
The North Carolina School of
Science and Mathematics

CSC404

Second-Trimester Programming

The Quaternion Project

Author:
John Morrison

20 November 2013



In this article, we will construct a set H of mathematical objects called
quaternions. The use of the letter H is in honor of Sir William Rowan Hamil-
ton, an Irish mathematician who first described them. The quaternions form a
special system of numbers that are especially useful in the domain of computer
graphics.

1 1, i, j, and k.

A quaternion is defined to be a formal sum of the form

a+ bi + cj + dk,

where a, b, c and d are real numbers. If a, b, c and d are all integers, we
will say that we have an integral quaternion. The quantities 1, i, j, and k are
all to be treated as unlike terms. In this way we define addition and subtrac-
tion of quaternions. To add or subtract we simply gather up like terms. Two
quaternions are equal if and only if all of the coefficients of 1, i, j, and k match.

For example if v = 3 + 2i + j− k and w = 4 + 2i + 3j + 5k, then we have

v + w = 7 + 4i + 4j + 4k

and
v − w = −1− 2j− 6k.

If λ is a real number an v = a + bi + cj + dk, is a quaternion, we define scalar
multiplication as follows

λ · v = λa+ λbi + λcj + λdk.

To wit, the λ is distributed over all of the terms in the quaternion.

So far, quaternions have the structure of four-dimensional vectors. We will
define the quaternion 0 to be 0+0i+0j+0k. Now we shall round up some basic
facts about this vector characterization of quaternions.

Theorem 1. Let λ and µ be scalars and u0, u1 and u2 be quaternions. Then
we have the following.

i. u0 + u1 = u1 + u0

ii 0 + u0 = u0

iii. u0 + (u1 + u2) = (u0 + u1) + u2

iv. λ · (u0 + u1) = λ · u0 + λ · u1
v. (λ+ µ0) · u0 = λ · u0 + µ · u

1



Proof. (i.) Write u0 = a0 + b0i + c0j + d0k and u1 = a1 + b1i + c1j + d1k. Then,
using the commutivity of the real numbers,

u0 + u1 = (a0 + b0i + c0j + d0k) + (u1 = a1 + b1i + c1j + d1k)

= (a0 + a+ 1) + (b0 + b1) · i + (c0 + c1) · j + (d0 + d1) · k
= (a1 + a+ 0) + (b1 + b0) · i + (c1 + c0) · j + (d1 + d0) · k
= u1 + u0.

You can deal similarly with the other parts of this theorem; they are left as
an exercise.

Exercises

1. Prove the rest of Theorem 1.

2. Create a class in Java called Quaternion. Here is a shell for it.

public class Quaternion

{

//coefficients for a + bi + cj + dk

private double a;

private double b;

private double c;

private double d;

public Quaternion(double _a, double _b,

double _c, double _d)

{

//code goes here

}

public Quaternion()

{

//default is the zero quaternion

}

public Quaternion(double x)

{

//promote x from a real number to a quaterion.

}

//return this + other

public Quaterion add(Quaternion other)

{

return null;

}

//return this - other

public Quaterion subtract(Quaternion other)

2



{

return null;

}

//do scalar multiplication here.

public Quaternion multiply(double lambda)

{

return null;

}

public static void main(String[] args)

{

//put test code here to test your class.

}

}

2 Multiplication

We shall now endow quaternions with multiplication. So far, they only have the
structure of scalar multiplication. Now we will have vector multiplication; the
product of two quaternions will be a quaternion.

We begin by defining multiplication for the basis elements 1, i, j and k.
Multiplication for these is summarized in the multiplication table below.

· 1 i j k

1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

A Useful Mnemonic You might ask, “How do I remember all of this stuff?”
You don’t. Use this mnemonic. Take out a pencil and a piece of paper. Make i, j
and k the vertices of an equilateral triangle, arranging them clockwise. Suppose
you want to multiply i and j. Go from i to j clockwise, then arrive at k. This
give i · j = k. If you go counterclockwise, put in a factor of −1. For example, for
k · j, you go from k to j counterclockwise and arrive at i. Therefore the product
is −i. All three of i, j and k square to −1. You should draw the picture, and
complete the table shown here to test out the mnemonic.

We now bootstrap this into a general definition of multiplication. We define
multiplication of arbitrary quaternions by the following procedure. First use
the FOIL rule to multiply out all of the terms. Then use the basis element mul-
tiplication table to do the basis element multiplications. We finish by collecting
all of the like terms. Voila! We now know how to multiply. You can see some
things right away.

3



First of all, if λ is a scalar and v is any quaternion,

λ · v = (λ+ 0i + 0j + 0k) · v.v · (λ+ 0i + 0j + 0k) =

You can check this out very easily for yourself.

You can also see some other things. For example, any quaternion whose
i, j and k terms are all zero basically acts like a scalar; when you multiply a
quaternion by one of them, it is scalar multiplication. Also, multiplication of
these quaternions is commutative. It behaves like a copy of the real numbers
embedded inside of the quaternions.

As an example, let us compute ijk. We have

(i · j) · k = k · k = −1.

Since ij 6= ji, we know this form of multiplication will not be commutative. It
is associative; this can be shown by grinding out the computation. A question
you might be tempted to ask is Is division possible? We shall answer that
question by proceeding down a slight detour.

We shall first define a little terminology. If z = a+bi+cj+dk is a quaternion,
we say that a is the scalar part of z and bi + cj + dk is the vector part of z. We
define the conjugate of z by

z = a− bi− cj− dk;

to obtain this we just change the sign of the vector part of z. Observe that the
conjugation function z 7→ z is an involution on the quaternions, i. e. it is its
own inverse.

Now we are going to perform a very interesting multiplication. Notice how
we get the multiplications of i, j and k into alphabetical order so cancellations
will stand out.

zz = (a+ bi + cj + dk) · (a− bi− cj− dk)

= a2 + abi + acj + adk− abi− b2i2 − bcji− bdki

−acj− bcij− c2j2 − cdkj− adk− bdik− cdjk− d2k2

= a2 + abi + acj + adk− abi + b2 + bck− bdj

−acj− bck + c2 + cdi− adk + bdj− cdi + d2

= a2 + b2 + c2 + d2.

We now define the norm of a quaternion z = a+ bi + cj + dk to be

‖z‖ =
√
a2 + b2 + c2 + d2.

4



We immediately see that for any quaternion z, zz = ‖z‖2. Notice that in the
previous calculation, we also have zz = ‖z‖2 as well. A quaternion and its
conjugate commute under multiplication.

Now let us ask a question. Given a nonzero quaternion z, can we find a
quaternion w so that z ·w = 1? Let us suppose we can. Were this so, we would
have zzw = z, so ‖z‖2w = z. Therefore, we must have

w =
z

‖z‖2
;

this division is possible because we are just scalar multiplying by the number
1/‖z‖2.

Theorem 2. Every nonzero quaternion has a two-sided multiplictative inverse.
To wit, for each quaternion z there is a quaternion w so that wz = zw = 1. In
fact, we know that

w =
z

‖z‖2
.

The proof of this theorem is now an easy exercise. Now we see how to
divide; we just multiply by the multiplicative inverse we have seen here. One
consequence of our development is that this multiplicative inverse is unique. We
will henceforth use the notation z−1 for the multiplicative inverse of a quaternion
z.

Exercises

1. Grind it out: show that multiplication is associative.

2. Let us define
V = {a+ b · i|a,b ∈ R}.

Show that if u, v ∈ V that u+v ∈ V and u ·v ∈ V . Show that u ·v = v ·u.

3. Show that if z and w are quaternions, that

‖zw‖ = ‖z‖‖w‖.

4. Now add these methods to your Quaternion class. Method stubs have
been supplied so all will compile.

Quaternion multiply(Quaternion other)

{

return null;

}

Quaternion divide(Quaternion other)

{

return null;

}

5



Quaternion conjugate()

{

return null;

}

//handle the case for n < 0 as well by

//exponentiating the inverse. Use divide

//and conquer recursion to make this efficient.

Quaternion pow(int n)

{

return null;

}

double norm()

{

return 0.0;

}

3 The Product

You are to produce the quaternion class. Doing the exercises will help you
to understand quaternions. You do not need to turn these in and you can
ask to see them worked in class. Name your file Quaternion.java. Also,
give it static constants Quaterniion.ZERO, Quaternion.ONE, Quaternion.I,
Quaternion.J, and Quaternion.K. This project will be graded on a five-
point scale. You should build some test cases and place them in a main

method. Work out some cases on paper and test them.
You will learn about Javadoc during the case study. You are expected to
Javadoc your Quaternion class, so that others can use it without having
to read your actual code. When you turn it in, do not submit the files
generated by Javadoc; we can generate them locally.

4 References

Why quaternions? They are a significant tool if you are interested in 3D com-
puter graphics. See this Stack Overflow post.

http://stackoverflow.com/questions/10926546/rotation-vectors-vs-quaternions

This article in a game developer forum can yield some insight into their
efficiency in handling rotation about an axis.

http://www.gamedev.net/page/resources/_/technical/math-and-physics/

do-we-really-need-quaternions-r1199

Several references on quaternions can be found in this Math Stackexchange
post.

6

http://stackoverflow.com/questions/10926546/rotation-vectors-vs-quaternions
http://www.gamedev.net/page/resources/_/technical/math-and-physics/do-we-really-need-quaternions-r1199
http://www.gamedev.net/page/resources/_/technical/math-and-physics/do-we-really-need-quaternions-r1199


http://math.stackexchange.com/questions/71/real-world-uses-of-quaternions

7

http://math.stackexchange.com/questions/71/real-world-uses-of-quaternions

	1, i, j, and k.
	Multiplication
	The Product
	References

