button and see this in the console.

buttons.size() = 1

buttons.size() = 2

buttons.size() = 3

buttons.size() = 4

buttons.size() = 5

buttons.size() = 6

The array list is being populated. However, we are not seeing the buttons appear
on in the lower part of the console. Let us get them in using the repaint()

method. Before proceeding, delete the print line you just inserted. Now we are
going to test this out. Run the app and hit the add button three times. You will
see nothing has happened. Now maximize or resize the window. That triggers
a repaint. You will see this.

7.9. ADDING AND DELETING COMPONENTS FROM A JFRAME 209

Now hit the add button five more times. You will see no changes. Then
trigger a repaint by resizing or maximizing. You will then see what you expect,
which is this.

210CHAPTER 7. INNER CLASSES, ANONYMOUS CLASSES AND JAVA GUIS

The window does not behave as expected. You have to trigger a repaint to see
the added buttons. We don’t want this. Notice that containers are smart, if
you add the same widget several times, it will only appear once.

Next, let us try to remove the last button we put in. Add this listener. Note
the use of the if statement to prevent a “blood from a turnip” situation that
could cause a nasty exception.

removeButton.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

int n = buttons.size();

if(n > 0)

{

buttons.remove(n - 1);

7.9. ADDING AND DELETING COMPONENTS FROM A JFRAME 211

repaint();

}

}

});

Now run the app and click the add button five times. Resize or maximize the
window. The five buttons then suddenly appear. Now click the remove button
once and resize. You will see this.

It is whacko and it is not what we expect. What is the remedy for resetting the
components in a JPanel? Modify your paintComponent as follows.

@Override

public void paintComponent(Graphics g)

{

removeAll();

for(JButton b: buttons)

{

add(b);

212CHAPTER 7. INNER CLASSES, ANONYMOUS CLASSES AND JAVA GUIS

}

revalidate();

}

This evicts all items from the window, adds back in the ones that belong, and
then revalidate() ensures that the compoents themselves refresh. This goes
deeper than just repainting. Your add and remove features now work as ex-
pected. Now keep clicking until the whole window fills up with buttons.

Chapter 8

Exception Handling

8.0 Introduction

The next major component of the Java language will allow us to write programs
that handle errors gracefully. Java provides a mechanism called exception han-
dling that provides a parallel track of return from functions so that you can avoid
cluttering the ordinary execution of code with endless error-handling routines.

Exceptions are objects that are “thrown” by varous methods or actions. In
this chapter we will learn how to handle (catch) an exception. By so doing
we allow our program to recover and continue to work. Failure to catch and
exception results in a flood of nasty red text from Java (a socalled “exploding
heart”). Crashes such as these shoud be extremely rare in productionquality
software. We can use exceptions as a means to protect our program from such
dangers as user abuse and from such misfortures as crashing whilst attempting
to gain access to an nonexistent or prohibited resource. Many of these hazards
are beyond both user and programmer control.

When you program with files or with socket connections, the handling of
exceptions will be manditory; hence the need for this chapter before we begin
handling files.

8.1 The Throwable Subtree

Go to the Java API guide and pull up the class Exception. The family tree is
is as follows.

java.lang.Object

java.lang.Throwable

213

214 CHAPTER 8. EXCEPTION HANDLING

java.lang.Exception

The class name Throwable is a bit strange; one would initially think it were
an interface. It is, however, a class. The class java.lang.Exception has a
sibling class java.lang.Error.

When objects of type Error are thrown, it is not reasonable to try to recover.
These things come from problems in the Java Virtual Machine, bad memory
problems, or problems from the underlying OS. We just accept the fact that
they cause program death. Continuing to proceed would just lead to a chain of
ever-escalating problems.

Objects of type Exception are thrown for more minor problems, such as an
attempt to open a non-existent file for reading, trying to convert an unparseable
string to an integer, or trying to access an entry of a string, array or array list
that is out of bounds.

Let us show this mechanism at work. For example, if you attempt to execute
the code

int foo = Integer.parseInt("gobbledegook");

you will be rewarded with an exception. To see what happens, create this
program MakeException.java.

public class MakeException

{

public static void main(String[] args)

{

int foo = Integer.parseInt("gobbledegook");

}

}

This program compiles happily. You will see that the infraction we have here is
a run-time error, as is any exception.

When you run the program you will see this in the interactions pane.

java.lang.NumberFormatException: For input string: "gobbledegook"

at java.lang.NumberFormatException.forInputString(NumberFormatException.java:65)

at java.lang.Integer.parseInt(Integer.java:492)

at java.lang.Integer.parseInt(Integer.java:527)

at MakeException.main(MakeException.java:5)

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)

at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)

at java.lang.reflect.Method.invoke(Method.java:601)

at edu.rice.cs.drjava.model.compiler.JavacCompiler.runCommand(JavacCompiler.java:272)

8.2. CHECKED AND RUN-TIME EXCEPTIONS 215

The exploding heart you see here shows a stack trace. This shows how the
exception propagates through the various calls the program makes. To learn
what you did wrong, you must look in this list for your file. You will see the
offending line here.

at MakeException.main(MakeException.java:5)

You are being told that the scene of the crime is on line 5, smack in the middle
of your main method. The stack trace can yield valuable clues in tracking down
and extirpating a run-time problem such as this one.

We have seen reference to “throw” and “throws” before. Go into the API
guide and bring up the class String. Now scroll down to the method summary
and click on the link for the familiar method charAt(). You will see this
notation.

Throws:

IndexOutOfBoundsException - if the index argument is negative
or not less than the length of the string.

Let us now look up this IndexOutOfBoundsException. The family tree
reveals that this class extends the RuntimeException class. The purpose of
this exception is to create an opportunity to gracefully get out of an exceptional
situation and to avoid having your program simply crash. Incidentally, this an
an opportunity we will not always avail ourselves of, especially when it arises
because of a programmer error.

8.2 Checked and Run-Time Exceptions

There are two types of exceptions that exist: RuntimeExceptions and all others,
which are called checked exceptions. Generally a run-time exception is caused by
programmer error. Programmers should know better, and it is probably good
for them to have their programs using your class die with an exploding heart as a
reward for writing rotten code. Such programmers can read the stack trace and
lick thier wounds. How do you know if an exception is a RuntimeException?
Just look up its family tree and see if it is a descendant of RuntimeException.
So far in our study of Java, we have only seen runtime exceptions.

Checked exceptions, on the other hand, are usually caused by situations
beyond programmer control. Suppose a user tries to get a program to open
a file that does not exist, or a file for which he lacks appropriate permissions.
Another similar situation is that of attempting to create a socket, or a connection

216 CHAPTER 8. EXCEPTION HANDLING

to another computer. That computer may disallow such connections, it could
be down, or it could even be nonexistent. These situatoins are not necessarily
the user’s or programmer’s fault.

Checked exceptons must be handled; this process entails creating code to
tell your program what to do in the face of these exceptions being thrown. It is
entirely optional to handle a runtime exception.

Sometimes a runtime exception will be caused by user error; in these cases
it is appropriate to use exception handling to fix the problem. For example if
a user is supposed to enter a number into a JOptionPane dialog and enters a
string that is not numeric, your program might try to use Integer.parseInt

to convert it into an integer. Here we see a problem created by an end-user.
This user should be protected and this error should be handled gracefully so
that (bumbling) user can go about his business. You always want to protect the
end-user from exceptions if it is at all feasible or reasonable.

8.2.1 Catching It

Java provides a parallel track of execution for handling exceptions gracefully.
Suppose you are writing a program that displays a color in response to a hex
code entered by a (very dumb) end-user of Your Shining Program. The user
enters something like ffgg00; this is a situation that you, the programmer do
not control. The Java exception mechanism would allow you to cleanly punt
and reset your color calculator to some state, such as white, and display the
appropriate hex code, 0xFFFFFF.

Some resourceful hackish readers might think, “Here is a new and useful way
to get unwedged from a bad situation.” This is a mistake. Only use exception
handling for error situations beyond programmer control. Do not use them for
the ordinary execution of your programs.

8.3 A Simple Case Study

Let us write a simple color calculator. Our application is to have three graphical
elements. It will have a color panel to display the color sample which will occupy
most of the frame. On the top of the frame we will place a JButton and a
JTextField. The user types into the JTextField and hits enter or hits the
button and the color is shown.

We shall immediately bring on our existing ColorPanel class and recycle it
shamelessly. This should give you the idea that you want to design plenty of
reusable classes that can be helpful in a variety of situations.

import javax.swing.JPanel;

8.3. A SIMPLE CASE STUDY 217

import java.awt.Color;

import java.awt.Graphics;

public class ColorPanel extends JPanel

{

private Color color;

public ColorPanel()

{

super();

color = Color.white;

}

public void setColor(Color _color)

{

color = _color;

}

public Color getColor()

{

return color;

}

public void paintComponent(Graphics g)

{

g.setColor(color);

g.fillRect(0,0,getWidth(), getHeight());

}

}

Now let us begin by building the frame. We block in the three graphical
elements as state variables

import javax.swing.JFrame;

import javax.swing.JPanel;

import javax.swing.JTextArea;

import java.awt.Color;

import java.awt.Container;

public class SimpleColorCalc extends JFrame implements Runnable

{

final ColorPanel cp;

final JButton show;

final JTextField hexCode;

public SimpleColorCalc()

{

super("Simple Color Calculator");

cp = new ColorPanel();

}

public static void main(String[] args)

{

218 CHAPTER 8. EXCEPTION HANDLING

SimpleColorCalc scc = new SimpleColorCalc();

javax.swing.SwingUtilities.invokeLater(scc);

}

public void run()

{

setSize(400,300);

setDefaultCloseOperation(EXIT_ON_CLOSE);

Container c = getContentPane();

setVisible(true);

}

}

Now we shall write the balance of the constructor During this process, we
estbllish the basic properties of the graphical widgets. The color panel will be
white. The text field will show the hex code for white, 0xffffff. The JButton

gets created and labeled. We also set fonts for the button and the text field to
enhance the appearance of the app.

public SimpleColorCalc()

{

super("Simple Color Calculator");

cp = new ColorPanel();

show = new JButton("Show the Color");

hexCode = new JTextField("0xffffff");

hexCode.setFont(new Font("Monospaced", Font.BOLD, 12));

hexCode.setHorizontalAlignment(JTextField.RIGHT);

show.setFont(new Font("Monospaced", Font.BOLD, 12));

}

Enter this code and compile. Add the necessary impoorts.

Next we add these lines to the run() method. Here we create a JPanel and
pop the button and text field into it. We then add the panel to the top of the
frame. We next place the color panel in the center, where it will occupy the
biggest space, as we had planned.

JPanel top = new JPanel();

c.add(BorderLayout.NORTH, top);

top.setLayout(new GridLayout(1,2));

top.add(show);

top.add(hexCode);

c.add(BorderLayout.CENTER, cp);

Make sure you put the setVisible(true) call last. Run this code and you
will see a button in the upper-left, a text field with "ffffff" emblazoned on it
in the upper right, and a color panel filled with white.

8.3. A SIMPLE CASE STUDY 219

The next logical step is to make the button and text fields live. When the
button is pushed or enter is hit in the text field , we want the following to
happen.

1. Get the text from the JTextField. It comes in as a string.

2. Turn it into a hex code.

3. Get the color for the hex code

4. Have the color panel paint itself that color.

To this end, we will create an action listener. Since the text field will issue an
action event when enter is hit in it, we can use the same listener class for the
text field and the button.

Begin with a shell we place inside of our class.

class ColorChangeListener implements ActionListener

{

public void actionPerformed(ActionEvent e)

{

}

}

Go to the API guide and look up JTextField. Look in the constructor
summary and see the constructor we used. Now do a search for getText(). This
is a method inherited from the parent class javax.swing.JTextComponent. It
returns the text, as a string, residing in the JTextField. Let us now test this
using our action listener. Make sure you do the includes for the action listener
and the action event.

class ColorChangeListener implements ActionListener

{

public void actionPerformed(ActionEvent e)

{

String text = hexCode.getText();

System.out.println(text);

}

}

Compile and run and you should see that when you click on the button,
the text in the JTextField is put to stdout. Thusfar, we have waded in and
learned about a new widget. How about an exception here?

What is beyond programmer control? The user just might do something
stupid like enter cowpie in the JTextField. As it stands now, our program will
happily put that to stdout. However, we want to convert this value to a hex

220 CHAPTER 8. EXCEPTION HANDLING

code. To perform the conversion, we use the Integer wrapper class. Bring it
up in your API guide. Now find the method parseInt(String s, int radix)

and click on its link. The word radix is just another word for number base. Since
we are trafficking in hex codes here, we shall use base 16. You can also see that
it throws a NumberFormatException. Go to the API page for this exception;
you can do so by clicking on the link shown.

This is a runtime exception, as you can see by looking up the family tree.
However, it is triggered by an end-user’s blunder, so we shall deal with it grace-
fully. We will just reset our color calculator to its original white.

The tasks confronting us here are: get the hex code, convert it into a hex
number, but if an illegal value is entered, reset everything to white. First here
is the naked call to the static method Integer.parseInt(). We know this
method is dangerous: it throws an exception.

class ColorChangeListener implements ActionListener

{

public void actionPerformed(ActionEvent e)

{

String text = hexCode.getText();

int colorcode = Integer.parseInt(text, 16);

}

}

Imagine you are about to get into a tub full of water. Do you just plunge
in? This is not the recommended course of action if you desire continued and
comfortable existence. You first dip a finger or toe in the water. If it’s too hot
or too cold, you throw a BadTubwaterTemperatureException. You can recover
from such an error. If the tub is too cold, add hot water until the desired
temperature is reached. If the tub is too hot, let it cool or add cold water until
the water is at a suitable temparature.

Java provides a mechanism called the the try-catch sequence to handle the
exception. We now insert this and explain it.

class ColorChangeListener implements ActionListener

{

public void actionPerformed(ActionEvent e)

{

String text = hexCode.getText();

try

{

int colorcode = Integer.parseInt(text, 16);

}

catch(NumberFormatException ex)

{

8.3. A SIMPLE CASE STUDY 221

hexCode.setText("ffffff");

cp.setColor(Color.white);

repaint();

}

}

}

You place the “dangerous code” you are using inside of the try block. In this
case, the danger is generated by a number format exception triggered by the
abuse of our innocent program. If the user enters a legal hex code, the catch

block is ignored; if not, the catch block executes. This precludes the occurrence
of an exploding heart caused by an end–user abusing Integer.parseInt().
Once we have circumnavigated the danger, we can go about our business of
obtaining a color and coloring the panel. Notice that all of the code using
the integer variable colorCode is placed in the try block. This is because an
exception will cause the try block to abort immediately, and the variable you
wish to use will never be created during an error state.

class ColorChangeListener implements ActionListener

{

public void actionPerformed(ActionEvent e)

{

String text = hexCode.getText();

try

{

int colorCode = Integer.parseInt(text, 16);

Color enteredColor = new Color(colorCode);

cp.setColor(enteredColor);

repaint();

}

catch(NumberFormatException ex)

{

hexCode.setText("ffffff");

cp.setColor(Color.white);

repaint();

}

}

}

Psssssst.... Confidentially..... Duplicate code! We see that repaint()

should occur regardless of whether an exception is thrown or not. The try–
catch apparatus has one more item, the finally block. This block is carried
out whether an exception occurs or not. Here we see it at work.

class ColorChangeListener implements ActionListener

222 CHAPTER 8. EXCEPTION HANDLING

{

public void actionPerformed(ActionEvent e)

{

String text = hexCode.getText();

try

{

int colorCode = Integer.parseInt(text, 16);

Color enteredColor = new Color(colorCode);

cp.setColor(enteredColor);

}

catch(NumberFormatException ex)

{

hexCode.setText("ffffff");

cp.setColor(Color.white);

}

finally

{

repaint();

}

}

}

Now finish by attaching this listener to the button and text field. Go into
the run method and add these lines just before the setVisible line.

show.addActionListener(new ColorChangeListener());

hexCode.addActionListener(new ColorChangeListener());

This is a ready–for–prime–time program that functions robustly. Exception
handling gives it fault-tolerance that makes it deployable in a realistic situation.

8.4 All Code Shown

Here is the complete program SimpleColorCalc.java. Make sure you have the
ColorPanel in the same directory when compiling.

import javax.swing.JFrame;

import javax.swing.JPanel;

import javax.swing.JTextField;

import javax.swing.JButton;

import java.awt.Color;

import java.awt.Font;

import java.awt.Container;

8.4. ALL CODE SHOWN 223

import java.awt.BorderLayout;

import java.awt.GridLayout;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

public class SimpleColorCalc extends JFrame implements Runnable

{

final ColorPanel cp;

final JButton show;

final JTextField hexCode;

public SimpleColorCalc()

{

super("Simple Color Calculator");

cp = new ColorPanel();

show = new JButton("Show the Color");

hexCode = new JTextField("0xffffff");

hexCode.setFont(new Font("Monospaced", Font.BOLD, 12));

hexCode.setHorizontalAlignment(JTextField.RIGHT);

show.setFont(new Font("Monospaced", Font.BOLD, 12));

}

public static void main(String[] args)

{

SimpleColorCalc scc = new SimpleColorCalc();

javax.swing.SwingUtilities.invokeLater(scc);

}

private static String presentHexCode(String s)

{

s = s.toLowerCase();

if(! s.substring(0,2).equals("0x"))

s = "0x" + s;

return s;

}

public void run()

{

setSize(400,300);

setDefaultCloseOperation(EXIT_ON_CLOSE);

Container c = getContentPane();

//Make a space for the text field and button.

JPanel top = new JPanel();

top.setLayout(new GridLayout(1,2));

top.add(show);

top.add(hexCode);

//add the top and the color panel to the content pane

c.add(BorderLayout.NORTH, top);

c.add(BorderLayout.CENTER, cp);

show.addActionListener(new ColorChangeListener());

224 CHAPTER 8. EXCEPTION HANDLING

hexCode.addActionListener(new ColorChangeListener());

setVisible(true);

}

class ColorChangeListener implements ActionListener

{

public void actionPerformed(ActionEvent e)

{

String text = hexCode.getText();

try

{

int colorCode = Integer.parseInt(text, 16);

Color enteredColor = new Color(colorCode);

hexCode.setText(presentHexCode(text));

cp.setColor(enteredColor);

}

catch(NumberFormatException ex)

{

hexCode.setText("0xffffff");

cp.setColor(Color.white);

}

finally

{

repaint();

}

}

}

}

8.5 Exception Handling, In General

Now that we have seen a simple case study, we can begin to understand the
whole business of handling exceptions. You will have already noticed some
things.

Exceptions are objects; they are instances of classes. The class Throwable

is the root class. The class Throwable has two children, Exception and Error.
As we said before, we shall concentrate on exceptions here, so you may actually
treat Exception as the root class.

8.5.1 Can you have several catch blocks?

The answer to this is yes. A try block must be followed immediately by at
least one catch block. A finally block is an optional block that occurs after
a try block and one or more catch blocks; this block executes whether or not

8.5. EXCEPTION HANDLING, IN GENERAL 225

an exception is thrown. Do not place other code between the succeeding try,
catch and finally blocks. Each catch block can catch a different type of
exception.

The general syntax looks like this.

try

{

//some dangerous code that throws various exceptions

}

catch(FairlySpecificException e)

{

//code to handle a fairly specific exception.

}

catch(LessSpecificExceptoin e)

{

//code to handle a less specific exception

}

.

.

.

catch(LeastSpecificException e)

{

//code to handle the most general possible exception

}

finally

{

//do this no matter what

}

8.5.2 The Bucket Principle

It is possible that code in a try block might throw several types of exceptions.
Think of the catch blocks as being buckets and the exceptions as “dropping
out” from your code. The most general type of exception is Exception; if you
do the following, you will be in for a surprise.

try

{

//code that throws a NumberFormatException

//and some other exceptions

}

catch(Exception e)

{

//handle an exception

226 CHAPTER 8. EXCEPTION HANDLING

}

catch(NumberFormatExcepton e)

{

//handle a number format exception

}

The second catch block is dead code! Think of the catch blocks as being buckets
for catching exceptions. A catch block with a more general type of exception
is a bigger bucket. Once a bucket catches the exception, it is handled and exe-
cution skips to the finally block if one exists. If not, you continue execution
at the end of the try–catch progression. Were a number format exception to
be thrown in our code here, the big bucket at the top, the Exception bucket,
would catch any number format exception. The moral of this tale is: Place
more specialized exceptions in earlier catch blocks and the more general ones at
the bottom. If two types of exception are independent, they represent indepen-
dent buckets. An example of such exceptions is NumberFormatException and
FileNotFoundException. Catch blocks for these would represent independent,
nonoverlapping buckets. Look in the API guide to see that they are unrelated,
and their lowest common ancestor is the root exception class Exception.

Reasoning by analogy is dangerous, but we plunge ahead insouciantly nonethe-
less. The behavior if try–catch progression is much like an if--else if--else

progression in that the first active block executes. The analogy, however, is in-
complete because the finally block executes in any event, unlike the else

block.

Arrange your buckets so you get the desired action in recovering from your
error. Also engineer your buckets to make them leak–proof: remember, an un-
caught exception will crash your program. You should aim to catch as narrowly
as possible.

Check the methods you are using in the try block for the types of exceptions
they can throw. Then aim to catch just these.

8.6 Mr. Truman, We Must Pass the Buck!

Go into the API guide to Integer and get the method detail for parseInt().
Here is its method header.

public static int parseInt(String s) throws NumberFormatException

You see a new keyword, throws. This declaration in the function header is a
tocsin to the client programmer: Beware, this method can generate, or throw,
a NumberFormatException. The creator of this method is “passing the buck”
and forcing the client to handle this exception. The penalty for failing to do so
is the possibility of an uncaught exception and ugly program death.

8.6. MR. TRUMAN, WE MUST PASS THE BUCK! 227

8.6.1 Must I?

We have said that, when an exception is caused by programmer error, you
probably should not catch it, unless there is a compelling reason of cost or
operational practicality. Handling runtime exceptions is optional. Handling
checked exceptions is mandatory, unless you pass the buck by using the throws

keyword in the method header. In this case, you force the caller to handle the
exception.

Let us look at such an example. Go into the API guide and bring up the
FileReader class. The method detail for the first constructor reads as follows.

public FileReader(String fileName) throws FileNotFoundException

Click on the link for FileNotFoundException. Since RuntimeException is not
in the family tree of FileNotFoundException, we see that FileNotFoundException
is a checked exception. This would be appropriate since there is no programmer
control over the file system where the program is being used. You will see plenty
of examples of checked exception in the next chapter on fileIO.

Reading the preamble, we see this exception is thrown if you attempt to open
a nonexistent file for reading or you try to open a file for which you do not have
read permission. If you are going to instantiate a FileReader in a class method,
you have two choices. You can handle the exception in the method, or you can
add throws FileNotFoundException to the method header. Ultimately, any
client code invoking this method must either handle the exception or pass the
buck.

Here is how we handle it.

public void processFile(String filename)

{

try

{

FileReader f = new FileReader(fileName);

//code that processes the file

}

catch(FileNotFoundException e)

{

//code to bail out of the wild goose chase

}

}

Here is how to pass the buck.

public void processFile(String filename) throws FileNotFoundException

{

228 CHAPTER 8. EXCEPTION HANDLING

FileReader f = new FileReader(fileName);

//code that processes the file

}

Passing the buck forces the caller to handle the exception. You should also note
that you must add the import statement

import java.io.FileNotFoundException

to use a FileNotFoundException because it is not part of the java.lang pacak-
age.

8.7 Can I Throw an Exception?

In short, the answer is “yes.” Let us show an example. Suppose you are writing
a fraction class.

public class Fraction

{

int num;

int denom;

public Fraction(int _num, int _denom)

{

num = _num;

denom = _denom;

//more code

}

public Fraction()

{

this(0,1);

}

//more code

}

Your program should get annoyed if some foolish client does something like this.

Fraction f = new Fraction(3,0);

You do not want people abusing your code by programming with zero-denonomiator
functions. Modify your code as follows to punish the offender. We shall throw
an IllegalArgumentException.

8.7. CAN I THROW AN EXCEPTION? 229

public class Fraction

{

int num;

int denom;

public Fraction(int _num, int _denom)

throws IllegalArgumentException

{

if(_denom == 0)

throw new IllegalArgumentException("Zero Denominator");

num = _num;

denom = _denom;

//more code

}

public Fraction()

{

this(0,1);

}

The IllegalArgumentException is a runtime exception (check its family tree),
so it is optional for the caller to check it. You can leave the issue to the caller’s
judgement. As soon as the exception is triggered, the execution of the construc-
tor is called to a halt. The exception is thrown to the caller; if the caller does
not handle it, the caller is rewarded with an exploding heart.

8.7.1 Can I make my own exceptions?

Yes, all you need do is extend an existing exception class. For example we might
want to have a special exception for our Fraction class. We create it as follows.

public class ZeroDenominatorException extends RuntimeException

{

}

We extended the RuntimeException, so our exception is a runtime exception.
You may now throw ZeroDenominatorExceptions. You could choose to extend
IllegalArgumentException, since this exception results from passing illegal
arguments to a constructor.

However, you should strive to use standard exceptions wherever possible.
The use of the IllegalArgumentException in this constructor was probably
the best call.

230 CHAPTER 8. EXCEPTION HANDLING

8.8 Summary

Java provides an exception handling apparatus that allows you to handle var-
ious common error states without cluttering up the main line of execution of
your code by error handling routines. You can create new types of exceptions
by extending existing ones. Exceptions propagate through the stack via the
buck–passing mechanism. If they are unhandled the the program crashes. You
should not use exceptions for the ordinary course of your code as an alternative
branching mechanism. This is an abuse of excepton handling.

Chapter 9

Text File IO

9.0 Introduction

A fundamental operation of computer applications is that of reading from and
writing to files. This allows us to create permanent records of our activity on the
disk and to reopen it later for further editing or use. We will concern ourselves
chiefly with two major types of files: text files and files that serialize, or pack
away, objects which can later be deserialized, or unpacked.

We will begin, in this chapter, with text files, and do a case study of creating
a simple text editor that opens text files for editing in a simple GUI. Along the
way we shall meet a new and very useful widget, the JFileChooser. Common
to both of these streams is the File class; we shall begin our exposition with
that.

9.1 The File Class and Paths

The File class belongs to the package java.io; it is used to represent locations
in your file system. The File class does not play a role in the actual reading
or writing of data to a file. Instances of the File class can point at files or
directories stored on your system. There are other objects that handle the
actual mechanics of file IO.

Let us explore this class and see what it does. Open a DrJava interactive
session, and the Java API guide. Let us begin by looking at the Field Summary
in the guide. It features four fields. Really, they harbor two pieces of data, the
path separator and the separator character. This character can be yielded up
as a character or a string. Hence the existence of four constants. Notice that
these constans are static, so we can call them by class name.

231

232 CHAPTER 9. TEXT FILE IO

> import java.io.File;

> File.pathSeparator

":"

> File.pathSeparatorChar

:

> File.separator

"/"

> File.separatorChar

/

>

The purpose of the separator character is to separate files in a path. This
character is a on Windoze systems, and it is a / on a UNIX system. The
notion of path is common to all operating systems. Recall a path consists of a
sequence of directories followed by a directory or file. The separator character
can be expanded to “and then into.” Only the last item in a path can be a
regular file; all others must be directories.

For example the path

animals/mammals/tapir.html

specifies a file tapir.html that lives inside of directory mammals, which in turn
lives inside of directory animals. In Windoze, this path is specified by

animals\mammals\tapir.html

Common to the command line interfaces of Windoze and UNIX is the notion
of search path. In UNIX if you enter the command ls, it not in your cwd.
Therefore UNIX checks your search path, which is a list of paths to directories
for the presence of ls. It checks this list in order; if it finds the command in
some directory, it immediately executes it. Since ls lives in /bin, the directory
/bin must be in your path for ls to run. Fortunately, this is done for you by
default. Windoze also has a search path mechanism that works in an identical
way. Let us show the path on both systems. First on UNIX, we see the path
by entering echo $PATHat the command prompt.

$ echo $PATH

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games

$

In Windoze, bring up a console window by going to the run menu item in the
Start menu, and type cmd into the text slot. Then, in this little black window,
type PATH at the prompt.

Microsoft Windows XP [Version 5.1.2600]

9.2. CONSTRUCTORS AND METHODS 233

(C) Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\John Morrison>PATH

PATH=C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem

In both systems, there is an environment variable containing the search path.
In UNIX this is $PATH, in Windoze it is PATH. You will also notice that the search
path is a list of absolute paths. Absolute paths in Windoze begin with a drive
letter such as C:; in UNIX they begin with a /. Observe that the directory /bin

is listed on the path of this machine, so ls there is found and run. If you type
an command that does not live in your path, you will get an error message, as
seen here.

$ ontv

bash: ontv: command not found

$

We sent UNIX on a wild goose chase and we get rewarded with a nastygram. If
you are running a MAC you will see the same things. In Windoze, you will see
this, informing us it has been sent on a similarly futile wild goose chase.

C:\Documents and Settings\John Morrison>ontv

ontv is not recognized as an internal or external command,

operable program or batch file.

We see that the path separator, which is : in UNIX and ; in Windoze, separates
directories in the search path.

9.2 Constructors and Methods

We shall most commonly use the constructor

public File(String pathname)

to create instances of File objects. Such an object may point at a directory
or a regular file. This is not surprising to UNIX users, since they know that
directories are just special files that contain an index to their contents. You
may use an absolute path name, or a relative path name. A relative path name
will be relative to the cwd of the java program when it is running on the users
machine.

The exists() method can be used to see if a given file already exists on the
users system. Here we show a brief example.

234 CHAPTER 9. TEXT FILE IO

> f = new File(".");

> f.exists()

true

> g = new File("someFileThatDoesNotExist")

> g.exists()

false

>

We began by making f point at the Java programs cwd. Naturally, this must
exist. We then deliberately chose a file that does not exist in the programs
cwd, and we see that exists() discerns its nonexistence. This method can be
very useful for performing file IO; you can use it to avoid clobbering an existing
(valuable) file on the (hapless) users system.

The canRead(), canWrite(), and canExecute() methods are self-explanatory.
They come in handy: you can check to see if you have permission for gaining
access to a file prior to charging forth. This can save the throwing of an excep-
tion.

The methods getPath() and getAbsolutePath() will return the string rep-
resentation of the path to a file from the program’s cwd. You should make a
directory, place a few unvaluable files in it, and experiment with the methods
in the API. You can remove files, make new directories, and do all manner of
file management with this class. Do the simple exercises below in a program or
in an interactive DrJava session.

Programming Exercises

1. Make a new File object and use it to determine the absolute path of your
cwd.

2. Perform ls -l on your cwd. Try resetting permission bits on one of your
files by creating a file object. Verify what you did using ls -l, and by using
methods from the File class.

3. Make a File object in the interactive prompt and change its cwd to various
places. Check for existence and nonexistence of various files. See if you
can determine what permissions you have for the files. Can you check if a
file is a directory?

4. See if you can write a program that takes a file or directory as command
line argument and which imitates the action of the UNIX command ls.

9.3 A Simple Case Study: Copying a File

During this section you will see how to read from and write to a text file. We
shall emulate the action of the cp command in UNIX. The usage for our program

9.3. A SIMPLE CASE STUDY: COPYING A FILE 235

will be

$ java Copy donorFile recipientFile

and its action will be to copy the contents of the donor file into the recipient
file. It will clobber any recipient file that already exists, just as the UNIX cp

command does. You may enter this command in the DrJava interactions pane
to execute it as well as at the command prompt.

Let us begin by creating the class Copy. We will make our method be a
static method inside of this class. Here is the start.

public class Copy

{

public static void copy(String donor, String recipient)

{

}

}

This file compiles happily. Now, inside of the copy method, add this code.

donorFile = new File(donor);

recipientFile = new File(recipient);

Also, add this import statement at the top of the program.

import java.io.File;

to avoid angry yellow. The resulting code will compile. Our File objects just
point to paths in the file system, which might or might not exist. Next, let us
open the donor file for reading and the recipient file for writing. To do so, we
use a FileReader as follows.

FileReader fr = new FileReader(donorFile);

and a FileWriter as follows.

FileWriter fw = new FileWriter(donorFile);

Take a trip to the API guide for the FileReader class. We are using the
constructors

FileReader(File file)

and

236 CHAPTER 9. TEXT FILE IO

FileWriter(File file)

to create the code above.

Next, we will read each line from the donor file, then write them to the
recipient file. Adding in the appropriate exception handling yields the following
class. Notice how the copy method passes the buck and forces the caller to
handle any exception it generates.

import java.io.File;

import java.io.FileReader;

import java.io.FileWriter;

import java.io.FileNotFoundException;

import java.io.IOException;

public class Copy

{

public static void copy(File donorFile, File recipientFile)

throws IOException

{

FileReader fr = new FileReader(donorFile);

FileWriter fw = new FileWriter(recipientFile);

}

public static void main(String[] args)

{

try

{

copy(new File(args[0]), new File(args[1]));

}

catch(FileNotFoundException ex)

{

System.err.println(args[0] + " not found.");

}

catch(IOException ex)

{

System.err.println("IOException!");

}

}

}

9.3.1 A Programming Idiom

We now need to read the contents of the donor file. We shall read it, a line at
at time, and in turn write each line to the donor. You might think, “How do I
iterate through a file? It was so easy in Python with a for loop!” Here is an

9.3. A SIMPLE CASE STUDY: COPYING A FILE 237

idiom that does exactly that.

int ch;

while((ch != fr.read()) != -1)

{

//Process each character of the file.

}

What we are doing here is to write each character of the donor to the recipient
in the loop. We next close each file so they are properly saved and so system
resource are liberated.

int ch;

while((ch = fr.readLine()) != -1)

{

fr.write(ch);

}

fw.close();

fr.close();

Putting it all together we get this class.

import java.io.File;

import java.io.FileReader;

import java.io.FileWriter;

import java.io.FileNotFoundException;

import java.io.IOException;

public class Copy

{

public static void copy(File donorFile, File recipientFile)

throws IOException

{

FileReader fr = new FileReader(donorFile);

FileWriter fw = new FileWriter(recipientFile);

int ch;

while((ch = fr.read()) != -1)

{

fw.write(ch);

}

fw.close();

fr.close();

}

public static void main(String[] args)

238 CHAPTER 9. TEXT FILE IO

{

try

{

copy(new File(args[0]), new File(args[1]));

}

catch(FileNotFoundException ex)

{

System.err.println(args[0] + " not found.");

}

catch(IOException ex)

{

System.err.println("IOException!");

}

}

}

To run this program in DrJava with command line arguments, just use the
following command.

> java Copy donorFile recipientFile

Likewise, at the UNIX prompt, we an use the same command as follows.

$ java Copy donorFile recipientFile

9.3.2 Buffered FileIO

When you read a character from a file using a FileReader, you are making a
request of the operating system to see in that file and fetch that character. This
is a fairly costly proceeding. There are times when you are programming with
devices such as terminals when you want to do this. However, with what we are
doing with text files, this sort of character-by-character retrieval is unnecessary
and wasteful of system resources.

We make our appliction much faster by using buffered fileIO. A buffer is sim-
ply a temporary storage space. Your refrigirator acts as a buffer. Periodically,
you go to the grocery store, fetch what you need and store it in the ’fridge. This
saves time and money since you do not have to go to the store every time you
need a food item. Your fridge is, effectively, a food intake buffer. You also likely
have a recycling bin in the garage. You place recyclables in the bin, which is
either periodically collected or which you periodically empty at the recycling
center as it fills. Buffers ease the transfer of stuff.

Java has two standard libary classes for buffered fileIO, java.io.BufferedReader
and java.io.BufferedWriter. These fetch bytes from a file one disk sector

9.3. A SIMPLE CASE STUDY: COPYING A FILE 239

(usually 4K) at a time, and then you can read from the buffer. When the buffer
empties, another request is made to the operating system to refill it, until you
come to the end of the file. All of this happens behind the scenes, so you need
not worry about it.

Here is a code snippet that creates a buffered reader.

BufferedReader bf = new BufferedReader(new FileReader(someFile));

You pass the buffered reader a file reader that is connected to some file. As
the buffered reader reads from the file, it can throw various IOExceptions. Said
exceptions must be handled.

Analoglously, a buffered writer is created as follows.

BufferedWriter bw = new BufferedWriter(new FileWriter(someFile));

We will now create a new class for copying files that uses buffered reading and
writing.

import java.io.File;

import java.io.FileReader;

import java.io.FileWriter;

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.FileNotFoundException;

import java.io.IOException;

public class BufferedCopy

{

public static void copy(File donorFile, File recipientFile)

throws IOException

{

String line;

BufferedReader fr = new BufferedReader(new FileReader(donorFile));

BufferedWriter fw = new BufferedWriter(new FileWriter(recipientFile));

while((line = fr.readLine()) != null)

{

fw.write(line + "\n");

}

fr.close();

fw.close();

}

public static void main(String[] args)

{

try

240 CHAPTER 9. TEXT FILE IO

{

copy(new File(args[0]), new File(args[1]));

}

catch(FileNotFoundException ex)

{

System.err.println(args[0] + " not found.");

}

catch(IOException ex)

{

System.err.println("IOException!");

}

}

}

Notice that when using write we had to furnish an end-of-line character. This
is because the readLine() method strips off the end-of-line character. This was
not a worry in unbuffered IO since all characters, including end-of-line characters
are extracted from the donor and put to the recipient.

We show a performance comparision. You can see that the buffered version
is quite a bit faster. We created a file called megazero.txt which contains
12500 lines, each containing 79 zeroes and one newline character. We remove
the recipient file in between the two tests to ensure “fairness.”

$ time(java Copy megazero.txt foo.txt)

real 0m0.552s

user 0m0.640s

sys 0m0.060s

$ rm foo.txt

$ time(java BufferedCopy megazero.txt foo.txt)

real 0m0.225s

user 0m0.260s

sys 0m0.040s

$

Programming Exercises Now it’s time to write some programs and practice
what you have seen.

1. Write a program called Cat.java that takes a list of regular files as argu-
ments and which puts them to stdout in seratum.

2. Write a program called Ls.java that lists the files in the directory passed
it as a command–line argument in long format.

3. Add a feature to Copy.java that checks if the recipient file exists and pops
up a JOptionPane asking the user if he wants to overwrite the recipient.

9.4. OPENING A FILE IN A GUI WINDOW 241

9.4 Opening a File in a GUI Window

Let us begin by making the usual graphical shell. Compile this and make sure
it runs for you. Running it should reveal an empty GUI window.

import javax.swing.JFrame;

public class FileGUI extends JFrame implements Runnable

{

public void run()

{

setSize(600,800);

setDefaultCloseOperation(EXIT_ON_CLOSE);

setVisible(true);

}

public static void main(String[] args)

{

FileGUI fg = new FileGUI();

javax.swing.SwingUtilities.invokeLater(fg);

}

}

We now add some features. First, we shall make a File be a state variable,
and add a constructor that initializes the file and which displays its locatoion
in the title bar. This will be the file that will be displayed in the GUI window.
We shall also include the stuff needed to make FileIO work. Notice how we set
things up so the file’s absolute path is displayed in the title bar of our app.

import javax.swing.JFrame;

import java.io.BufferedReader;

import java.io.FileReader;

import java.io.FileNotFoundException;

import java.io.IOException;

public class FileGUI extends JFrame implements Runnable

{

File file;

public FileGUI(String s)

{

super("FileGUI: " + (new File(s)).getAbsolutePath());

file = new File(s);

}

public void run()

{

System.out.println(file);

242 CHAPTER 9. TEXT FILE IO

setSize(600,800);

setDefaultCloseOperation(EXIT_ON_CLOSE);

setVisible(true);

}

public static void main(String[] args)

{

FileGUI fg = new FileGUI(args[0]);

javax.swing.SwingUtilities.invokeLater(fg);

}

}

You run this with the command

> java FileGUI someFile.txt

9.4.1 Designing the Application

Here is an outline of what we need to do. We used top-down design to break
out the steps into codeable pieces. We now integrate the process. Along the
way we meet some new standard library classes.

StringBuffer This is a form of mutable string. The characters it accumulates
are not pooled. You extract its contents by calling its toString() method. The
default constructor creates an empty StringBuffer.

javax.swing.JTextArea This is a box into which text can be placed. It can
be added to any container class.

javax.swing.JScrollPane This is a container class into which you can place
a JTextArea. If the text is too large to show in its entirety, then scroll bars
automatically appear.

Now we make a plan as to how to proceed.

1. Create a StringBuffer.

2. Open the file.

3. Suck the file into a StringBuffer, for safekeeping before displaying it.

4. Close the file.

5. Display the file.

(a) Make a JTextArea

(b) Put it in the content pane.

9.4. OPENING A FILE IN A GUI WINDOW 243

(c) Put the StringBuffer’s contents into the JTextArea

6. Give the JTextArea scrollbars (the file may be too big).

7. Run and compile the first part and check for errors.

import javax.swing.JFrame;

import java.io.BufferedReader;

import java.io.FileReader;

import java.io.FileNotFoundException;

import java.io.IOException;

public class FileGUI extends JFrame implements Runnable

{

File file;

public FileGUI(String s)

{

super("FileGUI: " + (new File(s)).getAbsolutePath());

file = new File(s);

}

public void run()

{

System.out.println(file);

setSize(600,800);

setDefaultCloseOperation(EXIT_ON_CLOSE);

//Create the StringBuffer.

StringBuffer sb = new StringBuffer();

try

{

//temporary code to make sure file is found

System.out.println(file.getAbsolutePath());

//read file and create BufferedReader

FileReader fr = new FileReader(file);

BufferedReader r = new BufferedReader(fr);

}

catch(FileNotFoundException e)

{

System.err.printf("File %s was not found", file.getAbsolutePath());

}

catch(IOException e)

{

System.err.println("IO Exception occurrred");

}

setVisible(true);

}

244 CHAPTER 9. TEXT FILE IO

public static void main(String[] args)

{

FileGUI fg = new FileGUI(args[0]);

javax.swing.SwingUtilities.invokeLater(fg);

}

}

And now for the rest

import javax.swing.JFrame;

import javax.swing.JTextArea;

import javax.swing.JScrollPane;

import java.io.File;

import java.io.BufferedReader;

import java.io.FileReader;

import java.io.FileNotFoundException;

import java.io.IOException;

public class FileGUI extends JFrame implements Runnable

{

File file;

public FileGUI(String s)

{

super((new File(s)).getAbsolutePath());

file = new File(s);

}

public void run()

{

System.out.println(file);

setSize(600,800);

setDefaultCloseOperation(EXIT_ON_CLOSE);

//Create the StringBuffer

StringBuffer sb = new StringBuffer();;

try

{

//open the file and create a BufferedReader

FileReader fr = new FileReader(file);

BufferedReader r = new BufferedReader(fr);

String buf ="";

//suck the file into the StringBuffer

while((buf = r.readLine()) != null)

{

sb.append(buf + "\n");

}

9.5. SWING’S IMAGEIO CLASS 245

//Close the file

r.close();

}

catch(FileNotFoundException e)

{

System.err.printf("File %s was not found", file.getAbsolutePath());

}

catch(IOException e)

{

System.err.println("IO Exception occurrred");

}

//make the JTextArea; don’t forget the import

JTextArea jta = new JTextArea();

//Make a JScrollPane and do the import.

//Put the JTextArea inside of the JScrollPane

JScrollPane jsp = new JScrollPane(jta);

//Put the JScrollPane into the Content Pane.

getContentPane().add(jsp);

//Put the contents of the String buffer inot the JTextArea.

jta.setText(sb.toString());

setVisible(true);

}

public static void main(String[] args)

{

FileGUI fg = new FileGUI(args[0]);

javax.swing.SwingUtilities.invokeLater(fg);

}

}

Programming Exercises

1. Put a JTextField at the top of this application, in which the user is to
enter a file name. Attach an action listener which causes the file entered
to be displayed. If the end-user goofs up, put the message “No such
Annie–Mule” into the JTextArea and clear the JTextField.

2. Can you make the JTextField uneditable? Look in the API guide.

9.5 Swing’s ImageIO Class

We will show how to obtain an image from a file and how to draw it in a JPanel.
Let us begin with this shell program.

import javax.swing.JFrame;

246 CHAPTER 9. TEXT FILE IO

import javax.swing.JPanel;

public class ImageFrame extends JFrame implements Runnable

{

Image image;

public void run()

{

setSize(600,600);

getContentPane().add(new ImagePanel());

setVisible(true);

}

public static void main(String[] args)

{

ImageFrame iframe = new ImageFrame();

javax.swing.SwingUtilities.invokeLater(iframe);

}

class ImagePanel extends JPanel

{

}

}

Run this and you will just see a blank window. Now place an image file in the
same directory as this program. I have the image myPic.jpg. This technique
works for all standard image formats including such formats .gif and .png.

We will be using the class javax.swing.ImageIO. It has a static method
read which accepts an image file as an argument and which produces an in-
stance of java.awt.Image. This can be put to the ImagePanel using the inher-
ited drawImage method as follows. Noice the additional imports that become
necessary, and the needed try-catch sequence.

import javax.swing.JFrame;

import javax.swing.JPanel;

import java.io.IOException;

import java.io.File;

import javax.imageio.ImageIO;

import java.awt.Image;

import java.awt.Graphics;

public class ImageFrame extends JFrame implements Runnable

{

Image image;

public void run()

{

setSize(600,600);

getContentPane().add(new ImagePanel());

9.5. SWING’S IMAGEIO CLASS 247

setVisible(true);

}

public static void main(String[] args)

{

ImageFrame iframe = new ImageFrame();

javax.swing.SwingUtilities.invokeLater(iframe);

}

class ImagePanel extends JPanel

{

public void paintComponent(Graphics g)

{

try

{

image = ImageIO.read(new File("myPic.jpg"));

g.drawImage(image, 100, 100, null);

}

catch(IOException ex)

{

System.err.printf("File %s could not load\n", "myPic.jpg");

}

}

}

}

Programming Exercises

1. Add a File menu to this application

2. Add items open and quit.

3. Make the quit item live.

4. Put a JTextField in the top of the ImageFrame. Attach an action listener
so that the text in it is grabbed and the image file placed in it is opened.

5. Use appropriate exception handling; if the user goofs, leave the existing
image in the frame.

248 CHAPTER 9. TEXT FILE IO

Chapter 10

The NitPad Case Study

10.0 Case Study: NitPad: A Text Editor

Now we shall look at a simple, full-featured application that will be quite similar
to the Notepad application you see on certain dark side machines.

We are going to think about this program from the standpoint of the user.
We must be vigilant and protect the user from data loss. Since he is a paying
customer, we must see carefully to his needs.

Let us begin by creating a graphical shell

import javax.swing.JFrame;

public class Nitpad extends JFrame implements Runnable

{

public Nitpad()

{

super("Nitpad: Unsaved *");

}

public void run()

{

setSize(600,600);

setVisible(true);

}

public static void main(String[] args)

{

Nitpad np = new Nitpad();

javax.swing.SwingUtilities.invokeLater(np);

}

}

249

250 CHAPTER 10. THE NITPAD CASE STUDY

Run this code and a blank window should appear on your screen with the string
"Nitpad: Unsaved *" emblazoned on the title bar. Let us begin by making
some design decisions. For the main text area, we will use a JEditorPane; this
is a flexible widget in which you may type text. We will put this inside of
a JScrollPane and add it to the content pane. Placing it in a JScrollPane

causes scrollbars to materialize when the text is too large to display in the
content pane. Let us begin by doing that.

import javax.swing.JFrame;

import javax.swing.JScrollPane;

import javax.swing.JEditorPane;

public class Nitpad extends JFrame implements Runnable

{

JEditorPane jep;

public Nitpad()

{

super("Nitpad: Unsaved *");

jep = new JEditorPane();

}

public void run()

{

setSize(600,600);

getContentPane().add(new JScrollPane(jep));

setVisible(true);

}

public static void main(String[] args)

{

Nitpad np = new Nitpad();

javax.swing.SwingUtilities.invokeLater(np);

}

}

Why is the JEditorPane a state variable? Open Notepad and look at it.
You can see that its file and edit operations are driven by menus. Since this is
to happen, it will be helpful to be able to communicate with jep throughout
the entire program. Notice that we initialized this state variable in the second
line of the constructor.

Run the program; observe that you can type characters into the JEditorPane.

10.0.1 Laying out Menus

Our program will have two menus, File and Edit. The file menu should have
the standard list of menu items: New, Open, Save, Save As, and Quit. The Edit

10.0. CASE STUDY: NITPAD: A TEXT EDITOR 251

menu will feature Cut, Copy, Paste and Select All. Let us now create the menus
and menu items so we can see them. First, remember we need these includes.

import javax.swing.JMenu;

import javax.swing.JMenuBar;

import javax.swing.JMenuItem;

We then remember to do the following.

1. Nail in the menu bar with this code.

JMenuBar mbar = new JMenuBar();

setJMenuBar(mbar);

2. Create and add in the two menus.

JMenu fileMenu = new JMenu("File");

JMenu editMenu = new JMenu("Edit");

mbar.add(fileMenu);

mbar.add(editMenu);

3. Populate the menus.

JMenuItem newItem = new JMenuItem("New");

JMenuItem openItem = new JMenuItem("Open");

JMenuItem saveItem = new JMenuItem("Save");

JMenuItem saveAsItem = new JMenuItem("Save As...");

JMenuItem printItem = new JMenuItem("Print");

JMenuItem quitItem = new JMenuItem("Quit");

fileMenu.add(newItem);

fileMenu.add(openItem);

fileMenu.add(saveItem);

fileMenu.add(saveAsItem);

fileMenu.add(printItem);

fileMenu.add(quitItem);

JMenuItem copyItem = new JMenuItem("Copy");

JMenuItem pasteItem = new JMenuItem("Paste");

JMenuItem cutItem = new JMenuItem("Cut");

JMenuItem selectAllItem = new JMenuItem("Select All");

editMenu.add(copyItem);

editMenu.add(pasteItem);

editMenu.add(cutItem);

editMenu.add(selectAllItem);

Here is our latest result. Run it and see all of the menus and menu items
being displayed. We have created much of the view for this application and a
very little of the model. However, we should be pleased by the app’s appear-
ance. We also added here code to set the font in the constructor. Notice the
appearance of another import.

252 CHAPTER 10. THE NITPAD CASE STUDY

import javax.swing.JFrame;

import javax.swing.JScrollPane;

import javax.swing.JEditorPane;

import javax.swing.JMenu;

import javax.swing.JMenuBar;

import javax.swing.JMenuItem;

import java.awt.Font;

public class Nitpad extends JFrame implements Runnable

{

JEditorPane jep;

public Nitpad()

{

super("Nitpad: Unsaved *");

jep = new JEditorPane();

jep.setFont(new Font("Monospaced", Font.PLAIN, 12));

}

public void run()

{

setSize(600,600);

getContentPane().add(new JScrollPane(jep));

makeMenus();

setVisible(true);

}

public void makeMenus()

{

JMenuBar mbar = new JMenuBar();

setJMenuBar(mbar);

JMenu fileMenu = new JMenu("File");

JMenu editMenu = new JMenu("Edit");

mbar.add(fileMenu);

mbar.add(editMenu);

JMenuItem newItem = new JMenuItem("New");

JMenuItem openItem = new JMenuItem("Open");

JMenuItem saveItem = new JMenuItem("Save");

JMenuItem saveAsItem = new JMenuItem("Save As...");

JMenuItem printItem = new JMenuItem("Print");

JMenuItem quitItem = new JMenuItem("Quit");

fileMenu.add(newItem);

fileMenu.add(openItem);

fileMenu.add(saveItem);

fileMenu.add(saveAsItem);

fileMenu.add(printItem);

fileMenu.add(quitItem);

JMenuItem copyItem = new JMenuItem("Copy");

JMenuItem pasteItem = new JMenuItem("Paste");

JMenuItem cutItem = new JMenuItem("Cut");

10.0. CASE STUDY: NITPAD: A TEXT EDITOR 253

JMenuItem selectAllItem = new JMenuItem("Select All");

editMenu.add(copyItem);

editMenu.add(pasteItem);

editMenu.add(cutItem);

editMenu.add(selectAllItem);

}

public static void main(String[] args)

{

Nitpad np = new Nitpad();

javax.swing.SwingUtilities.invokeLater(np);

}

}

10.0.2 Getting a File to Save via Menus

We begin by attaching empty action listeners to each File menu item. For
example, in the New menu item, we proceed as follows.

newItem.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

}

});

Do not forget to add these imports.

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

Proceed to attach an empty action listener to each Edit menu item.

Before going any further, we must make a plan for how these items are to
work. We must think about the user experience and design appropriately. It is
likely and desirable that we will develop some private methods that will be used
by the listeners to do their jobs. Once we make a plan, it will be clear what
functions will be executed by more than one listener. Said function should be
coded as private methods.

Now we must think first about the state of our program. So far, it has a
JEditorPane which can accept typed text. However, this pane does not know
what to do with the text. What other state variables do we need?

Open Notepad on a Windoze machine. Any instance of Notepad can open
exactly one file. Either we are typing in an unsaved window or a window pointing
at a file. This tells us we need a File object representing our current file. When

254 CHAPTER 10. THE NITPAD CASE STUDY

Nitpad is first started, we will make it a null object. Add a state variable as
follows.

private File currentFile;

Add this line to the constructor.

currentFile = null;

Let us begin by trying to save a file. We need to plan the action of the listener
attached to the Save menu item. Let us now write a plan in comments in its
code.

saveItem.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

//if currentFile is null, prompt to select

//a file as the current file

//write to the current file

//place the absolute path of the current file

//in the title bar.

}

});

Now let us look at Save As before moving ahead.

saveAsItem.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

//prompt to select

//a file as the current file to save to.

//write to the current file

//place the absolute path of the current file

//in the title bar.

}

}

});

You can see some commonalities in the functions of the two menu item’s action
listeners. Both prompt to select a current file. Both write to the current file.

10.0. CASE STUDY: NITPAD: A TEXT EDITOR 255

Both update the title bar. This points up the need for three private methods.
Notice how we pass the buck with the IOException in the first method. You
can add these method stubs to your class. Make sure you import the class
java.io.IOException. Note we also devleop a function to select a currentFile,
because it will be a common operation

private void writeToCurrentFile() throws IOException{}

private void fixTitleBar(){}

private void promptToSave() {}

private void selectCurrentFile() {}

Let us try coding up these methods, beginning with writeToCurrentFile().
rere are the basic steps.

1. Create a buffered writer linked to the current file.

2. Extract the text from the editor pane.

3. Write the text to the file

4. Close the file connection so the file is properly saved.

Now we code it up.

public void writeToCurrentFile() throws IOException

{

//Create a buffered write linked to the current file.

BufferedWriter bw = new BufferedWriter(

new FileWriter(currentFile));

//Extract the text from the editor pane.

String blob = jep.getText();

//Write the text to a file.

bw.write(blob);

//Close the file coonection.

bw.close();

}

You might properly ask: What if the current file is null? We have blithely
ignored that possibility. Coördinating that problems is best left to the action
listener. We are adhering to the design prinicple of atomicity of purpose; i.e.
our function does exactly one thing. Other objects will orchestrate its behavior.
It is a precondition of this function that a valid current file be selected.

It is now time to test this out. We are going to show a primitive version of
our app that just saves to a file named hammer.txt. Here is the file with the
additions we have made. We must now place code in the Save action listener
to get things going.

256 CHAPTER 10. THE NITPAD CASE STUDY

import javax.swing.JFrame;

import javax.swing.JScrollPane;

import javax.swing.JEditorPane;

import javax.swing.JMenu;

import javax.swing.JMenuBar;

import javax.swing.JMenuItem;

import java.io.File;

import java.io.FileWriter;

import java.io.BufferedWriter;

import java.io.IOException;

import java.awt.Font;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

public class Nitpad extends JFrame implements Runnable

{

JEditorPane jep;

private File currentFile;

public Nitpad()

{

super("Nitpad: Unsaved *");

jep = new JEditorPane();

jep.setFont(new Font("Monospaced", Font.PLAIN, 12));

currentFile = new File("hammer.txt"); //temporary code to

//test the writeToCurrentFile method. TODO: Get rid of this.

}

public void run()

{

setSize(600,600);

getContentPane().add(new JScrollPane(jep));

makeMenus();

setVisible(true);

}

public void makeMenus()

{

JMenuBar mbar = new JMenuBar();

setJMenuBar(mbar);

JMenu fileMenu = new JMenu("File");

JMenu editMenu = new JMenu("Edit");

mbar.add(fileMenu);

mbar.add(editMenu);

JMenuItem newItem = new JMenuItem("New");

JMenuItem openItem = new JMenuItem("Open");

JMenuItem saveItem = new JMenuItem("Save");

JMenuItem saveAsItem = new JMenuItem("Save As...");

10.0. CASE STUDY: NITPAD: A TEXT EDITOR 257

JMenuItem quitItem = new JMenuItem("Quit");

fileMenu.add(newItem);

fileMenu.add(openItem);

fileMenu.add(saveItem);

fileMenu.add(saveAsItem);

fileMenu.add(quitItem);

JMenuItem copyItem = new JMenuItem("Copy");

JMenuItem pasteItem = new JMenuItem("Paste");

JMenuItem cutItem = new JMenuItem("Cut");

JMenuItem selectAllItem = new JMenuItem("Select All");

editMenu.add(copyItem);

editMenu.add(pasteItem);

editMenu.add(cutItem);

editMenu.add(selectAllItem);

newItem.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

}

});

openItem.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

}

});

saveItem.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

//if currentFile is null, prompt to select

//a file as the current file

//write to the current file

//place the absolute path of the current file

//in the title bar.

}

});

saveAsItem.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

//prompt to select

//a file as the current file to save to.

//write to the current file

//place the absolute path of the current file

//in the title bar.

258 CHAPTER 10. THE NITPAD CASE STUDY

}

});

quitItem.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

}

});

}

private void fixTitleBar(){}

private void promptToSave(){}

private void selectCurrentFile(){}

private void writeToCurrentFile() throws IOException

{

//Create a buffered write linked to the current file.

BufferedWriter bw = new BufferedWriter(

new FileWriter(currentFile));

//Extract the text from the editor pane.

String blob = jep.getText();

//Write the text to a file.

bw.write(blob);

//Close the file connection.

bw.close();

}

public static void main(String[] args)

{

Nitpad np = new Nitpad();

javax.swing.SwingUtilities.invokeLater(np);

}

}

Let us now code this action listener. This is very minimal, but all we want to
do is to test and see if the current file is getting written to hammer.txt. Add
this to your class.

saveItem.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

//if currentFile is null, prompt to select

//a file as the current file

//write to the current file

try

{

writeToCurrentFile();

10.0. CASE STUDY: NITPAD: A TEXT EDITOR 259

}

catch(IOException ex)

{

System.err.println("Not happy");

}

//place the absolute path of the current file

//in the title bar.

}

});

Now place text in the JEditorPane and select Save from the File menu. Close
the application. You should have a file hammer.txt with the text you typed in
it.

10.0.3 Is the Window Saved?

If we quit or application or navigate away from a file, we need to know if the the
contents of the window are saved. This is necessary becasue we must protect
the user from inadvertant data loss. Hence, we will add the state variable

private boolean saved;

In the constructor, we initialize as follows.

saved = false;

This brings up a whole set of problems we have to deal with.

• The saved state variable must be updated whenever the contents of the
window change. How do we do that?

• As part of our interface, we will put a * at the end of the title bar when
the contents of the window are not saved. How do we make this happend?

• Where are the perils of data loss? How do we prevent them? We must
think that whenever we display a new file in the window, the changes to
the old one must be saved.

• If the current file is null, we must act as if the window is unsaved.

Let us begin by getting up a mechanism to point to a current file. For now,
you will need to add this empty methd which we will fill soon.

private void writeToCurrentFile() throws IOException(){}

260 CHAPTER 10. THE NITPAD CASE STUDY

Next, let us dispose of the matter of selecting the current file. Let us return
true if a file is selected and false otherwise.

private boolean selectCurrentFile()

{

boolean chosen = false;

JFileChooser jfc = new JFileChooser();

int willSave = jfc.showSaveDialog(Nitpad.this);

if(willSave == JFileChooser.APPROVE_OPTION)

{

currentFile = jfc.setSelectedFile();

chosen = true;

}

return chosen;

}

Note that we have changed the return type of this function, since we have seen
a need to do so. The caller will need to know if a file is selected and saved to
so it can act accordingly. Note the use of JOptionPane’s static constants to do
the job. These are the integers that are returned by this method.

private int promptToSaveWindow()

{

int choice = JOptionPane.showConfirmDialog(Nitpad.this,

"Save document in window?");

boolean selected = false;

if(choice == JOptionPane.YES_OPTION)

{

selected = selectCurrentFile();

}

try

{

if(selected)

{

writeToCurrentFile();

}

else

{

choice = JOptionPane.CANCEL_OPTION;

}

}

catch(Exception ex)

{

//bail out conservatively

choice = JOptionPane.CANCEL_OPTION;

10.0. CASE STUDY: NITPAD: A TEXT EDITOR 261

}

return choice;

}

Now we shold get rid of the temporay refrence to hammer.txt at the beginning
and alter the constructor to read

currentFile = null;

Another matter of housekeeping is the title bar. Let’s get it at least partially
working.

private void fixTitleBar()

{

//TODO fix star

String currentFileString = (currentFile == null)? "Unsaved":

currentFile.getAbsolutePath();

setTitle("Nitpad: " + currentFileString);

}

10.0.4 Getting Save and Save As to Work

Let us now turn our attention to the actionPerformed method in the saveItem
action listener. Here is what we have so far.

saveItem.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

//if currentFile is null, prompt to select

//a file as the current file

//write to the current file

try

{

writeToCurrentFile();

}

catch(IOException ex)

{

System.err.println("Not happy");

}

//place the absolute path of the current file

//in the title bar.

}

});

262 CHAPTER 10. THE NITPAD CASE STUDY

If the current file is null we can select as follows

boolean saveWanted = false;

if(currentFile == null)

saveWanted = selectCurrentFile();

Now we can make writing to the current file conditional on the save being
wanted.

if(saveWanted)

{

writeToCurrentFile();

fixTitleBar();

saved = true;

}

Now the method looks like this.

saveItem.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

//if currentFile is null, prompt to select

//a file as the current file

boolean saveWanted = false;

if(currentFile == null)

saveWanted = selectCurrentFile();

//write to the current file

try

{

if(saveWanted)

{

writeToCurrentFile();

//place the absolute path of the current file

//in the title bar.

fixTitleBar();

saved = true;

}

}

catch(IOException ex)

{

System.err.printf("Could not open %s\n",

currentFile.getAbsolutePath());

}

}

});

10.0. CASE STUDY: NITPAD: A TEXT EDITOR 263

Now we can write the Save As action listener pretty easily.

saveAsItem.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

//prompt to select

//a file as the current file to save to.

boolean saveWanted = false;

saveWanted = selectCurrentFile();

//write to the current file and

//place the absolute path of the current file

//in the title bar.

try

{

if(saveWanted)

{

writeToCurrentFile();

fixTitleBar();

saved = true;

}

}

catch(IOException ex)

{

System.err.printf("Could not open %s\n",

currentFile.getAbsolutePath());

}

}

});

10.0.5 Getting the File Menu in Order

Now we will turn to writing the rest of the action listeners for the File menu.
This will require some careful design on our part to prevent data loss for the
user. Let us begin with New.

If the current file is unsaved and New is selected, we must offer the user the
opportunity to save his file before he navigates away from the window and loses
his work. We force the user to deliberately abandon the contents of the window.

Once this is done, we set currentFile to null and we clear all text from
the JEditorPane.

Be warned, we do not have the feature in place that monitors whether the
text in the window is saved in full working order. We will do that after we get
the menu items working. Let us plunge ahead recklessly, assuming that this
desired feature is working. We begin with New; first we show the outline in

264 CHAPTER 10. THE NITPAD CASE STUDY

comments.

newItem.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

//If the contents of the window are unsaved,

//prompt the user to save them.

//Then, clear the JEditorPane and set the current

//file to null.

}

});

We now insert the code to make this work. Notice how we protect the user
from losing data in the window and how we give lots of opportunity to back out
whilst doing nothing.

newItem.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

//If the contents of the window are unsaved,

//prompt the user to save them.

int saveWindowChoice = -1;

int saveFileChoice = -1;

if(!saved)

{

saveWindowChoice = promptToSave();

if(saveWindowChoice == JOptionPane.CANCEL_OPTION)

;//do nothing

else if(saveWindowChoice == JOptionPane.NO_OPTION)

{

currentFile = null;

jep.setText(""); //abandon changes

}

if(saveWindowChoice == JOptionPane.YES_OPTION)

{

if(currentFile == null)

{

saveFileChoice = selectCurrentFile();

if(saveFileChoice)

{

writeToCurrentFile();

}

}

}

}

//Then, clear the JEditorPane and set the current

10.0. CASE STUDY: NITPAD: A TEXT EDITOR 265

//file to null.

}

});

266 CHAPTER 10. THE NITPAD CASE STUDY

Chapter 11

The UniDraw Case Study
and Serialization

11.0 Introduction

During this chapter we will create a program named UniDraw, which will be a
simple drawing program with a color pen whose color and width are controlled
by menus. The user will draw by dragging the mouse in the drawing panel,
thereby creating a mark on the drawing.

We will be able to save our resulting creations for later viewing or editing.
What is new here is that we will learn how to serialize, or pack away, objects into
files and how to reconstitute them and restore the program’s state at the time
it was saved. This will be a full-featured event-driven graphical application.

11.1 Representing Curves

Let us begin by sketching in a bare-bones shell for our program. We will create
two classes. We need a means with which to represent a curve in the drawing. To
decide how to do this, let’s be more specific about the application’s functionality.

When the user presses the mouse, that triggers a MouseEvent; if the name of
the event is e, we get the point at which it occurred by calling e.getPoint().
So, when the mouse is pressed, we should create a new curve and it should begin
at the point we retrieved.

Now the user drags the mouse to draw. As this occurs, the mouse is polled
and it periodically fires off a MouseEvent. Each event can tell us where it
occurred; we will need to store all of those points in our curve.

267

268 CHAPTER 11. THE UNIDRAW CASE STUDY AND SERIALIZATION

Finally, when he mouse is released, the drag is over. We add the point where
it is released, and then we wait for the next pressing of the mouse. Notice that
every curve is guaranteed to have at least two points.

What does a curve need to know? It needs to know the list of points it accrues
during the press/drag/release sequence. It also needs to know, according to our
specification, its width and its color.

There is a vary natural way to achieve this. Let us make our curve class
extend ArrayList<Point>. This class has an add method that will easily add
points to the class. We will also make the curve capable of drawing itself in a
graphical window. So we begin like so. Observe that a curve’s color and width
will never change, so we make these state variables final.

import java.awt.Color;

import java.awt.Point;

import java.util.ArrayList;

public class Curve extends ArrayList<Point>

{

final Color color;

final int width;

}

Next we add a constructor to intilaize the state variables.

import java.awt.Color;

import java.awt.Point;

import java.awt.Graphics;

import java.util.ArrayList;

public class Curve extends ArrayList<Point> //implements Serializable

{

final Color color;

final int width;

public Curve(Color color, int width)

{

super();

this.color = color;

this.width = width;

}

}

Finally, we will place a draw method in our Curve class.

import java.awt.Color;

import java.awt.Point;

11.2. GETTING STARTED ON THE APPLICATION 269

import java.awt.Graphics;

import java.util.ArrayList;

public class Curve extends ArrayList<Point> //implements Serializable

{

final Color color;

final int width;

public Curve(Color color, int width)

{

super();

this.color= color;

this.width = width;

}

public void draw(Graphics g)

{

}

}

We now have a starting point for the Curve class. Place this code in a file
named Curve.java and compile it. The remarks we made in this session about
the mouse will help us to write the mouse event handlers needed to make the
application work.

11.2 Getting Started on the Application

We will begin with a standard shell for a graphical application.

import javax.swing.JFrame;

public class DrawFrame extends JFrame implements Runnable

{

public DrawFrame()

{

super("UniDraw: Untitled");

}

public void run()

{

setSize(600,600);

setVisible(true);

}

public static void main(String[] args)

{

DrawFrame df = new DrawFrame();

javax.swing.SwingUtilities.invokeLater(df);

}

270 CHAPTER 11. THE UNIDRAW CASE STUDY AND SERIALIZATION

Place this code in a file named DrawFrame.java. Compile it and then run it.
You should see a window appear on the screen with a title in the title bar.

Now it is time to think about what we want. We need a space for draw-
ing. To do this, we need to subclass JPanel and then override public void

paintComponent(Graphics g) to tell the drawing area how to render itself.

The drawing area must respond to the pressing and releasing of the mouse,
so it must be a MouseListener. It must respond to the dragging of the mouse,
so it must be a MouseMotionListener.

Communication will flow in ths way. The user will have selected a back-
ground color, a pen color and a width using the menus; these will all be given de-
fault values to start. These values need to be known by the application and will
be determined by menu choices. The panel will need to have access to these val-
ues, so it is a good idea to make the panel an inner class. So our panel will have
to extend JPanel and implement MouseListener and MouseMotionListener.
We will need to implement the methods in the two interfaces so our class will
compile. Now our code will look like this. We will add in the menu items, too,
and make the JMenuBar a state variable so that we can separate the making of
the various menus into separate functions. This will make managing our code
simpler. We placed a paintComponent method in the draw panel so it would
be easy to see that is got placed in the content pane.

import javax.swing.JFrame;

import javax.swing.JPanel;

import javax.swing.JMenu;

import javax.swing.JMenuBar;

import javax.swing.JMenuItem;

import java.awt.event.MouseEvent;

import java.awt.event.MouseListener;

import java.awt.event.MouseMotionListener;

import java.awt.Color;

import java.awt.Graphics;

public class DrawFrame extends JFrame implements Runnable

{

private DrawPanel dp;

private JMenuBar mbar;

public DrawFrame()

{

super("UniDraw: Untitled");

dp = new DrawPanel();

mbar = new JMenuBar();

setJMenuBar(mbar);

}

11.2. GETTING STARTED ON THE APPLICATION 271

public void run()

{

setSize(600,600);

makeFileMenu();

makeColorMenu();

makeBackgroundMenu();

makeWidthMenu();

getContentPane().add(dp);

setVisible(true);

}

public void makeFileMenu()

{

JMenu fileMenu = new JMenu("File");

mbar.add(fileMenu);

}

public void makeColorMenu()

{

JMenu colorMenu = new JMenu("Pen Color");

mbar.add(colorMenu);

}

public void makeBackgroundMenu()

{

JMenu backgroundMenu = new JMenu("Background");

mbar.add(backgroundMenu);

}

public void makeWidthMenu()

{

JMenu widthMenu = new JMenu("Width");

mbar.add(widthMenu);

}

public static void main(String[] args)

{

DrawFrame df = new DrawFrame();

javax.swing.SwingUtilities.invokeLater(df);

}

class DrawPanel extends JPanel

implements MouseListener, MouseMotionListener

{

public DrawPanel()

{

addMouseListener(this);

addMouseMotionListener(this);

}

public void mouseEntered(MouseEvent e){}

272 CHAPTER 11. THE UNIDRAW CASE STUDY AND SERIALIZATION

public void mouseExited(MouseEvent e){}

public void mousePressed(MouseEvent e){}

public void mouseReleased(MouseEvent e){}

public void mouseClicked(MouseEvent e){}

public void mouseMoved(MouseEvent e){}

public void mouseDragged(MouseEvent e){}

@Override

public void paintComponent(Graphics g)

{

g.setColor(new Color(0xabcdef));

g.fillRect(0,0,getWidth(), getHeight());

}

}

}

If you run this you should see the menus in the menu bar and a Carolina blue
square in the content pane.

11.3 Deciding State in the Application

If we think about the user experience, figuring out state should be fairly easy.
Lurking in the future is the issue of what we need to store in a file to reconstitute
our drawing session. This informatoin needs to be included in the state variables.

We will begin by focusing on the mechanism of drawing in the draw panel.
To draw the panel it seems we need to know the color for the background and
the color the pen is now coloring. Hence we create these variables.

private Color background;//color of background

private Color foreground;//color of current curve

We also need to know the width of the pen. We create that variable too.

private int width;

Finally, we must deal with the drawing. We will record it as an array list of
curves. We declare it as follows.

private ArrayList<Curve> drawing;

Once we create these variables, they must be initialized in the constructor.

public DrawFrame()

{

11.3. DECIDING STATE IN THE APPLICATION 273

super("UniDraw: New File");

dp = new DrawPanel();

mbar = new JMenuBar();

setJMenuBar(mbar);

background = new Color(0xabcdef);

foreground = new Color(0x228800);

width = 1;

drawing = new ArrayList<Curve>();

}

When we do this, let us update the paintCompoent method in the DrawPanel

as follows. We want the chosen background color to color the background, not
just 0xabcdef.

@Override

public void paintComponent(Graphics g)

{

g.setColor(background);

g.fillRect(0,0,getWidth(), getHeight());

}

Drawing the drawing is simple. Since the Curve class has a draw method,
we just tell each curve to draw itself using a collections for loop like so.

@Override

public void paintComponent(Graphics g)

{

g.setColor(background);

g.fillRect(0,0,getWidth(), getHeight());

for(Curve c:drawing)

{

c.draw(g);

}

}

Finally add this to your imports

import java.util.ArrayList;

and your progam will compile and run. It, however will not render curves in the
drawing because we have not told the curves how to draw themselves. Our call
to s.draw(g) does nothing. Here is the current state of our DrawFrame class.

import javax.swing.JFrame;

274 CHAPTER 11. THE UNIDRAW CASE STUDY AND SERIALIZATION

import javax.swing.JPanel;

import javax.swing.JMenu;

import javax.swing.JMenuBar;

import javax.swing.JMenuItem;

import java.awt.event.MouseEvent;

import java.awt.event.MouseListener;

import java.awt.event.MouseMotionListener;

import java.awt.Color;

import java.awt.Graphics;

import java.util.ArrayList;

public class DrawFrame extends JFrame implements Runnable

{

private DrawPanel dp;

private JMenuBar mbar;

private Color background;//color of background

private Color foreground;//color of current curve

private int width;

private ArrayList<Curve> drawing;

public DrawFrame()

{

super("UniDraw: New File");

dp = new DrawPanel();

mbar = new JMenuBar();

setJMenuBar(mbar);

setJMenuBar(mbar);

background = new Color(0xabcdef);

foreground = new Color(0x001a57);

width = 1;

drawing = new ArrayList<Curve>();

}

public void run()

{

setSize(600,600);

makeFileMenu();

makeColorMenu();

makeBackgroundMenu();

makeWidthMenu();

getContentPane().add(dp);

setVisible(true);

}

public void makeFileMenu()

{

11.3. DECIDING STATE IN THE APPLICATION 275

JMenu fileMenu = new JMenu("File");

mbar.add(fileMenu);

}

public void makeColorMenu()

{

JMenu colorMenu = new JMenu("Pen Color");

mbar.add(colorMenu);

}

public void makeBackgroundMenu()

{

JMenu backgroundMenu = new JMenu("Background");

mbar.add(backgroundMenu);

}

public void makeWidthMenu()

{

JMenu widthMenu = new JMenu("Width");

mbar.add(widthMenu);

}

public static void main(String[] args)

{

DrawFrame df = new DrawFrame();

javax.swing.SwingUtilities.invokeLater(df);

}

class DrawPanel extends JPanel

implements MouseListener, MouseMotionListener

{

public DrawPanel()

{

addMouseListener(this);

addMouseMotionListener(this);

}

public void mouseEntered(MouseEvent e){}

public void mouseExited(MouseEvent e){}

public void mousePressed(MouseEvent e){}

public void mouseReleased(MouseEvent e){}

public void mouseClicked(MouseEvent e){}

public void mouseMoved(MouseEvent e){}

public void mouseDragged(MouseEvent e){}

@Override

public void paintComponent(Graphics g)

{

g.setColor(new Color(0xabcdef));

g.fillRect(0,0,getWidth(), getHeight());

for(Curve c: drawing)

{

276 CHAPTER 11. THE UNIDRAW CASE STUDY AND SERIALIZATION

c.draw(g);

}

}

}

}

11.4 Getting the Curves to Draw: Getting Curve.java

ready

Open the file Curve.java; here is its current state

import java.awt.Color;

import java.awt.Point;

import java.awt.Graphics;

import java.awt.Graphics2D;

import java.util.ArrayList;

public class Curve extends ArrayList<Point>

{

final Color color;

final int width;

public Curve(Color color, int width)

{

super();

this.color= color;

this.width = width;

}

public void draw(Graphics g)

{

}

}

Notice that the draw method is unimplemented. Here is what we propose to do.
For now we will sidestep the question of controlling width. The default width
is 1; we shall begin by getting curves to draw on the screen.

1. Set the pen color to the color of the curve.

2. Connect each dot in the curve to its successor.

Our curve is an array list. This means it can learn its size by calling size().
We gain access to the points via the method Point get(int index). Let us
declare the following.

11.4. GETTING THE CURVES TO DRAW: GETTING CURVE.JAVA READY277

int n = size();

Now supppose k iterates through the list. We need to connect get(k) to
get(k+1). How do we do this? You must ask who is doing it. The pen has that
job an it is an object of type Graphics, so go to the Graphics API page. Here
is the method detail for lineTo

drawLine

public abstract void drawLine(int x1,

int y1,

int x2,

int y2)

Draws a line, using the current color, between the points (x1, y1) and (x2,

y2) in this graphics context’s coordinate system.

Parameters:

x1 - the first point’s x coordinate.
y1 - the first point’s y coordinate.
x2 - the second point’s x coordinate.
y2 - the second point’s y coordinate.

Now we begin to code our loop to draw the cure. We change the color of the
pen to our color and then we connect each dot to its successor. Note the use of
the n -1. Failure to do that will cause the endpoint to connect to a nonexistent
sucessor. The result of that mistak would be an ugly IndexOutOfBoundsException

being thrown.

public void draw(Graphics g)

{

int n = size();

g.setColor(color);

for(int k = 0; k < n - 1; k++)

{

g.drawLine(get(k).x, get(k).y, get(k+1).x, get(k+1).y);

}

}

Also, notice that there is no provision for connecting points so we had to break
out each coördinate separately. Compile and run now. To finish, we must now
make the panel’s mouse methods work. The action of the mouse is not yet
populating our curves or our drawings.

278 CHAPTER 11. THE UNIDRAW CASE STUDY AND SERIALIZATION

11.5 Getting the Curves to draw: Enabling the
Panel

This is the current state of our DrawPanel.

class DrawPanel extends JPanel

implements MouseListener, MouseMotionListener

{

public DrawPanel()

{

addMouseListener(this);

addMouseMotionListener(this);

}

public void mouseEntered(MouseEvent e){}

public void mouseExited(MouseEvent e){}

public void mousePressed(MouseEvent e){}

public void mouseReleased(MouseEvent e){}

public void mouseClicked(MouseEvent e){}

public void mouseMoved(MouseEvent e){}

public void mouseDragged(MouseEvent e){}

@Override

public void paintComponent(Graphics g)

{

g.setColor(new Color(0xabcdef));

g.fillRect(0,0,getWidth(), getHeight());

for(Curve c: drawing)

{

c.draw(g);

}

}

}

Let’s step through what we had said before about the mouse and carefully
outline what is to happen. Note that we will ignore most of the mouse methods.

1. When the user presses the mouse, create a new curve and add the point
to it where the press occurred. Also, add the curve to the drawing.

2. When the mouse is dragged, accumulate the points where the mouse events
are being fired during the polling process. As each mouse event is fired,
repaint the panel so it stays up to date.

3. When the mouse is released, add the point of release to the curve, and
repaint.

11.5. GETTING THE CURVES TO DRAW: ENABLING THE PANEL 279

This means we will use the methods mousePressed, mouseReleased and mouseDragged.
The rest get ignored. Let us begin with mousePressed. We must make a new
curve and then add the point of the press to it. Remember, a mouse event has
a getPoint() method that does the job.

public void mousePressed(MouseEvent e)

{

Curve c = new Curve(color, width);

c.add(e.getPoint());

drawing.add(c);

}

When the mouse is released, we get the point, add it to the curve, and repaint.

public void mouseReleased(MouseEvent e)

{

c.add(e.getPoint());

repaint();

}

When the mouse is dragged, we get the point and repaint.

public void mouseDragged(MouseEvent e)

{

c.add(e.getPoint());

repaint();

}

Now compile. You will get this.

$ javac *.java

DrawFrame.java:87: error: cannot find symbol

Curve c = new Curve(color, width);

^

symbol: variable color

location: class DrawFrame.DrawPanel

DrawFrame.java:92: error: cannot find symbol

c.add(e.getPoint());

^

symbol: variable c

location: class DrawFrame.DrawPanel

DrawFrame.java:97: error: cannot find symbol

c.add(e.getPoint());

^

symbol: variable c

280 CHAPTER 11. THE UNIDRAW CASE STUDY AND SERIALIZATION

location: class DrawFrame.DrawPanel

3 errors

$

That is ugly indeed. What happened? The variable c we created to point at
the curve is local to mousePressed. Lift it up and make it a state variable and
all will work. Now your class will look like this.

class DrawPanel extends JPanel

implements MouseListener, MouseMotionListener

{

Curve c; // c is now a state varible

public DrawPanel()

{

addMouseListener(this);

addMouseMotionListener(this);

c = null; //initialize

}

//ignored mouse events

public void mouseEntered(MouseEvent e){}

public void mouseExited(MouseEvent e){}

public void mouseClicked(MouseEvent e){}

public void mouseMoved(MouseEvent e){}

//active mouse events

public void mousePressed(MouseEvent e)

{

//remove "Curve" on this first line.

c = new Curve(foreground, width);

c.add(e.getPoint());

drawing.add(c);

}

public void mouseReleased(MouseEvent e)

{

c.add(e.getPoint());

repaint();

}

public void mouseDragged(MouseEvent e)

{

c.add(e.getPoint());

repaint();

}

@Override

public void paintComponent(Graphics g)

{

g.setColor(background);

g.fillRect(0,0,getWidth(), getHeight());

11.6. CREATING AND ENABLING THE COLOR MENUS 281

for(Curve c: drawing)

{

c.draw(g);

}

}

}

11.6 Creating and Enabling the Color Menus

Next we need to get the background and foreground color menus working. We
shall give each menu the Roy G. Biv colors; you will see that other colors caan
be added easily; each new color can be added with a single line of code! We
will also meet the JColorChooser widget, which will allow the user to pick a
custom 24-bit color. It has the addional feature of allowing the user to choose
alpha, or opacity of colors.

Alpha is determined by a numerical scale of 0 through 0xff. The alpha value
of 0 gives a perfectly transparent (non-)color. The alpha value of 0xff gives a
totally opaque color. Intermediate values yield transparaent layers of color. All
colors are completely determined by a 32 bit integer, one byte for red, another
for green, another for blue, and one for alpha.

Now we resume our main thread. We will create innner classes for the pen
color menu items and the background color menu items. We begin with the pen
color menu, making each menu item know its color.

public class PenColorItem extends JMenuItem

{

private final Color color;

public PenColorItem(Color _color, String colorName)

{

super(colorName);

color = _color;

}

}

We will also attach an action listener which will set the pen color to the menu
item’s color. Note that the changing of the pen color does not require an update
of the DrawPanel, so we do not have to repaint the panel.

public class PenColorItem extends JMenuItem

{

private final Color color;

public PenColorItem(Color _color, String colorName)

282 CHAPTER 11. THE UNIDRAW CASE STUDY AND SERIALIZATION

{

super(colorName);

color = _color;

addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

foreground = color;

}

});

}

}

Now add these two lines and compile

import java.awt.event.ActionListener;

import java.awt.event.ActionEvent;

Now let’s build the pen color menu. We go into the pen color menu and
populate it thusly with a red menu item. We will test this before proceeding
with the rest.

public void makeColorMenu()

{

JMenu colorMenu = new JMenu("Color");

mbar.add(colorMenu);

colorMenu.add(new PenColorItem(Color.red, "red"));

}

Drag the mouse in the window and see the red color drawn. We will now
complete Roy G. Biv; note the hex codes used for indigo and violet.

public void makeColorMenu()

{

JMenu colorMenu = new JMenu("Color");

mbar.add(colorMenu);

colorMenu.add(new PenColorItem(Color.red, "red"));

colorMenu.add(new PenColorItem(Color.orange, "orange"));

colorMenu.add(new PenColorItem(Color.yellow, "yellow"));

colorMenu.add(new PenColorItem(Color.green, "green"));

colorMenu.add(new PenColorItem(Color.blue, "blue"));

colorMenu.add(new PenColorItem(new Color(0x2E0854), "indigo"));

colorMenu.add(new PenColorItem(new Color(0x7D26CD), "violet"));

}

We still have 16,777,209 colors to go. How do we get them? We use a
JColorChooser to choose a custom color. We will avail ourselves of its static

11.6. CREATING AND ENABLING THE COLOR MENUS 283

showDialog method to do the job. The constructor needs three arguments, a
JComponent, a message (a string will do), and a default color. We will use our
draw frame as the component, "Choose Pen Color" as our message, and the
foreground color as our default color. By default, the color does not change.
This is in keeping with minimizing user surprise.

Since there is some ad hoc procedure here, we will attach an anonymous inner
class as a listener. The JColorChooser is goof-proof and requires no exception
handling. Begin with an import.

import javax.swing.JColorChooser;

Now add the listener. at the end of the menu.

JMenuItem custom = new JMenuItem("Custom...");

colorMenu.add(custom);

custom.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

foreground = JColorChooser.showDialog(DrawFrame.this,

"Choose Background Color", background);

}

});

Select the new item from the menu and watch the (very cool) color chooser
dialog pop up and offer you all of those choices.

Now wwe show the code for the background color. It is very similar, except
that we must repaint when we change its color.

public void makeBackgroundMenu()

{

JMenu backgroundMenu = new JMenu("Background");

mbar.add(backgroundMenu);

backgroundMenu.add(new bgMenuItem(Color.red, "red"));

backgroundMenu.add(new bgMenuItem(Color.orange, "orange"));

backgroundMenu.add(new bgMenuItem(Color.yellow, "yellow"));

backgroundMenu.add(new bgMenuItem(Color.green, "green"));

backgroundMenu.add(new bgMenuItem(Color.blue, "blue"));

backgroundMenu.add(new bgMenuItem(new Color(0x2E0854), "indigo"));

backgroundMenu.add(new bgMenuItem(new Color(0x7D26CD), "violet"));

JMenuItem custom = new JMenuItem("Custom...");

backgroundMenu.add(custom);

custom.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

284 CHAPTER 11. THE UNIDRAW CASE STUDY AND SERIALIZATION

background = JColorChooser.showDialog(DrawFrame.this,

"Choose Background Color", background);

repaint();

}

});

}

Now we add the needed inner class to drive this.

class BackgroundMenuItem extends JMenuItem

{

final Color color;

public BackgroundMenuItem(Color _color, String colorName)

{

super(colorName);

this.color = _color;

addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

background = color;

dp.repaint();

}

});

}

}

11.7 Consructing the Width Menu

We will construct the width menu and get it to change the state variable width,
but we will also have to look at how curves draw themselves to get proper
performance out of this menu. As of now, our pen only draws a path one pixel
wide.

The inner class needed has one small surprise.

class WidthMenuItem extends JMenuItem

{

final int width;

public WidthMenuItem(int _width)

{

super("" + _width);

width = _width;

addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

11.7. CONSRUCTING THE WIDTH MENU 285

{

DrawFrame.this.width = width;

}

});

}

}

Note the use of DrawFrame.this to specify that we want the ennclosing class’s
width variable to have a new value assigned to it.

We then turn to constructing the menu. Begin by doing this import

import javax.swing.JOptionPane;

Now modify makeWidthMenu() as follows.

public void makeWidthMenu()

{

JMenu widthMenu = new JMenu("Width");

mbar.add(widthMenu);

widthMenu.add(new WidthMenuItem(1));

widthMenu.add(new WidthMenuItem(2));

widthMenu.add(new WidthMenuItem(5));

widthMenu.add(new WidthMenuItem(10));

widthMenu.add(new WidthMenuItem(20));

widthMenu.add(new WidthMenuItem(50));

JMenuItem custom = new JMenuItem("custom...");

widthMenu.add(custom);

custom.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

width = JOptionPane.showInputDialog(DrawFrame.this,

}

}

});

}

Extreme Danger! What happens if the user types in something that is not
a valid integer. Let’s see what happens when the user types in "cows". We get
this horrid thing.

Exception in thread "AWT-EventQueue-0" java.lang.NumberFormatException:

For input string: "cows"

at java.lang.NumberFormatException.forInputString

286 CHAPTER 11. THE UNIDRAW CASE STUDY AND SERIALIZATION

(NumberFormatException.java:65)

at java.lang.Integer.parseInt(Integer.java:492)

at java.lang.Integer.parseInt(Integer.java:527)

at DrawFrame$3.actionPerformed(DrawFrame.java:117)

.

.

(much horrid stuff)

.

.

at java.awt.EventDispatchThread.pumpEvents(EventDispatchThread.java:139)

at java.awt.EventDispatchThread.run(EventDispatchThread.java:97)

It is not acceptable for a user goof to produce this. We see that an unhandled
NumberFormatException has bubbled up and caused havoc. We remedy this
by placing an appropriate catch-try sequence in the listener as follows.

custom.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

String buf = JOptionPane.showInputDialog(DrawFrame.this,

"Specify width");

try

{

width = Integer.parseInt(buf);

}

catch(NumberFormatException ex)

{

JOptionPane.showMessageDialog(DrawFrame.this,

"String \"" + buf + "\" is not an integer.");

}

}

});

No action will be taken in the draw panel, but the user will be alerted to his
mistake. The menu does what it is supposed to, but we still have no control of
the pen’s actual width. For this, we must learn about a new and helpful class.

11.8 Graphics2D

If you scour the page for java.awt.Graphics, you will find no facility for con-
trolling the pen’s width. So, when we get desperate what do we do? We look in
the ancestor classes. These are barren of anything useful. Where now? We look

11.8. GRAPHICS2D 287

in some child classes. The Graphics class has child class Graphics 2D, which
will help solve our problem.

If you scroll down on the API page, you will see a section entitled “Default
Rendering Attributes. It says this.

Paint

The color of the Component.
Font

The Font of the Component.
Stroke

A square pen with a linewidth of 1, no dashing, miter segment
joins and square end caps.

Transform

The getDefaultTransform for the GraphicsConfiguration of the
Component.

Composite

The AlphaComposite.SRC OVER rule.
Clip

No rendering Clip, the output is clipped to the Component.

What is important to us is that the stroke of the pen has a line width of 1.
It also says there are “miter segment joins” and “square end caps.” We also see
that there is a setStroke method. Here is its method detail.

public abstract void setStroke(Stroke s)

Sets the Stroke for the Graphics2D context.
Parameters:

- the Stroke object to be used to stroke a Shape during the
rendering process
See Also:

BasicStroke, getStroke()

We see that the classes Stroke and BasicStroke might also be of impor-
tance. We learn that Stroke is an interface, and that BasicStroke is a class
that implements it. We can create a BasicStroke and use the setStroke

method for the Graphics2D pen to obtain a pen whose with is larger than 1.

Inside of a Graphics lurks a Graphics2D You are guaranteed to be able to
make the cast

(Graphics2D) g

if g is a Graphics object. You always have access to a Graphics2D if you are
rendering inside of a Swing object. This is the type of object the Swing paint
engine uses.

288 CHAPTER 11. THE UNIDRAW CASE STUDY AND SERIALIZATION

Now go to the BasicStroke constructor list. There is a constructor that
will accept a float, and therefore which accepts our width. We will now use
this to upgrade the draw method of the Curve class. We begin by inserting the
needed cast.

public void draw(Graphics g)

{

Graphics2D g2d = (Graphics2D) g;

g2d.setColor(color);

int n = size();

for(int k = 0; k < n - 1; k++)

{

g2d.drawLine(get(k).x, get(k).y, get(k+1).x, get(k+1).y);

}

}

Compile and run. You will see that nothing has changed. We will now call g2d’s
setStroke method and feed it a BasicStroke with width.

public void draw(Graphics g)

{

Graphics2D g2d = (Graphics2D) g;

g2d.setStroke(new BasicStroke(width));

g2d.setColor(color);

int n = size();

for(int k = 0; k < n - 1; k++)

{

g2d.drawLine(get(k).x, get(k).y, get(k+1).x, get(k+1).y);

}

}

Now let’s draw in the window. Choose a width of 20. The result looks like this.

11.8. GRAPHICS2D 289

The fat curve looks as if it were painted by watery, spattery paint. You can
see where we drew a dot; it shows a square pen tip. We are not happy with this
result and need to improve it.

How do we improve its appearance? This is where we need to look at the
static constants in the BasicStroke class.

BasicStroke.CAP BUTT This ends a path with a semicircle.
BasicStroke.CAP ROUND This ends a path with a semicircle.
BasicStroke.CAP SQUARE This ends a path with a half a square.
BasicStroke.JOIN SQUARE This joins path segments by connecting the outer

corners of their wide outlines wiht a straight segment.
BasicStroke.JOIN MITER This joins path segments by extending their outside

edges until they meet.
BasicStroke.JOIN ROUND This joins path segments by rounding off the corner

at a radius half of line width.

Use them in the constructor BasicStroke(float width, int cap, int join).
You will select one CAP constant and one JOIN constant. We will use BasicStroke.CAP ROUND

290 CHAPTER 11. THE UNIDRAW CASE STUDY AND SERIALIZATION

and BasicStroke.JOIN ROUND. Here is the new appearance for our draw method
in the Curve class.

public void draw(Graphics g)

{

Graphics2D g2d = (Graphics2D) g;

g2d.setColor(color);

int n = size();

g2d.setStroke(new BasicStroke(width, BasicStroke.CAP_ROUND,

BasicStroke.JOIN_ROUND));

for(int k = 0; k < n - 1; k++)

{

g2d.drawLine(get(k).x, get(k).y, get(k+1).x, get(k+1).y);

}

}

Now run again and compile. Notice the spiffy appearance of the fat curve. Also
notice that clicking in a spot yields a circular blob of Dook-blue ink. The use
of the cap and join parameters cleans things up and gets rid of the splatter.

11.8. GRAPHICS2D 291

Let us now collect the current state of the files. First, Curve.java.

import java.awt.Color;

import java.awt.Point;

import java.awt.Graphics;

import java.awt.Graphics2D;

import java.awt.BasicStroke;

import java.util.ArrayList;

public class Curve extends ArrayList<Point>

{

final Color color;

final int width;

public Curve(Color color, int width)

{

super();

this.color= color;

this.width = width;

}

public void draw(Graphics g)

{

Graphics2D g2d = (Graphics2D) g;

g2d.setColor(color);

int n = size();

g2d.setStroke(new BasicStroke(width, BasicStroke.CAP_ROUND,

BasicStroke.JOIN_ROUND));

for(int k = 0; k < n - 1; k++)

{

g2d.drawLine(get(k).x, get(k).y, get(k+1).x, get(k+1).y);

}

}

}

Next, DrawFrame.java.

import javax.swing.JFrame;

import javax.swing.JPanel;

import javax.swing.JMenu;

import javax.swing.JMenuBar;

import javax.swing.JMenuItem;

import javax.swing.JColorChooser;

import javax.swing.JOptionPane;

import java.awt.event.MouseEvent;

import java.awt.event.MouseListener;

292 CHAPTER 11. THE UNIDRAW CASE STUDY AND SERIALIZATION

import java.awt.event.MouseMotionListener;

import java.awt.event.ActionListener;

import java.awt.event.ActionEvent;

import java.awt.Color;

import java.awt.Graphics;

import java.util.ArrayList;

public class DrawFrame extends JFrame implements Runnable

{

private DrawPanel dp;

private JMenuBar mbar;

private Color background;//color of background

private Color foreground;//color of current curve

private int width;

private ArrayList<Curve> drawing;

public DrawFrame()

{

super("UniDraw: New File");

dp = new DrawPanel();

mbar = new JMenuBar();

setJMenuBar(mbar);

setJMenuBar(mbar);

background = new Color(0xabcdef);

foreground = new Color(0x001a57);

width = 1;

drawing = new ArrayList<Curve>();

}

public void run()

{

setSize(600,600);

makeFileMenu();

makeColorMenu();

makeBackgroundMenu();

makeWidthMenu();

getContentPane().add(dp);

setVisible(true);

}

public void makeFileMenu()

{

JMenu fileMenu = new JMenu("File");

mbar.add(fileMenu);

}

11.8. GRAPHICS2D 293

public void makeColorMenu()

{

JMenu colorMenu = new JMenu("Color");

mbar.add(colorMenu);

colorMenu.add(new PenColorItem(Color.red, "red"));

colorMenu.add(new PenColorItem(Color.orange, "orange"));

colorMenu.add(new PenColorItem(Color.yellow, "yellow"));

colorMenu.add(new PenColorItem(Color.green, "green"));

colorMenu.add(new PenColorItem(Color.blue, "blue"));

colorMenu.add(new PenColorItem(new Color(0x2E0854), "indigo"));

colorMenu.add(new PenColorItem(new Color(0x7D26CD), "violet"));

JMenuItem custom = new JMenuItem("Custom...");

colorMenu.add(custom);

custom.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

foreground = JColorChooser.showDialog(DrawFrame.this,

"Choose Background Color", foreground);

}

});

}

public void makeBackgroundMenu()

{

JMenu backgroundMenu = new JMenu("Background");

mbar.add(backgroundMenu);

backgroundMenu.add(new BackgroundMenuItem(Color.red, "red"));

backgroundMenu.add(new BackgroundMenuItem(Color.orange, "orange"));

backgroundMenu.add(new BackgroundMenuItem(Color.yellow, "yellow"));

backgroundMenu.add(new BackgroundMenuItem(Color.green, "green"));

backgroundMenu.add(new BackgroundMenuItem(Color.blue, "blue"));

backgroundMenu.add(new BackgroundMenuItem(new Color(0x2E0854), "indigo"));

backgroundMenu.add(new BackgroundMenuItem(new Color(0x7D26CD), "violet"));

JMenuItem custom = new JMenuItem("Custom...");

backgroundMenu.add(custom);

custom.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

background = JColorChooser.showDialog(DrawFrame.this,

"Choose Background Color", background);

repaint();

}

});

}

public void makeWidthMenu()

{

JMenu widthMenu = new JMenu("Width");

294 CHAPTER 11. THE UNIDRAW CASE STUDY AND SERIALIZATION

mbar.add(widthMenu);

widthMenu.add(new WidthMenuItem(1));

widthMenu.add(new WidthMenuItem(2));

widthMenu.add(new WidthMenuItem(5));

widthMenu.add(new WidthMenuItem(10));

widthMenu.add(new WidthMenuItem(20));

widthMenu.add(new WidthMenuItem(50));

JMenuItem custom = new JMenuItem("custom...");

widthMenu.add(custom);

custom.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

String buf = JOptionPane.showInputDialog(DrawFrame.this,

"Specify width");

try

{

width = Integer.parseInt(buf);

}

catch(NumberFormatException ex)

{

JOptionPane.showMessageDialog(DrawFrame.this,

"String \"" + buf + "\" is not an integer.");

}

}

});

}

public static void main(String[] args)

{

DrawFrame df = new DrawFrame();

javax.swing.SwingUtilities.invokeLater(df);

}

/**

*

* Width Menu Items

*

**/

class WidthMenuItem extends JMenuItem

{

final int width;

public WidthMenuItem(int _width)

{

super("" + _width);

width = _width;

addActionListener(new ActionListener(){

11.8. GRAPHICS2D 295

public void actionPerformed(ActionEvent e)

{

DrawFrame.this.width = width;

}

});

}

}

/**

*

* Color Menu Items

*

**/

public class PenColorItem extends JMenuItem

{

private final Color color;

public PenColorItem(Color _color, String colorName)

{

super(colorName);

color = _color;

addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

foreground = color;

}

});

}

}

class BackgroundMenuItem extends JMenuItem

{

final Color color;

public BackgroundMenuItem(Color _color, String colorName)

{

super(colorName);

this.color = _color;

addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

background = color;

dp.repaint();

}

});

}

}

/**

296 CHAPTER 11. THE UNIDRAW CASE STUDY AND SERIALIZATION

*

* The Draw Panel

*

**/

class DrawPanel extends JPanel

implements MouseListener, MouseMotionListener

{

Curve c; //now a state varible

public DrawPanel()

{

addMouseListener(this);

addMouseMotionListener(this);

c = null; //initialize

}

//ignored mouse events

public void mouseEntered(MouseEvent e){}

public void mouseExited(MouseEvent e){}

public void mouseClicked(MouseEvent e){}

public void mouseMoved(MouseEvent e){}

//active mouse events

public void mousePressed(MouseEvent e)

{

//remove "Curve" on this first line.

c = new Curve(foreground, width);

c.add(e.getPoint());

drawing.add(c);

}

public void mouseReleased(MouseEvent e)

{

c.add(e.getPoint());

repaint();

}

public void mouseDragged(MouseEvent e)

{

c.add(e.getPoint());

repaint();

}

@Override

public void paintComponent(Graphics g)

{

g.setColor(background);

g.fillRect(0,0,getWidth(), getHeight());

for(Curve c: drawing)

{

c.draw(g);

}

11.9. FILEIO FOR OBJECTS AND SERIALIZATION 297

}

}

}

Programming Exercises

1. Experiment with the other cap and join costants to observe the effects
they cause on your drawing.

11.9 FileIO for Objects and Serialization

Now we well learn how to save our drawings in a file. This will involve several
new classes, as well as the familar File class, which represents locations in our
file system. We will now place two items in our File menu, open and save.
Choosing the open menu item will open a drawing file and display it to the
screen. Note that there are a lot of parallels to the NitPad case study here.

Let us begin by adding some features to our code. First of all, we will add
a state variable to the DrawFrame class.

private File currentFile;

You also will need this import

import java.io.File;

In the constructor, do this

currentFile = new File("test.unid"); //TODO set this to null when menus work

We will begin by getting objects into and out of this fixed file test.unid. Later,
we will get the full File menu working we will choose the current file from the
file system using the JFileChooser widget.

FileIO will be controlled by listeners attached to items in the File menu.
Let us begin with the process of saving a drawing.

This is done by creating an ObjectOutputStream. You can do this as follows.

ObjectOutputStream oos = new ObjectOutputStream(

new FileOutputStream(currentFile);

This process, if you check the constructor, can throw an IOException. Remem-
ber, we will adhere to the convention that we should handle any FileNotFoundException

in our exception handling code.

298 CHAPTER 11. THE UNIDRAW CASE STUDY AND SERIALIZATION

You will need the following imports.

import java.io.FileNotFoundException;

import java.io.IOException;

import java.io.ObjectOutputStream;

import java.io.FileOutputStream;

What can be stored via an ObjectOutputStream? You can store any primi-
tive type, or any object type that implements the interface java.io.Serializable.
This makes sense, since the process of storing an object in a file in this manner
is called serialization. The process reduces the object to its bytes and packs it
in a non-human-readable binary format.Go to the API page and look up this
interface. You will see that this is a “bundler interface” that has no required
methods. If you attempt to serialize an object that does not implement this
interface, you will be the unhappy recipient of a NonserializableExcepton.
This is not a runtime exception, but it is a subclass of IOException. We can
ferret these out by using the printStackTrace() method for IOExceptions.

Here we see the current state of makeFileMenu.

public void makeFileMenu()

{

JMenu fileMenu = new JMenu("File");

mbar.add(fileMenu);

}

Now let us add the save menu item and attach an action listener shell to it.
You can put statemnt to print some string to stdout to test that it works. Run
that, test it, and then discard it.

public void makeFileMenu()

{

JMenu fileMenu = new JMenu("File");

mbar.add(fileMenu);

JMenuItem saveItem = new JMenuItem("Save");

fileMenu.add(saveItem);

saveItem.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

saveWindowToCurrentFile();

}

});

}

Recalling what we know from NitPad, we know that there will be a need
to write a file from several places in the menu. Therefore we will calll a helper

11.9. FILEIO FOR OBJECTS AND SERIALIZATION 299

method, private void saveWindowToCurrentFile(). You should make an
empty shell for this method and compile. If you run the program, you will see
a save item in the File menu.

We will now take care of the implementing our helper method. To get started
on this, we open an object output stream to the current file. We will also set
up the exception-handling code.

private void saveWindowToCurrentFile()

{

try

{

ObjectOutputStream oos = new ObjectOutputStream(

new FileOutputStream(currentFile));

}

catch(FileNotFoundException ex)

{

System.err.printf("File %s not found\n",

currentFile.getAbsolutePath());

}

catch(IOException ex)

{

ex.printStackTrace();

}

}

Now what do we save? Our rule is Stuff the State! Our state variables need
to contain all information necessary to reconstruct the fine work of art we are
creating. We are going to stuff the state of our app in the file. However, we do
not need all of the elements to do this. For example we do not need the draw
panel or the current file.

What methods are pertinent. You can write any primitive type. For exam-
ple,

oos.writeInt(5);

will write the integer 5 to the object output stream. You can look in the API
guide page to see all of the methods for writing primitive data. Any object you
write must implement Serializable. If the object is a container, such as an
ArrayList<T>, the type T of the entries, must also be serializable. Remember,
if an ancestor class implements Serializable, you are in business.

We now look at all of our state variables.

private DrawPanel dp;

300 CHAPTER 11. THE UNIDRAW CASE STUDY AND SERIALIZATION

private JMenuBar mbar;

private Color background;//color of background

private Color foreground;//color of current curve

private int width;

private ArrayList<Curve> drawing;

private File currentFile;

We ask, “What is needed ot reconstruct our drawing?” We will not need
the draw panel or the menu bar. We ditch them. We do need foreground,
background and width to save the state of our session properly. Since Color im-
plements Serializable, we are OK here. You can see this on the java.awt.Color
page.

What abut the drawing? It is an ArrayList which is serializable. What
about the entries? These are of type Curve, which is a child class of ArrayList<Point>.
Finally, note that java.awt.Point implements Serializable, so we are in the
clear. We can safely deflate all of our objects.

Here is our implementation.

private void saveWindowToCurrentFile()

{

try

{

ObjectOutputStream oos = new ObjectOutputStream(

new FileOutputStream(currentFile));

oos.writeObject(background);

oos.writeObject(foreground);

oos.writeInt(width);

oos.writeObject(drawing);

}

catch(FileNotFoundException ex)

{

System.err.printf("File %s not found\n",

currentFile.getAbsolutePath());

}

catch(IOException ex)

{

ex.printStackTrace();

}

}

Now run the app, make a drawing and save it. Change colors, use curves of
various widths and fool around. Remember its appearance, because will will
resurrect it. Then look at the file’s properties. In Linux, we see this

$ ls -l test.unid

11.9. FILEIO FOR OBJECTS AND SERIALIZATION 301

-rw-rw-r-- 1 morrison morrison 774 Jan 22 19:59 test.unid

$

Our drawing occupies 774 bytes. If you open it with a text editor, you will see
gibberish. So now let’s see if we can resurrect our drawing. You can do this in
Windoze by right clicking to see file properties.

Let us begin by creating an open item in the menu and attaching an action
listener to it. We will create a helper method named private void readFromCurrentFile()

to do the dirty work.

public void makeFileMenu()

{

JMenu fileMenu = new JMenu("File");

mbar.add(fileMenu);

JMenuItem saveItem = new JMenuItem("Save");

fileMenu.add(saveItem);

saveItem.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

saveWindowToCurrentFile();

}

});

JMenuItem openItem = new JMenuItem("Open");

fileMenu.add(openItem);

openItem.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e)

{

readFromCurrentFile();

}

});

}

Now we are going to resurrect our drawing. You will not be surprised to
learn we use an ObjectInputStream to do it. When you serialize, you have a
responsibility. You must

• Retrieve the items you stored in the order in which you stored them

• Remember their types. All of this information is lost.

• If you used writeObject, you must use readObject() and cast to the
correct type. If you used writeInt, you use readInt() to retrieve the
integer. This same rule applies for all primitive types.

• Handle a ClassCastException. This is not a runtime exception but it is
most likely a programmer error. Print a stack trace in this catch block
to see where the error occurred.

302 CHAPTER 11. THE UNIDRAW CASE STUDY AND SERIALIZATION

Suitably warned, we sally forth with the customary insouciance.

private void readFromCurrentFile()

{

try

{

ObjectInputStream ois = new ObjectInputStream(

new FileInputStream(currentFile));

background = (Color) ois.readObject();

foreground = (Color) ois.readObject();

width = ois.readInt();

drawing = (ArrayList<Curve>) ois.readObject();

ois.close();

dp.repaint();

}

catch(FileNotFoundException ex)

{

System.err.printf("File %s not found\n",

currentFile.getAbsolutePath());

}

catch(IOException ex)

{

ex.printStackTrace();

}

catch(ClassNotFoundException ex)

{

ex.printStackTrace();

}

}

We have met our responsibilities. Now compile, select the open menu item and
your drawing will reappear!

11.10 Making the File Menu

We need to design the file menu with care. Remember: Data loss to the user
is a cardinal sin! We must be very careful to think through the user experience
very carefully to get this complex process right. So let us skech out each item’s
action prior to coding and determine what helper methods are needed.

New If you have a drawing in the window already, we need to offer to save
it. If the user says yes, save the file. In any event, blank the window and set
everything to default.

11.10. MAKING THE FILE MENU 303

open If you have a drawing in the window already, we need to offer to save
it. If the user says yes, save the file. In any event, have the user select a file to
open and then place it in the window.

Save If the current file is null, have the user choose a file. If the file is saved,
do nothing. If not, write the contents of the window to the current file.

Save As... This will be a menu. It will offer two menu items: to save as a
drawing, a .jpeg or a .png.

Save As → drawing Fire up a file chooser to choose where to save. Then, if
the user opts to save, save it there.

Save As → JPEG Fire up a file chooser to choose where to save. Then, if
the user opts to save it, save it as a .jpeg

Quit Offer to save any window conents, then quit. Cancel if the user declines
when asked if he really wants to quit.

Now we examine these menu items. We should write helper methods that
are atomic, i.e. these methods accomplish a single task.

304 CHAPTER 11. THE UNIDRAW CASE STUDY AND SERIALIZATION

Chapter 12

Collections: from the Inside

12.0 Data Strucures

Recall that a data structure is a container object that stores related objects
under a single name. These structures differ in the way they access, manage,
acquire, and present data. We have seen them before. Let’s round up a few
examples from the Python and Java worlds.

Python has these key data structures.

1. list This data structure is a mutable heterogeneous sequence type. It
holds a sequence of objects of any type. It uses the [] operator for access
to items and to sublists.

2. tuple This data structure is an immutable version of the list data struc-
ture.

3. dict This data structure creates an associative table of key-value pairs.
The keys and values must be hashable objects in Python.

So far, we have seen these in Java.

1. ArrayList<E> This data structure is a mutable homogeneous sequence
type. It holds a sequence of objects type E. It uses the get() method for
access to items.

2. arrays These data structures are fixed-sized homogenous mutable con-
tainers. Access to entries is given by the [] operator. list data structure.

We are now going to focus on data structures in Java. We will learn about
the Java Collections Framework. But first, we will learn about data structures
from the inside by creating a simple data structure ourselves, the stack.

305

306 CHAPTER 12. COLLECTIONS: FROM THE INSIDE

12.1 What is a Stack?

Think about a stack of books; we will be limited to interacting with and seeing
the top book on the stack only. This idea should be familiar from your early
encounters with functions. When a function in Python is called, its stack frame
that contains its parameters and local variables is placed on the top of the call
stack. When the function returns, its frame is removed from the top of the call
stack and it is destroyed.

We are going to create a stack via two means. In one, we will use an array
and in the other we will create a linked data structure. Both of these will grow
dynamically to accomodate a large number of elements without the user having
do deal with any resizing operation.

12.2 The Link Class

Our first version of a class will be based upon a objects called links; each link
will contain a datum and a pointer to the next link. Our stack will have a
bottom link (which will point at null). Each link will point down at the next
lower item on the stack.

We begin by creating a shell for the class. Notice the use of the type param-
eter, since we are creating a generic class.

public class Stack<E>

{

}

We won’t be able to do much until we build the link class. So we begin on
that. Each link holds an element of type E and a pointer to the next link.

public class Stack<E>

{

Link<E> top;

}

class Link<E>

{

private E datum;

private Link<E> next;

}

Now we produce two constructors for the link class to initialize the state vari-
ables.

12.2. THE LINK CLASS 307

class Link<E>

{

private E datum;

private Link<E> next;

public Link(E _datum, Link<E> _next)

{

datum = _datum;

next = _next;

}

public Link(E _datum)

{

this(_datum, null);

}

}

Finally, we make getters and setters to manipulate the state of a link.

class Link<E>

{

private E datum;

private Link<E> next;

public Link(E _datum, Link<E> _next)

{

datum = _datum;

next = _next;

}

public Link(E _datum)

{

this(_datum, null);

}

public E getDatum()

{

return datum;

}

public Link<E> getNext()

{

return next;

}

public boolean hasNext()

{

return next != null;

}

public void setNext(Link<E> newNext)

{

next = newNext;

}

308 CHAPTER 12. COLLECTIONS: FROM THE INSIDE

public void setDatum(E newDatum)

{

datum = newDatum;

}

}

12.3 The Stack Interface

We will now determine what methods our stack data structure will have and
how they will work. Both stack data structures we create will have exactly this
interface.

• boolean isEmpty() This evaluates to true if the stack has no elements
in it.

• E peek() This returns the top item on the stack. Notice, it returns the
datum, not the link containing it. We throw an EmptyStackException if
the client attempt to peek on an empty stack.

• E pop() This returns the top item on the stack and remove it. This entails
getting rid of the link at the top. We throw an EmptyStackException if
the client attempt to pop from an empty stack.

• void push(T newItem) This wraps the new item in a link and places it
on the top of the stack.

• void seymour() This will print the stack from top to bottom.

Let us begin by putting in appropriate method stubs. Remember, we want
our program to stay in an condition in which it compiles. By doing this, we
flesh out our class’s interface. Note the state variable top that will point to the
top link on the stack.

public class Stack<E>

{

Link<E> top;

public Stack()

{

}

public void push(E newItem)

{

}

public E pop()

{

return null;

}

12.4. IMPLEMENTING THE LINK-BASED STACK 309

public E peek()

{

return null;

}

public boolean isEmpty()

{

return false;

}

public int size()

{

return -3;

}

public void seymour()

{

}

}

When we combine this and the link class in the file Stack.java, we have the
shell of our program.

12.4 Implementing the Link-Based Stack

Now let us turn our attention to our skeleton stack class. It needs to know
about the top of the stack, so we insert the state variable

Link<E> top;

to point at the top of the stack. Let us agree that when the stack is empty, we
will have top set to null. We also give our class an appropriate constructor.

public Stack()

{

top = null;

}

Our stacks will be born empty.

We now know when a stack is empty; this is so when top == null. We now
implement the method isEmpty()

public boolean isEmpty()

{

return top==null;

}

310 CHAPTER 12. COLLECTIONS: FROM THE INSIDE

Next, we will work on the push method. This method takes an object
newItem of type E. Our stack does not accept bare items; these items must be
clothed in a link. So we begin by doing that.

public void push(E newItem)

{

Link<E> newLink = new Link<E>(newItem);

}

If the stack is empty, we just make top point at it and we are done. Adding
that code, we have the following. Note that we blocked in the else block. Also
observe that newLink’s getNext() returns null, indicating that it is at the
bottom of the stack.

public void push(E newItem)

{

Link<E> newLink = new Link<E>(newItem);

if(isEmpty())

{

top = newLink;

}

else

{

}

}

Now we concern ourselves with adding to a nonempty stack. When we are
done, top must point at the newLink and newLink must have as its next link
the the rest of the stack.

As of now, newLink’s next link is null. We now do this

newLink.setNext(top);

Ths ensures that newLink’s next link is the existing stack. To finish, set

top = newLink;

and now top is pointing at the new link, which has the previous members of
the stack as its successors. We now insert this code and we have push.

public void push(E newItem)

{

Link<E> newLink = new Link<E>(newItem);

if(isEmpty())

12.4. IMPLEMENTING THE LINK-BASED STACK 311

{

top = newLink;

}

else

{

newLink.setNext(top);

top = newLink;

}

}

What is needed next is for us to be able to see that stuff is being pushed
onto the stack. The need to implement seymour arises. Here is the idea. Start
at the top. If it is null, we do nothing. Otherwise we get the datum, print it,
and go to the next link. We stop when we encounter a null link. Notice that
we make a copy of top to iterate with; we do not want top itself iterating to
the bottom and losing our stack. This is an accessor method and should not
change the state of the stack.

public void seymour()

{

Link<E> foo = top;

while(foo != null)

{

System.out.println(foo.getDatum());

foo = foo.getNext();

}

}

Let us now create a driver class to test our Stack class. Create this program,
Driver.java.

public class Driver

{

public static void main(String [] args)

{

System.out.println("Stack Class Driver");

Stack<String> s = new Stack<String>();

s.push("a");

s.push("b");

s.push("c");

s.push("d");

s.seymour();

}

}

You shoud see this result.

312 CHAPTER 12. COLLECTIONS: FROM THE INSIDE

d

C

b

a

The items are “backwards” because a stack is a LIFO (last in first out) data
structure.

Now let us peek. If a stack is empty, and you peek, this is likely a programmer
goof. If a hapless client attepts to peek at an empty stack, we shall hand
him an EmptyStackException for his troubles. Next time he will have the
manners to us isEmpty() for its intended purpose. This exception we will be
throwing will be a runtime exception. We need a new class. Create the file
EmptyStackException.java and place this code in it.

public class EmptyStackException extends RuntimeException

{

}

We now begin our peek method.

public E peek() throws EmptyStackException

{

if(isEmpty())

{

throw new EmptyStackException();

}

return null;

}

Peeking is easy. If the stack is not null, you just get the top’s datum. We insert
this in the return statement.

public E peek() throws EmptyStackException

{

if(isEmpty())

{

throw new EmptyStackException();

}

return top.getDatum();

}

Once we get peek, it is staighforward to get pop. We will throw an excepton
if we see an attempt to pop from an empty stack. Then we will save the top
element, remove it, and then finally return it.

12.4. IMPLEMENTING THE LINK-BASED STACK 313

public E pop() throws EmptyStackException

{

if(isEmpty())

{

throw new EmptyStackException();

}

E out = top.getDatum();//fetch top item

top = top.getNext(); //amputate

return out;//return top item

}

Now let us add a little torture test in a driver class to see if this works.

public class Driver

{

public static void main(String[] args)

{

Stack<String> s = new Stack<String>();

for(int k = 0; k < 10; k++)

{

s.push("" + k);

}

s.seymour();

for(int k = 0; k < 10; k++)

{

s.pop();

}

if(s.isEmpty())

System.out.println("PASS");

}

}

Now run.

morrison@odonata:~/book$ java Driver

9

8

7

6

5

4

3

2

1

0

PASS

314 CHAPTER 12. COLLECTIONS: FROM THE INSIDE

Et Voila!

12.5 Iteraor and Iterable in the Link-Based Stack

Wouldn’t it be cool if you could use a collections for loop on a stack? It would
be helpful if we could create our own data structure and have a for loop walk
through them cleanly. This feature exists for the standard ArrayList. Why
not for our custom structures.

To this requires two simple steps. Your class must implement the interface
Iterable<E>. We look in the API guide and we see that one method is reqired.

public Iterator<E> iterator();

Now we ask, “What is an iterator?” We look in the API guide and see that, it
too, is an interface. This interface has three methods.

public Iterator<E>

{

public E next();

public boolean hasNext();

public E remove();

}

It is an accepted standard that remove() is optional. We can render it unap-
petizing by throwing an UnsupportedOperationException(). That is the tack
we shall take here.

To get our stack class ready we modify its header to read

public class Stack<E> implements Iterable<E>

We can keep it compiling by adding the iterator method as follows.

public iterator()

{

return null;

}

We will implement our iterator as an inner class. We begin by making a hol-
low class with the required methods. While we are here, let us also adminisster
the horse-kick if the hapless client calls remove().

public class Navigator implements Iterator<E>

12.5. ITERAOR AND ITERABLE IN THE LINK-BASED STACK 315

{

private Link<E> nav;

public Navigator()

{

}

public void remove()

{

throw new UnsupportedOperationException();

}

public boolean hasNext()

{

}

public E next()

{

}

}

Place this inner class inside of your Stack class and it will compile. You will
need to add the import statement

import java.util.Iterator;

The job of nav is to navigate through our stack. It is easy to write hasNext()

public boolean hasNext()

{

return nav != null;

}

When writing next(), we must return the datum then move to the next
node. It goes like this.

public E next()

{

E out = nav.getDatum();

nav = nav.getNext();

return out;

}

You now have your iteraor. Now return to the iterator method for the enclos-
ing Stack class and you have

public Iterator<E> iterator()

{

return new Navigator();

}

316 CHAPTER 12. COLLECTIONS: FROM THE INSIDE

We now show the entire program; note that we added a recursive method
for computing the size of the stack.

import java.util.Iterator;

public class Stack<E> implements Iterable<E>

{

Link<E> top;

public Stack()

{

top = null;

}

public void push(E newItem)

{

Link<E> newLink = new Link<E>(newItem);

if(isEmpty())

{

top = newLink;

}

else

{

newLink.setNext(top);

top = newLink;

}

}

public E pop() throws EmptyStackException

{

if(isEmpty())

{

throw new EmptyStackException();

}

E out = top.getDatum();//fetch top item

top = top.getNext(); //amputate

return out;//return top item

}

public E peek() throws EmptyStackException

{

if(isEmpty())

{

throw new EmptyStackException();

}

return top.getDatum();

}

public boolean isEmpty()

{

return top==null;

12.5. ITERAOR AND ITERABLE IN THE LINK-BASED STACK 317

}

public int size()

{

return sizeHelper(top);

}

public int sizeHelper(Link<E> s)

{

if(s==null)

return 0;

return 1 + sizeHelper(s.getNext());

}

public void seymour()

{

Link<E> foo = top;

while(foo != null)

{

System.out.println(foo.getDatum());

foo = foo.getNext();

}

}

/**************************Public Iteration***********************/

public Iterator<E> iterator()

{

return new Navigator();

}

class Navigator implements Iterator<E>

{

Link<E> nav;

public Navigator()

{

nav = top;

}

public void remove()

{

throw new UnsupportedOperationException();

}

public boolean hasNext()

{

return nav != null;

}

public E next()

{

E out = nav.getDatum();

nav = nav.getNext();

return out;

318 CHAPTER 12. COLLECTIONS: FROM THE INSIDE

}

}

}

We now have a full-featured link-based stack class. Now let’s test the for loop

public class Driver

{

public static void main(String[] args)

{

Stack<String> s = new Stack<String>();

for(int k = 0; k < 10; k++)

{

s.push("" + k);

}

System.out.println("collections for loop");

for(String q: s)

{

System.out.println(q);

}

System.out.println("Seymour");

s.seymour();

for(int k = 0; k < 10; k++)

{

s.pop();

}

if(s.isEmpty())

System.out.println("PASS");

}

}

Running this we see

$ java Driver

collections for loop

9

8

7

6

5

4

3

2

1

0

12.6. AN ARRAY BASED STACK 319

Seymour

9

8

7

6

5

4

3

2

1

0

PASS

$

12.6 An Array Based Stack

Recall the interface we prescribed for a stack.

import java.util.Iterator;

public class AStack<E> implements Iterable<E>

{

public AStack()

{

}

public void push(E newItem)

{

}

public E pop()

{

return null;

}

public E peek()

{

return null;

}

public boolean isEmpty()

{

return false;

}

public int size()

{

return -3;

}

320 CHAPTER 12. COLLECTIONS: FROM THE INSIDE

public void seymour()

{

}

public Iterator<E> iterator()

{

return null;

}

}

We are going to create a stack class for this interface, but instead of using links,
we will use an array to hold our elements. This presents a challenge. We must
beware of overflowing the array and we must resize it when it gets nearly full.
Along the way, we will have an encounter with the phenomenon of type erasure,
which will render our challenge more difficult. Nevertheless, we shal circumvent
this will a clever arabesque. Now strap on your seat belt.

Let us begin by creating two integer state variables. We will use capacity

to refer to the size of the private array we shall create. We will create the private
variable size to point just above the top of the stack. So, when the stack is
empty, we make size 0. Now we have a some reasonable state variables, so we
will create this and make the constructor.

private int capacity;

private int size;

private E[] entries;

public AStack(int _capacity)

{

capacity = _capacity;

if(capacity < 1)

throw new IllegalArgumentException();

entries = new E[capacity];

size = 0;

}

public AStack()

{

this(10);

}

Notice we created two constructors. The default gives you an initial capacity of
10. This imitates the action of Java’s array list type. The other allows you to
specify a capacty of any positive integer size. We also burn the inept with an
exception when they do something stupid, like make a zero or negative capacity.

Let us compile our masterpiece. We find ourselves on the business end of
compiler ire.

$ javac AStack.java

12.6. AN ARRAY BASED STACK 321

AStack.java:13: error: generic array creation

entries = new E[capacity];

^

1 error

$

It is time for an arabesque. As it turns out, we cannot create arrays of generic
type. We defer the disucssion of the reason until we discuss type erasure. If you
can’t bear the suspense, flip ahead and take a peek. Otherwise calmy accept
the upcoming turn of events.

Insted of an E(), let us us an array of Objects. So we modify our code as
follows.

private int capacity;

private int size;

private Object[] entries;

public AStack(int _capacity)

{

capacity = _capacity;

if(capacity < 1)

throw new IllegalArgumentException();

entries = new Object[capacity];

size = 0;

}

public AStack()

{

this(10);

}

All traces of compiler dyspepsia now vanish. We will have to enforce the type
restriction on items being added to this array ourselves, but you will see that
the interface will do this for us nicely. We go for the easy pickings first. When
is the stack empty? When its size is zero. What is its size? We know that. So
here we implement those two methods with one-liners.

public boolean isEmpty()

{

return size == 0;

}

public int size()

{

return size;

}

Now let us write peek. If the stack is empty, we throw an exception. Otherwise,
we just look at the top item in the stack. Remember, size points just aboe the

322 CHAPTER 12. COLLECTIONS: FROM THE INSIDE

stack, so note our use of size - 1 to get it correct.

public E peek()

{

if(isEmpty())

throw new EmptyStackException();

return (E) entries[size - 1];

}

Now compile. See the following squawling.

$!javac

javac AStack.java

Note: AStack.java uses unchecked or unsafe operations.

Note: Recompile with -Xlint:unchecked for details.

$

We are doing something kind of edgy but we know what we are doing, so we
will add this annotation

@SuppressWarnings("unchecked")

above the peek method. The compiler will no longer grumble. This grumbling
was triggered by the cast to E in the return statement.

Our push method will check the type of items placed on the stack. It will
be the only entry point for new items to go onto the stack. As a result, we
have a cast-iron guarantee that only items of typpe E will ever appear on our
stack. That is what makes it safe to use the @SuppressWarnings("unchecked")
annotation.

Now we shall pop. This requires us to keep track of the item being popped,
then we can lower the size by 1. We could leave the popped item in the array,
but we will set it to null to encourage garbage collection.

Next we will push new items onto the stack. The push method is the gate-
keeper. We shall insist all items we push be type E. This is checked at compile
time by the push method. If you attempt to push an item of the wrong type on
the stack, the comipiler will issue forth with error messages and disapprobation.

So heere is how we will approach it. If the client attempts to pop from an
empty stack, an exception will be thrown. We then make a record of the top
item on the stack. Next, we will set the entry on the stack referring to the top
item to null to encourage garbage collection. Finally, we decrement size and
return the item we recorded. Here is the implementation

@SuppressWarnings("unchecked")

12.6. AN ARRAY BASED STACK 323

public E pop()

{

if(isEmpty())

throw new EmptyStackException();

E out = (E) entries[size - 1];

entries[size - 1] = null; //encourage garbage collection

size--;

return out;

}

We need the annotation because of the cast. We are guaranteed, because of the
contract we have for push that only items of type E will be placed on the stack.

Now let us implement seymour. That’s easy.

public void seymour()

{

int k;

for(k = size - 1; k >= 0; k--)

{

System.out.println(k);

}

}

We now administer a torture test.

public class ADriver

{

public static void main(String[] args)

{

AStack<String> s = new AStack<String>();

for(int k = 0; k < 10; k++)

s.push("" + k);

s.seymour();

for(int k = 0; k < 10; k++)

s.pop();

if(s.isEmpty())

System.out.println("PASS");

}

}

Here is the result.

$ java ADriver

324 CHAPTER 12. COLLECTIONS: FROM THE INSIDE

9

8

7

6

5

4

3

2

1

0

PASS

Finally, we now write the iterator. It will be an inner class. We also modify
the iterator method so it is not returning a null object. If you forget you will
get a NullPointerException when you test the collections for loop.

public Iterator<E> iterator()

{

return new Navigator();

}

/*******************iterator class******************************/

class Navigator implements Iterator<E>

{

int nav;

public Navigator()

{

nav = size;

}

public void remove()

{

throw new UnsupportedOperationException();

}

public boolean hasNext()

{

return nav != 0;

}

@SuppressWarnings("unchecked")

public E next()

{

nav--;

return (E) entries[nav];

}

}

We now show the class in its entirety.

12.6. AN ARRAY BASED STACK 325

import java.util.Iterator;

public class AStack<E> implemnets Iterable<E>

{

private int capacity;

private int size;

private Object[] entries;

public AStack(int _capacity)

{

capacity = _capacity;

if(capacity < 1)

throw new IllegalArgumentException();

entries = new Object[capacity];

size = 0;

}

public AStack()

{

this(10);

}

public void push(E newItem)

{

entries[size] = newItem;

size++;

}

@SuppressWarnings("unchecked")

public E pop()

{

if(isEmpty())

throw new EmptyStackException();

E out = (E) entries[size - 1];

entries[size - 1] = null; //encourage garbage collection

size--;

return out;

}

@SuppressWarnings("unchecked")

public E peek()

{

if(isEmpty())

throw new EmptyStackException();

return (E) entries[size - 1];

}

public boolean isEmpty()

{

return size == 0;

}

326 CHAPTER 12. COLLECTIONS: FROM THE INSIDE

public int size()

{

return size;

}

public void seymour()

{

int k;

for(k = size - 1; k >= 0; k--)

{

System.out.println(k);

}

}

public Iterator<E> iterator()

{

return Navigator;

}

}

Modify the driver by removing the call to seymour and using the collections for
loop as follows.

public class ADriver

{

public static void main(String[] args)

{

AStack<String> s = new AStack<String>();

for(int k = 0; k < 10; k++)

s.push("" + k);

for(String q: s)

{

System.out.println(q);

}

for(int k = 0; k < 10; k++)

s.pop();

if(s.isEmpty())

System.out.println("PASS");

}

}

This will work just as it did before we put the iterator in place.

12.7. SOME PERSPECTIVE 327

12.7 Some Perspective

We have just implemented the same interface, that of a stack, in two very
different ways. Each of these two methods has its strengths and weaknesses. In
the next chapter we look at the performance of algorithms performed inside of
data structures. By analyzing the performance characteristics of a particular
implementatoin of an algorthm, we can understand when it is appropriate to
choose a particular implementation of an interface.

Before we begin our analysis of algorithms in the next chapter we will explain
some technical matters involved in generic programming. There are big benefits
to this approach, but there are also hazards it is wise to be aware of.

12.8 A Roundup of Basic Facts about Generics

We have been be writing classes for varous data structures, which house collec-
tions of objects that are called elements. Each data structure has rules for item
access and for adding items to the collection.

Recall that if we wanted an array list of strings we declared as follows.

ArrayList<String> roster = new ArrayList<String>();

Informally we would say that the object pointed at by roster is an “ArrayList
of strings.” The conents of <..> constitute the type parameter of the ArrayList.
We can use any object type as a type parameter for an ArrayList. We can also
use the wrapper types if we wish to have an array list of a primitive type.

The type ArrayList without a type parameter is called a raw type. When
writing new code, you should not use raw types. We shall see that raw types
can be used.

Let us proceed with an example. Consider this little program.

import java.util.ArrayList;

public class Blank

{

public static void main(String [] args)

{

ArrayList foo = new ArrayList();

foo.add("goo");

}

}

Compilation of this code results in this compiler warning.

328 CHAPTER 12. COLLECTIONS: FROM THE INSIDE

1 warning found:

File: /Users/morrison/book/javaCode/j10/Blank.java [line: 8]

Warning: /Users/morrison/book/javaCode/j10/Blank.java:8: warning:

[unchecked] unchecked call to add(E) as a member of the raw type

java.util.ArrayList

Java wants to to specify a type parameter for your array list, hence this warning.
Raw types work to ensure that Java is backwards-compatiable. Prior to Java 5,
you never specified a type parameter; you only worked with raw types. Objects
stored in an ArrayList were... just Objects.

Now watch what happens when we try to gain access to the contents of our
ArrayList.

import java.util.ArrayList;

public class Blank

{

public static void main(String [] args)

{

ArrayList foo = new ArrayList();

foo.add("goo");

System.out.printf("The length of %s is %d\n", foo.get(0),

foo.get(0).length());

}

}

We get a warning for using a raw type, and then we also get some angry yellow
from the compiler.

1 error and 1 warning found:

*** Error ***

File: /Users/morrison/book/javaCode/j10/Blank.java [line: 9]

Error: /Users/morrison/book/javaCode/j10/Blank.java:9:

cannot find symbol

symbol : method length()

location: class java.lang.Object

** Warning **

File: /Users/morrison/book/javaCode/j10/Blank.java [line: 8]

Warning: /Users/morrison/book/javaCode/j10/Blank.java:8: warning:

[unchecked] unchecked call to add(E) as a member of the raw type

12.8. A ROUNDUP OF BASIC FACTS ABOUT GENERICS 329

java.util.ArrayList

Now you might ask why we are getting an error. The call foo.get() returns
an Object, not a String. Therefore foo.get().length() makes no sense; you
cannot compute the length of an Object. You can do this for a String. If you
fetch an object from a container of raw type, you will just get an Object.

What is interesting is that the call to print foo.get(0) will compile and run
(with the warning). Try it! This is because the Object class has a toString()

method. The Object type object foo.get() points an a String with value
"goo". The varible sends the message to the String object and it prints itself.

The Object prints correctly because of the Delegation Principle. The type of
a variable determines what methods are visible. The execution of those methods
is delgated to the object. Since "goo" is a String object, it shows as a string
and not as Object@hexCrud.

12.8.1 Type Erasure

Prior to Java 5, storage in collections such as the ArrayList worked a little like
ObjectOutputStreams. The programmer could add object of any Object type
to an ArrayList. Then, when fetching those values using the get method, the
results had to be cast to the correct type to use them in their original form. In
this system, the programmer is responsible for performing the correct casts.

We see this phenomenon at work in this example.

> import java.util.ArrayList;

> ArrayList foo = new ArrayList();

> foo.add("syzygy");

> foo.add("muffins");

> foo.get(0).length()

Static Error: No method in Object has name ’length’

> ((String) foo.get(0)).length()

6

> System.out.println(foo.get(0))

syzygy

> System.out.println(foo.get(1))

muffins

>

The cast is syntactically clumsy and it is aesthetically excrable. And it was the
old way of doing business.

In modern parlance, you do this instead.

> import java.util.ArrayList;

330 CHAPTER 12. COLLECTIONS: FROM THE INSIDE

> ArrayList<String> foo = new ArrayList<String>();

> foo.add("syzygy");

> foo.add("muffins");

> foo.get(0).length()

6

> foo.get(1).length()

7

>

That ugly cast is now gone. Where’d it go? This is no mere detail. It is
important you understand what is happening behind the scenes, so you fully
understand the benefits, quirks and possible dangers entailed with using gener-
ics.

Again, you should always use generics when writing new code. However, it
is important to understand what is happening, because you will see legacy code
that does not use generics, and you need to know how to read and manage it
correctly.

So how does that all work? Suppose you use an ArrayList with a type
parameter. You compile the program. When you do, any calls that add items
to the ArrayList are checked to see if they are adding items of the correct type.
The compiler enforces this contract.

At run time all of these have the same appearance

• ArrayList¡Integer¿

• ArrayList¡ArrayList¡Integer¿¿

• the raw type ArrayList

Any calls that get items from the ArrayList have the appropriate casts
added to them by the compiler. You are given the Cast Iron Guarantee, which
says that all of the necessary casts will be added by the compiler.

Danger! You can void the Cast Iron Guarantee: The existence of an “unchecked
warning” voids the guarantee.

If you are using generic classes, you cannot have an ”unchecked warning;”
this undermines the safety of your entire program. It is the responsiblity of the
creator of a generic class to extirpate any of these that might crop up.

When your code is in its run-time form, all evidence of generics is gone. All
this code sees is the casts created by the compiler. Your code at runtime looks
like pre-5 Java code, with raw types. This approach has two imporant benefits.

Pre-5 Java code will still compile nicely. Java maintains backwards compat-
ibility.

12.9. INHERITANCE AND GENERICS 331

This erasure mechanism helps keep your byte code small. All Java ArrayLists
look exactly the same at run time, so there is only one segment of code for
ArrayList.

In contrast, C++ has a similar-looking mechanism called templates. A close
analog to a Java ArrayList is C++’s vector class. If you make vectors with
several different type parameters, object code will be generated for each one.
This phenomenon is sometimes known as “code bloat.” This is the opposite
approach to generic programming to the type erasure approach of Java.

Be warned that there will be some pitfalls for you when writing generic
code, especially if you deal with arrays. We encountered this problem in in the
creation of our array based stack class. Take a look at this little class. In it, we
attempt to create an array of generic type.

public class UglySurprise<T>

{

T[] myArray;

public UglySurprise(int n)

{

myArray = new T[n];

}

}

Now compile and you see an error. Java does not permit the creation of arrays
of generic type.

1 error found:

File: /Users/morrison/book/javaCode/j10/UglySurprise.java [line: 6]

Error: /Users/morrison/book/javaCode/j10/UglySurprise.java:6: i

generic array creation

The reason for this will be revealed when we discuss subtyping and generics.

12.9 Inheritance and Generics

We will use the term type to refer to a class or an interface. We say S is a subtype
of T for any of these three situations.

• S and T are interfaces and S is a subinterface of T.

• S and T is a class implementing S.

• S is a subclass of T.

If S is a subtype of T we will say that T is a supertype of S. Let us begin by
creating these classes and compiling.

332 CHAPTER 12. COLLECTIONS: FROM THE INSIDE

public class General

{

}

public class Specific extends General

{

}

import java.util.ArrayList;

public class ArrayTest

{

public static void main(String[] args)

{

Specific [] s = new Specific[10];

General [] g = new General[10];

ArrayList<Specific> as = new ArrayList<Specific>();

ArrayList<General> ag = new ArrayList<General>();

testArray(s);

testArray(g);

testArrayList(as);

testArrayList(ag);

}

public static void testArray(General[] g)

{

}

public static void testArrayList(ArrayList<General> ag)

{

}

}

In these classes, Specific is a subtype of General. All now compiles nicely.
Now go into the main method of the ArrayTest class and add these four lines
of code.

Specific [] s = new Specific[10];

General [] g = new General[10];

testArray(s);

testArray(g);

Your code will still compile. This is because array types are covariant, i.e., that
if S is a subtype of T, then S[] is a subtype of T[]. This seems intuitive and it
does not come as any kind of terrible surprise.

Let us formulate analogous code for an ArrayList.

12.9. INHERITANCE AND GENERICS 333

ArrayList<Specific> as = new ArrayList<Specific>();

ArrayList<General> ag = new ArrayList<General>();

testArrayList(as);

testArrayList(ag);

Now compile this. Here is the result.

1 error found:

File: /Users/morrison/book/javaCode/j10/ArrayTest.java [line: 13]

Error: /Users/morrison/book/javaCode/j10/ArrayTest.java:13:

testArrayList(java.util.ArrayList<General>) in ArrayTest cannot be

applied to (java.util.ArrayList<Specific>)

Why the difference? This is because generics are invariant; i.e., if S is a
subtype of T, then ArrayList<S> is not a subtype of T unless S and T are in
fact the same type.

In java.util there is an interface called List. The standard ArrayList

and LinkedList classes in java.util implement List so it is possible for List
variables to point at ArrayList or LinkedList objects.

Let us learn what subtype relationships occur here. Modify ArrayTest.java

as follows.

import java.util.ArrayList;

import java.util.List;

public class ArrayTest

{

public static void main(String[] args)

{

Specific [] s = new Specific[10];

General [] g = new General[10];

ArrayList<Specific> as = new ArrayList<Specific>();

ArrayList<General> ag = new ArrayList<General>();

}

public static void testArray(General[] g)

{

}

public static void testArrayList(ArrayList<General> ag)

{

}

}

We now perform an experiment by adding this code to the main method.

334 CHAPTER 12. COLLECTIONS: FROM THE INSIDE

List<General> lg = new ArrayList<General>();

This does compile. If Foo is a subtype of Goo and these two classes are generic,
then Foo<T> is a subtype of Goo<T>. Notice that this breaks things.

List<General> lgs = new ArrayList<Specific>();

We show the resulting compiler error.

1 error found:

File: /Users/morrison/book/javaCode/j10/ArrayTest.java [line: 13]

Error: /Users/morrison/book/javaCode/j10/ArrayTest.java:13:

incompatible types

found : java.util.ArrayList<Specific>

required: java.util.List<General>

Notice that a ArrayList<General> is a subtype of List<General>, but things
break because of invariance. An ArrayList<Specific> is not a subtype of
ArrayList<General>

12.10 Programming Project: A Linked List

In this project, you will write a simplifed version of Java’s LinkedList class.
The purpose of this project is to acquaint you further with link-bases structures
and for you to get your hands dirty with them.

Here is the interface.

12.10. PROGRAMMING PROJECT: A LINKED LIST 335

Header Action
LinkedList<E>() This constructor creates an empty linked

list.
boolean addLast(E

newItem)

This places the new item on the end of the
list. Return true if the item is successfully
added.

boolean addFirst(E

newItem)

This places the new item at the beginning
of the list. Return true if the item is suc-
cessfully added

boolean add(int

index, E newItem)

This inserts newItem into the
list at the prescribed index. An
IndexOutOfBoundsException is thrown if
an illegal index is used.

void clear() This empties the linked list of its items.
boolean

contains(Object

o)

This returns true if the object o is present
in the list.

int size() This returns the number of objects present
in the list.

E get(int n) This returns the object in position n. It
throws an IndexOutOfBoundsException if
you try to return an nonexistent element

E set(int n, E

newItem)

This replaces the item at index n

with item newItem. It throws an
IndexOutOfBoundsException if you try to
return an nonexistent element

int indexOf(Object

o)

This returns the index of the first instance
of o in the list, or -1 if the object does not
appear in the list.

int

lastIndexOf(Object

o)

This returns the index of the last instance
of o in the list, or -1 if the object does not
appear in the list.

boolean

remove(Object o)

This removes the object o from the list if
it is present. It returns true if the list con-
tains the object.

We provide you with a shell for the program.

import java.util.Iterator;

class LinkedList<E> implements Iterable<E>

{

private Link<E> head;

public LinkedList()

{

head = null;

}

336 CHAPTER 12. COLLECTIONS: FROM THE INSIDE

public boolean isEmpty()

{

return head == null;

}

public void addFirst(E newItem)

{

//look at the link based stack

}

public void seymour()

{

}

public boolean contains(Object o)

{

}

/***********Iteraor related stuff

public Iterator<E> iterator()

{

return null;

}

class Navigator implements Iterator<E>

{

//add the necessary methods

}

}

class Link<E>

{

private E datum;

private Link<E> next;

public Link(E _datum, Link<E> _next)

{

datum = _datum;

next = _next;

}

public Link(E _datum)

{

this(_datum, null);

}

public E getDatum()

{

return datum;

}

public Link<E> getNext()

{

return next;

}

public boolean hasNext()

12.10. PROGRAMMING PROJECT: A LINKED LIST 337

{

return next != null;

}

public void setNext(Link<E> newNext)

{

next = newNext;

}

public void setDatum(E newDatum)

{

datum = newDatum;

}

}

338 CHAPTER 12. COLLECTIONS: FROM THE INSIDE

12.11 Programming Project: An Array-Based
List

Header Action
ArrayList<E>(int

capacity)

This constructor creates an empty Ar-
ray list with the specified capacity. An
IllegalArgumentException is thrown if
the client passes a nonpositive integer.

ArrayList<E>() This constructor creates an empty Array
list with a capacity of 10.

boolean addLast(E

newItem)

This places the new item on the end of the
list. Return true if the item is successfully
added.

boolean addFirst(E

newItem)

This places the new item at the beginning
of the list. Return true if the item is suc-
cessfully added

boolean add(int

index, E newItem)

This inserts newItem into the
list at the prescribed index. An
IndexOutOfBoundsException is thrown if
an illegal index is used.

void clear() This empties the linked list of its items.
boolean

contains(Object

o)

This returns true if the object o is present
in the list.

int size() This returns the number of objects present
in the list.

E get(int n) This returns the object in position n. It
throws an IndexOutOfBoundsException if
you try to return an nonexistent element

E set(int n, E

newItem)

This replaces the item at index n

with item newItem. It throws an
IndexOutOfBoundsException if you try to
return an nonexistent element

int indexOf(Object

o)

This returns the index of the first instance
of o in the list, or -1 if the object does not
appear in the list.

int

lastIndexOf(Object

o)

This returns the index of the last instance
of o in the list, or -1 if the object does not
appear in the list.

boolean

remove(Object o)

This removes the object o from the list if
it is present. It returns true if the list con-
tains the object.

We provide you with a shell for the program.

12.11. PROGRAMMING PROJECT: AN ARRAY-BASED LIST 339

import java.util.Iterator;

class ArrayList<E> implements Iterable<E>

{

private int capacity;

private int size;

private Object[] entries;

public ArrayList(int _capacity)

{

capacity = _capacity;

size = 0;

entries = new Object[capacity];

}

public ArrayList()

{

this(10);

}

public boolean isEmpty()

{

}

public void addFirst(E newItem)

{

//look at the array based stack

}

public void seymour()

{

}

public boolean contains(Object o)

{

}

/***********Iteraor related stuff

public Iterator<E> iterator()

{

return null;

}

class Navigator implements Iterator<E>

{

//add the necessary methods

}

}

	Getting Started
	Introduction
	Getting a Java Development Kit
	Getting DrJava
	What the heck is tools.jar?

	Introducing Java
	How does Java Work on a Mechanical Level?
	Customizing DrJava

	Python Classes and Objects
	Java Classes and Objects
	Java's Integer Types
	Some Interaction Pane Nuances
	Using Java integer types in Java Code

	The Rest of Java's Primitive Types
	The boolean Type
	Floating–Point Types
	The char type

	More Java Class Examples

	Java Objects
	Java Object Types
	Java Strings as a Model for Java Objects
	But is there More?

	Primitive vs. Object: A Case of equals Rights
	Aliasing

	More Java String Methods
	Java Classes Know Things: State
	Quick! Call the OBGYN!
	Method and Constructor Overloading
	Get a load of this
	Now Let Us Make this Class DO Something
	Who am I?
	Mutator Methods

	The Scope of Java Variables
	The Object-Oriented Weltanschauung
	Procedural Programming
	Object–Oriented Programming

	Translating Python to Java
	Introduction
	Java Data Structures
	Goodies inside of java.util.Arrays
	Fixed Size? I'm finding this very confining!
	A Brief but Necessary Diversion: What is this Object object?
	And Now Back to the Matter at Hand

	Conditional Execution in Java
	Extended–Precision Integer Arithmetic in Java
	Recursion in Java
	Looping in Java
	Static and final
	Etiquette Between Static and Non-Static Members
	How do I Make my Class Executable?

	The Wrapper Classes
	Autoboxing and Autounboxing

	A Caveat
	Case Study: An Extended-Precision Fraction Class
	Making a Proper Constructor and toString() Method

	Overloading the Constructor
	Creating an equals Method
	Hello Mrs. Wormwood! Adding Arithmetic
	The Role of static and final

	The Big Fraction Case Study
	Case Study: An Extended-Precision Fraction Class
	A Brief Weltanschauung

	Start your Engines!
	Making a Proper Constructor and toString() Method
	Overloading the Constructor
	Creating an equals Method
	Hello Mrs. Wormwood! Adding Arithmetic
	The Role of static and final
	Using Javadoc
	Triggering Javadoc
	Documenting toString() and equals()
	Putting in a Preamble and Documenting the Static Constants
	Documenting Arithmetic
	The Complete Code

	Interfaces, Inheritance and Java GUIs
	What is ahead?
	A Short GUI Program
	Inheritance
	Polymorphism and Delegation
	Understanding More of the API Guide
	Deprecated Can't be Good
	Why Not Have Multiple Inheritance?
	A C++ Interlude

	Examining Final
	Back to the '70's with Cheesy Paneling, or I Can't Stand it, Call the Cops!
	Recursion is our Friend

	A Framework for our GUI Programs
	Creating a Complex View
	Interfaces
	The API Guide, Again

	Making a JButton live with ActionListener
	Inheritance and Graphics
	Abstract Classes

	The Tricolor Case Study
	Introduction
	Building the View for Tricolor
	Our Panels Need to Know their Colors
	Inserting ColorPanels into the Tricolor App
	Le Carte
	It's time to build the controller!
	The Color Menu and the Controller
	The Position Menu and Its Controller
	All Code Shown
	Tricolor.java
	ColorPanel.java
	QuitListener.java
	ColorMenuItem.java
	ColorMenuItemListener.java
	PositionMenuItem.java
	PositionMenuItemListener.java

	Inner Classes, Anonymous Classes and Java GUIs
	What is ahead?
	Improving Tricolor
	Deconstructing this Arabesque
	Hammertime
	Using Inner Classes to Improve our Design
	The Position Menu
	Cruft Patrol!
	The Product
	Inner Classes in General
	Adding and Deleting Components from a JFrame

	Exception Handling
	Introduction
	The Throwable Subtree
	Checked and Run-Time Exceptions
	Catching It

	A Simple Case Study
	All Code Shown
	Exception Handling, In General
	Can you have several catch blocks?
	The Bucket Principle

	Mr. Truman, We Must Pass the Buck!
	Must I?

	Can I Throw an Exception?
	Can I make my own exceptions?

	Summary

	Text File IO
	Introduction
	The File Class and Paths
	Constructors and Methods
	A Simple Case Study: Copying a File
	A Programming Idiom
	Buffered FileIO

	Opening a File in a GUI Window
	Designing the Application

	Swing's ImageIO Class

	The NitPad Case Study
	Case Study: NitPad: A Text Editor
	Laying out Menus
	Getting a File to Save via Menus
	Is the Window Saved?
	Getting Save and Save As to Work
	Getting the File Menu in Order

	The UniDraw Case Study and Serialization
	Introduction
	Representing Curves
	Getting Started on the Application
	Deciding State in the Application
	Getting the Curves to Draw: Getting Curve.java ready
	Getting the Curves to draw: Enabling the Panel
	Creating and Enabling the Color Menus
	Consructing the Width Menu
	Graphics2D
	FileIO for Objects and Serialization
	Making the File Menu

	Collections: from the Inside
	Data Strucures
	What is a Stack?
	The Link Class
	The Stack Interface
	Implementing the Link-Based Stack
	Iteraor and Iterable in the Link-Based Stack
	An Array Based Stack
	Some Perspective
	A Roundup of Basic Facts about Generics
	Type Erasure

	Inheritance and Generics
	Programming Project: A Linked List
	Programming Project: An Array-Based List

