
Contents

0 What is ahead? 2

1 A Prelude to Inheritance: A Short GUI Program 2

2 Inheritance 5

2.1 Abstract Classes: A First Pass 10

2.2 Polymorphism, Delegation, and Visibility 11

2.3 Understanding More of the API Guide 11

2.4 The @Override Annotation . 13

2.5 Why Not Have Multiple Inheritance? 13

2.6 A C++ Interlude . 14

3 Interfaces 15

3.1 The API Guide, Again . 17

4 A Framework for our GUI Programs 20

5 Fun with Mohammed Ali: How to Achieve the Desired Layout 22

6 Can I have Layouts Within Layouts? 28

7 Sur l’Carte: What’s on the Menu 28

7.1 Step 1, Create a Frame and insert a menu bar. 29

8 Creating a Complex View 32

9 Model-View-Controller 38

10 Making a JButton live with ActionListener 39

11 Lambdas and Functional Interfaces 41

11.1 Lambdas in General . 43

12 Inheritance and Graphics 45

1

13 Abstract Classes: Second Pass 47

14 Examining Final 51

14.1 final Classes and Performance 52

15 Terminology Roundup 52

0 What is ahead?

So far, we have been programming “in the small.” We have created simple classes
that carry out fairly straightforward chores. Our programs have been little one
or two class programs. One class has been the class you are writing, the other
has been the interactions pane. We created the BigFraction class, which allows
a client programmer using it to do exact, extended-precision rational arithmetic.
Another programmer could use this class for his own fractional calculations.

So far, the relationship between classes has been compositional, or a “has-a
relationship.” For example our BigFraction class has two BigIntegers, repre-
senting the numerator and denominator of our fraction object. This is the most
important and most common relationship between classes.

Java programs often consist of many classes, which work together to do a
job. Sometimes we will create classes from scratch, sometimes we will aggregate
various types of objects in a class, and sometimes we will customize existing
classes using inheritance. We will also draw upon Java’s vast class libraries. We
will see how to tie related classes together by using interfaces.

One of the major goals of this portion of the book is to introduce the reader to
the world of event-driven program in a graphical environment. To get started
in this exploration, we will first create a modest GUI program that places a
button in a window on your screen. We will discuss what is happening in some
detail, so you will be able to see why inheritance and interfaces are important
and how they can help you develop surprisingly sophisticated applications in
a small program. By the end of this chapter, you will create a simple GUI
program that reacts to user interaction.

1 A Prelude to Inheritance: A Short GUI Pro-
gram

We shall do a little exploration the Java GUI classes and illustrate how inheri-
tance affects GUI programs. Quickly, we will be able to make classes that create
windows, graphics, menus and buttons. We will use the term widget for graphi-

2

cal objects of this sort. We will introduce many core ideas in the language using
graphical objects.

Four packages will become important to us as we develop GUI technique.

• java.awt This is the “old brain” of Java GUIs. It contains quite a few
graphical widgets, and such things as color and graphics.

• javax.swing This is the “new brain” of Java GUIs. This includes a
panoply of things we will press into service, including frames, which hold
applications, menus, buttons, and slider bars. This is the home of many
of Java’s widgets.

• java.awt.event and javax.swing.event These packages hold classes
that are useful in responding to such things as keystrokes, mouse clicks,
and the selection of menu items. Things in these packages make buttons
and other widgets “live.”

Let us begin with a little exercise, in which we use the interactions pane
to produce a program that makes a window and puts a button in the window.
Start by entering this code. When you are done, you will see a window pop up
on your screen. In the title bar, you will see “My First GUI.” Notice that the
window will not appear until you enter f.setVisible(true).

> import javax.swing.JFrame;
> JFrame f = new JFrame("My First GUI");
> f.setSize(400,400);
> f.setVisible(true);

If you are jaded and unimpressed, here is a look at Microsoft Foundation
Classes using C++. Feast your eyes below and be appalled at the huge and
puzzling program you have to write just to replicate the modest result here we
just produced with four lines of code.

#include <afxwin.h>

class HelloApplication : public CWinApp
{
public:

virtual BOOL InitInstance();
};

HelloApplication HelloApp;

class HelloWindow : public CFrameWnd
{

CButton* m_pHelloButton;

3

public:
HelloWindow();

};

BOOL HelloApplication::InitInstance()
{

m_pMainWnd = new HelloWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

HelloWindow::HelloWindow()
{

Create(NULL,
"Hello World!",
WS_OVERLAPPEDWINDOW|WS_HSCROLL,
CRect(0,0,140,80));

m_pHelloButton = new CButton();
m_pHelloButton->Create("Hello World!",

WS_CHILD|WS_VISIBLE,CRect(20,20,120,40),this,1);
}

Aren’t you glad you saw that?

Keep your DrJava session open; we will now add to it.

A JFrame is a container that holds other graphical elements that appear in
an applications; you can think of it as outer skin for your app. A JFrame is a
container widget because other widgets can reside inside it. It is also a top-level
widget, because it can contain an entire application.

Now let us make a button.

> JButton b = new JButton("Panic");

We have made a button, but we have not yet placed it in the JFrame. The
content of a frame lives, logically enough, in the frame’s content pane. The
JFrame class has a method called getContentPane(), which returns a pointer
to the content pane of the frame, allowing you to add widgets to it. Let us now
get the button in the window.

> f.getContentPane().add(b);

This is quite a hairy–looking construct, but if we dissect it, we will see it is very
understandable. Look in the API guide. The call

4

f.getContentPane()

returns a pointer to the content pane of our JFrame f. The content pane is an
instance of the class Container, which lives in package java.awt. You can see
that because Container is the return type of getContentPane(). In the API
guide, click on the return type link, Container. Go to Container’s method
summary. The first method is

Component add(Component comp)

This is the method that is adding the JButton to the content pane. Now look at
JButton’s API page. If you look up the family tree, you will see that, directly
below java.awt.Object, there is java.awt.Component. What we learn here
is that JButton is a Component. Thus, the add method in Container will
happily accept a JButton.

Finally, we make the button appear in the window. The trick to doing this
from the interactions pane is to set the frame to be invisible, then to be visible
again. This will charm the button into appearing.

> f.setVisible(false);
> f.setVisible(true);

Your frame should have a big, fat button occupying the entire content pane.
Click on the button. You will see it blinks in response to the click, but the
button does not trigger any action in the program. This is no surprise, because
we have just told the button to appear, not to do anything.

We just saw a practical example of inheritance at work; the JButton we
added to the content pane is a Component, so we can add it to the content
pane. There are others. Notice the call to setSize on the JFrame. If you
look in the API guide, you will see that JFrame has no setSize in its method
summary! This is inherited from the grandpappy class Window. The same is
true of setVisible.

It seems here we are encountering a whole new layer of interest and com-
plexity in Java. Now let us take a step back look at the idea of inheritance in
general. Understanding inheritance is an absolute must in the world of Java
GUI and event-driven programming. We will then return to GUIs and apply
inheritance principles to them.

2 Inheritance

Inheritance provides a mechanism by which we can customize the capabilities
of existing classes to meet our needs. It can also be used as a tool to eliminate

5

a lot of duplicate code which is a continuing maintenance headache. Finally, it
will provide us with a means of enjoying the advantages of polymorphism, the
ability of a variable to point at objects of a variety of different types.

Be wary, however of the peril that the possession of a hammer makes ev-
erything look like a nail. Inheritance, as we shall see, is a tool that should be
used judiciously. One reason you need to be careful is that any class (save for
Object) has exactly one parent. Java does not support “multiple inheritance”
that you can see in Python or C++. It has another mechanism called interfaces
which does nearly the same thing, and which avoids a potentially serious source
of intransigent programming bugs..

The new keyword you will see is extends; the relationship you create is an
“is-a” relationship. We will create a small example by creating a suite of classes
pertaining to geometric shapes.

Let us begin by creating a class for general shapes and putting method
appropriate method stubs into it.

public class Shape
{

public double area()
{

return 0;
}
public double perimeter()
{

return 0;
}
public double diameter()
{

return 0;
}

}

Since we have no idea what kind of shape we are going to be working with, this
seems the best possible solution. We will use it for now to get things going.

Now we will create a Rectangle class. Note the use of the keyword extends.
Note that extends creates an “is-a” relationship; a Rectangle is a Shape.

public class Rectangle extends Shape
{

private double width;
private double height;
public Rectangle(double _width, double _height)
{

6

width = _width;
height = _height;

}
public Rectangle()
{

this(0,0);
}
public double area()
{

return height*width;
}
public double perimeter()
{

return 2*(height + width);
}
public double diameter()
{

return Math.hypot(height, width);
}

}

Next, we create a Circle class. Both these classes extend Shape, so they are
sibling classes.

public class Circle extends Shape
{

private double radius;
public Circle(double _radius)
{

radius = _radius;
}
public Circle()
{

this(0);
}
public double area()
{

return Math.PI*radius*radius;
}
public double perimeter()
{

return 2*Math.PI*radius;
}
public double diameter()
{

7

return 2*radius;
}

}

A square is indeed, a rectangle, so we will create a Square class by extending
Rectangle. Note the use of the super keyword here. It calls the parent con-
structor. If you are going to use it, it must be in the first line of your constructor,
or your program will fail to compile, and the compiler will send you a stinging
reminder of this fact.

public class Square extends Rectangle
{

private double side;
public Square(double _side)
{

super(_side, _side);
side = _side;

}
}

So in our little class hierarchy here, we have the root class Shape. Then
Rectangle and Circle are children of Shape. Finally, Square is a child of
Rectangle.

Now you shall see that the type of variable you use is very important. Let
us begin an interactive session. In this session we create a 6 × 8 rectangle and
find its area, perimeter and circumference. The type of r is Rectangle.

> Rectangle r = new Rectangle(6,8);
> r.area()
48.0
> r.diameter()
10.0
> r.perimeter()
28.0

Now watch this.

> r = new Square(5);
> r.area()
25.0
> r.perimeter()
20.0
> r.diameter()
7.0710678118654755
>

8

We have been saying all along that a variable can only point at an object of its
own type. But now we have a Rectangle pointing at a Square. Why can we
do this?

The Square class is a child class of Rectangle, so that means a Square is
a Rectangle! To wit, if you have a variable of a given type, it can point at any
object of a descendant type. This phenomenon is a form of polymorphism. So,
one of the benefits of inheritance is polymorphism. An easy way to remember
this is, “Variables can point down the inheritance tree.”

You might ask now, “Why not make everything an Object and save a lot
of work?” Then all will look just like Python’s duck-typing system. Let us try
that here.

> Object o = new Square(5);
> o.diameter()
Error: No 'diameter' method in

'java.lang.Object' with arguments: ()
> ((Square) o).diameter()
7.0710678118654755
>

We are quickly rebuked. Variables of type Object can only see the methods
of the Object class. Since our Square has a method diameter(), we would
have to cast the Object variable to a Square before calling diameter. That
is really a graceless solution to the problem and a last resort. There is an
important trade-off here: variables of more general type can see more types of
objects, but at the same time, they may see fewer methods.

The moral of this fable is thus: Use variable types that are as general as you
need but not too general. In our case, here, it would make sense to have Shape
variables point at the various shapes.

Now let us have a Shape variable point at the different shapes and call their
methods. Here we have a Shape variable pointing at all the different kinds of
shapes. Notice how all of the methods work. Go ahead and test all three for
each type.

> Shape s = new Circle(10);
> s.area()
314.1592653589793
> s = new Rectangle(12,5);
> s.diameter()
13.0
> s = new Square(10);
> s.perimeter()
40.0
>

9

2.1 Abstract Classes: A First Pass

Does the Shape class need these [really stupid] method bodies? As of now, yes.
To add insult to injury, we do know that it makes absolutely no sense at all to
create an actual Shape object. So, how do we shuck the silly method stubs and
keep order in the kingdom here?

We make the methods of our Shape class be abstract. This allows us to
dispose of the method bodies and have only method headers, ending with semi-
colons. This also forces any child class of Shape to implement those methods.
You can have variables of abstract class type which can point down the inheri-
tance tree, just as regular class variables do.

To achieve our goal we first mark our Shape class abstract as follows. Here
we see the original code.

public abstract class Shape
{

public double area()
{

return 0;
}
public double perimeter()
{

return 0;
}
public double diameter()
{

return 0;
}

}

The second step consists of making all of the methods inside abstract and am-
putating their bodies. Hello Henry VII!

public abstract class Shape
{

public abstract double area();
public abstract double perimeter();
public abstract double diameter();

}

Look how svelte and pretty our class is! Gone are its useless pro forma method
bodies. You should go back and retry the earlier examples with our new code.
It all works nicely!

10

Go ahead and try to make a new Shape() and watch the compiler spill angry
yellow all over your attempt. You cannot make instances of an abstract class.

Here are a couple of things you should know. You can declare any class
abstract. If you do, instances of it cannot be created. If you give any class an
abstract method, you must declare the entire class abstract, and instances of it
cannot be created.

2.2 Polymorphism, Delegation, and Visibility

How does this polymorphism thing work? We had the Shape variable pointing
at a 12 × 5 rectangle. When we said “s.diameter(),” here is what happened.
The variable s sent the message to its object, “compute your diameter.” The
actual job of computing the diameter is delegated to the object to which s is
pointing. Since the object pointed at by s is is a Shape object, we can be
confident it will know how to compute its diameter. In fact, at that point in the
code, s was pointing at a Rectangle, so the Rectangle computes its diameter
and returns it when commanded to do so.

The variable type determines what methods can be seen and the job of
actually carrying out the method is delegated to the object being pointed at by
the variable.

We summarize here with two principles

• The Visibility Principle The type of a variable pointing at an object
determines what methods are visible. Only methods in the variable’s
class may be seen. Variables can have regular or abstract class type, since
variables do not actually have any responsibility for executing code.

• The Delegation Principle If a variable is pointing at an object and a
visible method is called, the object is responsible for executing the method.
Regardless of a variable’s type, if a given method in the object is visible,
the object’s method will be called. Remember objects are strongly aware
of their type so you can do this.

2.3 Understanding More of the API Guide

Go to the API guide and bring up JFrame. Here is the family tree for JFrame.
It can be seen right near the top of the page for JFrame.

java.lang.Object
java.awt.Component
java.awt.Container
java.awt.Window

11

java.awt.Frame
javax.swing.JFrame

The JFrame class in the javax.swing package extends the old Frame class
in java.awt, the Abstract Window Toolkit package. We now now each class in
the list above extends the one above it.

Notice that the package structure of the java class libraries and the inher-
itance structure are two different structures. The two hierarchies are more or
less independent from one another.

You are not limited to using the methods listed in the method summary for
JFrame. Scroll down below the method summary. You will see links for all the
methods inherited from Frame. Below this, methods are listed for all ancestor
classes right up to Object. You can click on any named method and view its
method detail on its home API page from the ancestor class.

Also on this page, you will see a Field Summary. Fields can be either state
variables or static variables. You will notice that many of these are in caps. It
is a universally-observed convention to put a variable name in caps when the
variable is a constant. Most static fields you see will be constants.

One static field we will commonly use with the JFrame class is

JFrame.EXIT_ON_CLOSE

which we will use to tell an app to quit when its go–away box is clicked. Oth-
erwise, your app remains running in memory; it just is not visible.

The quantity JFrame.EXIT_ON_CLOSE is actually an integer; type it into the
interactions pane to see what integer it is.

One new keyword you should know about is protected. This is an access
specifier that says, “Descendants can see but nobody else.” It allows descen-
dant classes access to state variables in ancestor classes. It is better to avoid
protected, to make everything private. We have seen how to use super to
initialize state variables in a parent class. You will see the protected keyword
fairly often in the API guide.

How do I know if a class is abstract? Look in the API guide and find
the class AbstractList; clearly it will be abstract. Go to the top of the page.
You will see the fully-qualified name, the family tree, and then its implemented
interfaces and direct descendants. Just below that you see this

public abstract class AbstractList<E>
extends AbstractCollection<E>
implements List<E>

12

The first line tells all: See the word abstract?

So, in summary, you can declare any class abstract and instances of it cannot
be created. You can declare methods in a class abstract and they cannot have
a method body. Any child class must override these methods unless, it too, is
abstract. Any class containing an abstract method must be marked abstract.
However, an abstract class is not required to have any abstract methods.

2.4 The @Override Annotation

When you override a method of a parent class, you have the option of using the
@Override annotation. This tells the compiler to check that you are overriding a
method in a parent class. The compiler will verify that you are using a correct
signature and return type for the method you are overriding. If you do not
use the correct signature, you might accidentally overload the inherited method
instead of overriding it. Here we show how to use the annotation.

public class Bar
{

int count(int x)
{

return x;
}

}

public class Foo extends Bar
{

@Override
int count(int x)
{

return 2*x
}

}

You should always use this method when overriding Object’s toString()
and equals(Object o) methods. You will see it used throughout the rest of
the book.

2.5 Why Not Have Multiple Inheritance?

Class designers often speak of the “deadly diamond;” this is a big shortcoming
of multiple inheritance and can cause it to produce strange behaviors. Shortly,
we will see that Java has a clever alternative that is nearly as good with none
of the error-proneness.

13

Imagine you have these four classes, Root, Left, Right and Bottom. Suppose
that Left and Right extend Root and that Bottom were allowed to extend Left
and Right.

Before proceeding, draw yourself a little inheritance diagram. Graphically
these four classes create a cycle in the inheritance graph (which in Java must
be a rooted tree).

Next, imagine that both the Left and Right classes implement a method
f with identical signature and return type. Further, suppose that Bottom does
not have its own version of f; it just decides to inherit it. Now imagine seeing
this code fragment

Bottom b = new Bottom(....);
b.f(...)

There is a sticky problem here: Do we call the f defined in the class Left or
Right? If there is a conflict between these methods, the call is not well–defined
in our scheme of inheritance.

2.6 A C++ Interlude

There is a famous example of multiple inheritance at work in C++. There is
a class ios, with children istream and ostream. The familiar iostream class
inherits from both istream and ostream. Since the methods for input and
output do not overlap this works well.

However, the abuse of multiple inheritance in C++ has lead to a lot of very
bad errors in code. Java’s creators decided this advantage was outweighed by
the error vulnerabilities of multiple inheritance.

The One-Parent Rule Every class has exactly one parent, except for Object,
which is the root class. When you inherit from a class, you “blow your inheri-
tance.” The ability to inherit is very valuable, so we should only inherit when
it yields significant benefits.

We will see how to circumnavigate the one-parent rule and obtain the benefits
of polymorphism by using Java’s interface construct. We will introduce this
when we start doing event handling, which makes widgets in a window perform
actions when they are activated by the user. First, we will deal with the final
keyword and then we will see how to position widgets in a window, before
turning to interfaces.

14

3 Interfaces

Let us go back to the suite of Shape classes we created earlier. We blew our
inheritance in the Shape class example. The big advantage yielded there was
that a Shape variable could point at a Rectangle, Circle, or a Square. We
could see obtain the diameter, perimeter or area of any such shape.

We got rid of the useless code in the Shape class by declaring it abstract.
Since you cannot compute geometric quantities of a shape without first knowing
what kind of shape it actually is you should make the Shape class abstract.

Let us now explore a new type of programming construct, the interface
construct. We shall create an interface called IShape for handling shapes.

We decided that the essence of being a shape here is knowledge of your
diameter, perimeter and area. Save this in a file named IShape.java.

public interface IShape
{

public double area();
public double perimeter();
public double diameter();

}

What you see inside of the IShape interface is disembodied method headers;
these are just abstract methods. Since you are programming in an interface, it
is unnecessary to mark them abstract.

For now, you are not allowed to have any code inside of an interface. You
may only place abstract method headers in it. An interface is just a named list
of abstract method headers.

Java 8 Note Java 8 allows for the creation of interfaces whose methods have
default implementations, but we will not address this at this early stage of the
game. Many object-oriented programmers view this development askance and
say it is only used for the sake of backward compatibility.

This is a debate that will shake out over time, but we do not need to worry
about it for now.

An interface is an offer to sign a contract in Java. You know, for instance,
that a Rectangle should be a IShape. To sign the contract, modify the class
header header to read

public class Rectangle implements IShape

You will see that, when you type the word implements into DrJava, it turns
blue. (Note: forgetting the ‘s’ on implements is a common error.) This indicates

15

that implements is a language keyword. By saying you implement an interface,
you warrant that your class will implement all methods specified in the interface,
unless it is abstract and it passes this job off to its children. This contract is
enforced by the compiler.

If you are creating a child class, you can use methods from ancestor classes
to satisfy the requirements of implementing an interface.

An example of this construct from the standard libraries is the the Runnable
interface; this has only one method: public void run(). Look it up in the API
guide; it lives in the package java.lang.

Interfaces are not classes. Because they contain abstract methods, you may
not create an instance of an interface using the new keyword. This would make
absolutely no sense, because none of its methods have any code.

Because of the visibility principle, you can create variables of interface type.
Such variables may point at any instance of any class implementing that inter-
face. This works because the method’s type is specified by its method header.
It is the actual object that contains the code which executes.

You can also have arguments for methods of interface type and pass any
object whose class implements that interface as an argument to the method.

Go back to the classes we created earlier that descended from Shape. Modify
them to implement IShape instead, and polymorphism will work perfectly! Here
is a driver program.

public class IShapeDriver
{

public static void main(String[] args)
{

IShape s = new Rectangle(6,8);
System.out.println("6X8 rectangle diameter = "

+ s.diameter());
s = new Square(10);
System.out.println("10X10 square area = " + s.area());
s = new Circle(5);
System.out.println("circle of radius 5 perimeter = "

+ s.perimeter());
}

}

Run it and get this output.

> java IShapeDriver
6X8 rectangle diameter = 10.0
10X10 square area = 100.0
circle of radius 5 perimeter = 31.41592653589793

16

The variable of interface type pointed at all of the different shapes and the
desired results were achieved. Now append this line to the code

IShape s = new IShape();

and see the angry yellow.

1 error found:
File: /home/morrison/Java/IShapeDriver.java [line: 11]
Error: /home/morrison/Java/IShapeDriver.java:11:

IShape is abstract; cannot be instantiated

This is the compiler’s diplomatic yellow reminder that you cannot create in-
stances of interfaces. Note the compiler’s use of the term “abstract” for a body-
less method header.

Is there a one-parent rule for interfaces? Happily, no. Why is this true?
We learned that the deadly diamond is triggered by multiple inheritance. If
a child has two parents with two different methods with the same name and
signature, there is a conflict

No such conflict exists for interfaces because their methods are abstract!
There is no code to conflict. So if you have a class C that you want to have
implement interfaces X, Y, and Z, you simply do this.

public class C implements X, Y, Z
{

//code
}

This comma-separated list can have as many interfaces as you wish. Your class
must have all of the methods specified by the interfaces you are implementing.

What if two interfaces have a method in common? It just needs to be
present; you are simply killing two birds with one stone by having it present in
your class.

A Design Tip If all of the methods of an abstract class are abstract, make
it an interface.

3.1 The API Guide, Again

The Java libraries contain an abundance of interfaces; these serve as a means
for organizing classes. If you look in the class window, you can tell an item

17

listed is an interface if it is italicized. An example of this, which we shall
soon use is ActionListener. Click on it to view its documentation. It has a
superinterface called EventListener. Interfaces can be extended in the same
manner as classes. A child interface simply adds more method headers. A
superinterface is a parent interface. ActionListener has a subinterface called
Action. Note that interfaces can be exteneded in a manner entirely similar to
that of classes. Extending an interface just creates a new interface with new
methods not specified by they parent.

Next, you will see a list of all classes that implement ActionListener; it
is quite large. ActionListener has one method,

public void actionPerformed(ActionEvent e);

so any implementing class must have a method with this header. Click on some
of the implementing classes and hunt for their actionPerformed methods.

Consider its parent interface. It must have no methods! Let us explore
EventListener. Indeed, it is devoid of methods. It is simply a “bundler”
interface that ties a bunch of classes together with a common bond. There are
several interfaces like this in the Java standard libraries.

Quite a few interfaces in Java specify just a single method. For example
the Runnable interface requires public void run(), and the ActionListener
interface requires public void actionPerformed (ActionEvent e). These
are examples of what are called functional interfaces. A functional interface
must specify exactly one abstract (bodyless) method. As we shall see soon,
functional interfaces have some very nice properties in Java, which can shorten
and simplify your code. We will make use of these for handling simple action
events.

Dangerous Bend Suppose interface B extends interface A. If interface A
has one abstract method and interface B adds a new method, then interface B
cannot be a functional interface, since B will, in fact, specify two methods. Some
interfaces have no methods; for example the interfaces java.io.Serializable
and java.awt.event.EventListener have no methods. Such an interfaces
cannot be a functional interfaces.

You can make your own functional interfaces. If you do so, use the @FunctionalInterface
annotation. It tells the compiler you intend to make a functional interface and
flags an error if you fall victim to the dangerous bend we just described.

Here we show a simple example

@FunctionalInterface
public interface RealFunction
{

18

public double compute(double x);
}

For your edification, we show an example where the compiler flags an error.

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
@FunctionalInterface
public interface Clunker extends ActionListener
{

public int clunk();
}

The interface ActionListener already specfies one method, public void
actionPerformed(ActionEvent e). So this interface actually specifies two
methods, actionPerformed and clunk(). We compile and get this friendly
message.

$ javac Clunker.java
Clunker.java:3: error: Unexpected @FunctionalInterface annotation
@FunctionalInterface
^

Clunker is not a functional interface
multiple non-overriding abstract methods found in interface Clunker
1 error

$

Remember, is is a far, far better thing that the compiler flag errors than
you deal with them in a messy runtime situation. Use this annotation for your
protection and to make your intent explicit.

Programming Exercises

1. Create a new class Triangle, which implements IShape. Look up Herron’s
formula to find the area of a triangle from its three sides. Remember, the
diameter of a shape is the greatest distance between any two points in the
shape. This should make computing the diameter of a Triangle simple.

2. Create a new class EquilateralTriangle. From whom should it inherit?
3. Extend the interface IShape to a new interface IPolygon, which has an

additional method
public int numberOfSides();

Decide which shapes should implement IPolygon and make the appropri-
ate changes. The extends keyword is used for making child interfaces,
just as it is used for making child classes.

19

4. Look in the package java.util. What interfaces in this package are
functional interfaces?

4 A Framework for our GUI Programs

We are going to create a simple framework for creating all of our GUI classes.
As you are about to see, this is necessary to keep your applications running
sanely and cleanly.

What we have not discussed so far is that Java has a capability called thread-
ing built into it. A thread in Java is a sub-process launched within a Java
program; you can have several threads running concurrently within any given
program. Threads run almost like independent programs within your program’s
process; in fact, Linux regards them as full-blown processes in their own right.
Having several threads running at once is called multithreading. Every thread
has its own call stack which is independent of those in the other threads.

Whether you know it or not, all Java programs of any size at all are multi-
threaded. The garbage collector runs it its own thread, monitoring your the
heap section of your program’s memory for orphaned objects and deallocating
their memory after they get orphaned. The method main starts the main thread,
so a Java program always has the garbage collector and main threads running
concurrently.

When you interact with a modern GUI program, your communications to the
computer come in the form of events. Events include such things as keystrokes,
mouse clicks, and button pushes. These are all initiated by the user of the
computer.

Java manages events with a data structure called a queue. Queues work just
like lines in a cafeteria. You enter the line at the end, and are enqueued in the
line. You go through the line to the service end, where you get what is needed
(food and paying), at which time you are dequeued, and leave the queue, having
got what you were seeking. This completely severs your relationship with the
queue and as far as the queue is concerned, you are gone for good.

In Java there is a queue called the event dispatch queue or event queue for
short. In a GUI, there is a separate thread for the event queue, called logically
enough, the it event dispatch thread. As your program processes events, they
are placed on a queue, which is a first in, first out data structure. The events go
into the queue, wait to be processed, and then are processed and are removed
from the queue. We want to ensure that the events from our GUI enter the event
queue in an orderly fashion. If we do not ensure this, strange things can happen
to your GUI that are patently undesirable. In particular, you want events to
be processed in the order in which the user causes them to occur. This way,
your program will not have sudden magical, nonsensical behavior. The event

20

dispatch thread is a single-file line that executes the code for events in the order
in which they are received.

First, you must implements Runnable as shown in the class Pfooie.java
here.

public class Pfooie implements Runnable
{
//constructors and other methods and instance variables

public void run()
{

//your run code. Build your GUI here.
}
public static void main(String[] args)
{

Pfooie pf = new Pfooie(anyArgumentsYouNeedIfAny);
javax.swing.SwingUtilities.invokeLater(pf);

}
}

Secondly, other thing required is for you to have a run method that looks like
this.

public void run()
{
}

What is that ugly stuff in main? On the first line, you are making an instance
of your class named pf. You then pass this instance to the static method

javax.swing.SwingUtilities.invokeLater

This function runs your run method so that the event queue behaves itself.
Later, when we discuss interfaces in full, you will see that “implements Runnable”
is just a promise you will implement the method

public void run()

Below we furnish a quick summary of what to do.

1. Implement the Runnable interface.

2. Implement a public void run(), as is required by the Runnable inter-
face. Use this method to run your GUI. If the GUI is large, you can
call other methods from run. This method should orchestrate the entire
activity of your GUI.

21

3. Run your GUI by using the static method invokeLater(Runnable r) in
main as shown above. This method lives in the class SwingUtilities.
Since you only use it once, just use the fully-qualified class name and no
import statement is needed.

Your events will now join the event queue in an orderly fashion and they
will execute in the order in which the user creates them. You will see this basic
format used throughout this book.

Programming Exercise In the run method insert these lines.

JFrame f = new JFrame();
f.setSize(500,500);
f.setVisibile(true);

Compile and run. You should see a window appear on your screen.

5 Fun with Mohammed Ali: How to Achieve the
Desired Layout

Let us begin naïvely and wind up in a bind.

Open the interactions pane for an enlightening session in which we try to
place two buttons in a window via its content pane. We begin by building the
frame and adding the left button.

> import javax.swing.JFrame
> import javax.swing.JButton
> JFrame f = new JFrame("Two buttons, I hope");
> f.setSize(500,500);
> JButton left = new JButton("left");
> JButton right = new JButton("right");
> f.getContentPane().add(left);
> f.setVisible(true);

You should see a frame with the title “Two buttons, I hope” in the title bar.
It features a button with "left" emblazoned on it. All is calm and irenic. Here
it is.

22

Now let us try to add the right button. As a concession to reality, we know we
have to make the frame invisible, add the button and make it visible again. We
now do so.

> f.setVisible(false)
> f.getContentPane().add(right);
> f.setVisible(true);

Whoa! we only see one button in the window.

23

It reminds us of one of those nature shows where the biggest chick in the
nest kills its siblings so it gets all of the food. This is a problem. How do we
get these (childish) widgets to play nicely? To create a decent application, we
will need to have several widgets occupying the content pane together.

Quick, Call the cops, or at least attract the attention of Mrs. Worm-
wood and her lethal ruler! The content pane appears to be some kind of
Wild West scene, replete with fratricidal widgets. So the question is: How do we
achieve the desired layout of components in the content pane? To get warmed
up, try this little exercise. It will help you to get accustomed to our new GUI
programming format and give you a sneak preview of things upcoming.

Do-Now Programming Exercises

1. Make a copy of the GUI framework and call it TwoButtons.java. In
addition to implementing Runnable, have it extend JFrame. Do so by
making the class header read as follows.

24

public class TwoButtons extends JFrame implements Runnable

Enter the code you used in the interactions pane into the run method.
There is an important difference: since we are extending JFrame we do
not need to make a JFrame. Instead of saying f.setSize(500,500), just
say setSize(500,500). You can get rid of the f.s. Add the two buttons
to the content pane of the frame.

2. Add this line to your code before adding the buttons to the content pane.

getContentPane().setLayout(new FlowLayout);

Then import java.awt.FlowLayout. What happens? Can you add more
buttons?

The tool we need to control the position of components in a container isis
called a layout manager. A layout manager imposes a layout policy on a con-
tainer, telling the widgets added to it how to fill the available space. This
table provides a brief summary of the most commonly-used layout managers in
Java. You are encouraged to forge ahead and perform experiments. The class
Container has a method called setLayout that allows you to set the layout
manger in that container.

Layout Managers
null This is an absence of a layout manager. You manu-

ally position components by using setLocation and
size them with setSize.

GridLayout The constructor of the GridLayout accepts as its
first argument a number of rows, then a number of
columns. It places widgets in which it is the law of
the land in a grid.

FlowLayout It enforces a “Jimmy Buffet” policy in which widgets
go with the flow. It has several constructors that
give it additional guidance. In a JPanel, this is the
default layout manager.

BorderLayout This has fields for NORTH, SOUTH, EAST, WEST
and CENTER. The CENTER field is “piggy” and
will devour the entire content pane. The other fields
occupy the edges of the container. This is the default
layout in a Container. If you simply add something
to a container, by default it adds to CENTER, which
hogs all the space.

BoxLayout This positions widgets vertically in a Jimmy Buf-
fetesque fashion.

There is one other layout manager, called a GridBagLayout, which gives
precise control over the placement of widgets. This, however, is usually used by
front-end programs such as NetBeans, that generate GUIs. You do not want to
work manually with these.

25

So, why did only one button show up? The content pane of a JFrame is
a Container, which by default, comes with the layout manager BorderLayout.
By default, if you add a widget it is added to the center of the container. If you
add one thing to the center, then another, then the second thing will cover the
first.

Let us make a simple example that shows a how to use the border layout
correctly. Begin by making this shell code.

import javax.swing.JFrame;
import java.awt.Container;
import java.awt.BorderLayout;
public class BorderLayoutDemo extends JFrame implements Runnable
{

public void run()
{

setSize(550,400);
setTitle("Border Layout Demonstration");
setVisible(true);

}
public static void main(String[] args)
{

BorderLayoutDemo bld = new BorderLayoutDemo();
javax.swing.SwingUtilities.invokeLater(bld);

}
}

Now compile and run; a JFrame should appear on the screen entitled “Border
Layout Demonstration.” Next add five JButtons to the content pane using the
static BorderLayout constants as follows.

Begin by importing JButton at the top of your class file. Then place these
lines in the run method just before the setVisible line.

Container c = getContentPane();
JButton north = new JButton("North");
JButton south = new JButton("South");
JButton east = new JButton("East");
JButton west = new JButton("West");
JButton center = new JButton("Center");
c.add(BorderLayout.NORTH, north);
c.add(BorderLayout.SOUTH, south);
c.add(BorderLayout.EAST, east);
c.add(BorderLayout.WEST, west);
c.add(BorderLayout.CENTER, center);

You will now see this. The exact appearance of your window will vary, depending

26

on your operating system. This one was generated on a Mac.

Let us now discuss the working of this example. These two lines set things
up for the button labeled “North.”

JButton north = new JButton("North");
c.add(BorderLayout.NORTH, north);

The first line is obvious; it just creates the button. In the second line, notice
the use of add. We first use an integer, the static constant NORTH of the class
BorderLayout, then the second argument is the button. This places the buttton
on the north side of the content pane. Note that in the line

c.add(BorderLayout.CENTER, center);

we could have instead have written

c.add(center);

since a BorderLayout by default places things in the center of the container it
rules.

27

6 Can I have Layouts Within Layouts?

Happily, yes.

Java supplies a class called a JPanel that is an ideal tool for corralling a
group of related graphical widgets. You can add JPanels to the content pane.
Take note of the fact that a JPanel, by default uses a FlowLayout. When using
a JPanel, you can specify a layout manager either of these two ways. You can
pass a new layout manager to the constructor

JPanel p = new JPanel(new BorderLayout());

or you can do this

JPanel p = new JPanel();
p.setLayout(new BorderLayout());

There is nothing special about the border layout. You can use any of the layout
managers in this fashion. To use a null layout, just pass null to setLayout.

You can create JPanels, and impose a layout manager on each. You can
then add these, using layout managers for other panels and containers. Using
the basic layout managers and this principle, you have huge latitude. This
phenomenon may be used recursively.

7 Sur l’Carte: What’s on the Menu

Since we have shown you how to create buttons, let’s see how to use their close
cousins, menus. If you look in at typical application’s menus, you will see the
following things.

1. There is a menu bar, this is where the menu items live. It is a containter.

2. There are menus; these are the headings. Click on one and you expose...

3. the menu items. These behave like buttons. When you release on a menu
item, a specific action occurs.

This section consists of a lab exercise in which you put menus in a window.
At this time, you are just constructing a view. Whenever you create menus you
need “The Trinity” of swing classes which include

• javax.swing.JMenuBar This is a container that holds menus. It can also
hold other items as well, such as buttons or textfields.

28

• javax.swing.JMenu This is the class that makes menus. It is a container
that can hold menu items. You can add other things to it a well.

• javax.swing.JMenuItem This is the class that makes menu items. Re-
leasing on a menu item triggers an action identical to that of clicking a
button.

7.1 Step 1, Create a Frame and insert a menu bar.

Let us agree to begin with this class. Note that the trinity is imported here.

import javax.swing.JFrame;
import javax.swing.JMenuBar;
import javax.swing.JMenu;
import javax.swing.JMenuItem;

public class MenuDemo extends JFrame implements Runnable
{

public void run()
{

setSize(500,500);
setDefaultCloseOperation(EXIT_ON_CLOSE);
setVisible(true);

}
public static void main(String[] args)
{

MenuDemo md = new MenuDemo();
javax.swing.SwingUtilities.invokeLater(md);

}
}

Now comes your job. Put your code in the run method before setVisible.

1. Look in the JMenuBar documentation. How do you make an empty JMenuBar?

2. Look in the JFrame documentation. What do you do to put the menu bar
you just created into the JFrame?

3. Right after setSize, add this code, setTitle("Menu Demo");

If you complete this correctly, here is what you will see

29

If you look really closely, you can see a one pixel high menu bar. It’s small
because it’s empty.

Step 2, Add Some Menus It’s time for you to write some more code.

1. Make four JMenus named File, Appetizer, Entree, and Dessert.

2. Get them in into the menu bar. Note that the method for doing this is
an inherited one. How did we put buttons in a container? Expect some
parallelism.

30

Step 3, Populate the Menus Now you will add menu items to the menus
as specified.

1. Add a Quit menu item to File

2. To the Appetizer Menu, add Escargot, Torchon of Foie Gras, Chopped
Salad, Steak Tartare, and Tuna Sashimi menu items.

3. To the Entree menu add these menu items: Steak au Poivre, Seared Yel-
lowfin Tuna, Roast Quail, Pork Tenderloin, and Rack of Lamb.

4. To the dessert menu add these items: Bananas Foster, Molten Chocolate
Cake, Bourbon Pecan Pie, House Made Ice Creams

If you do this correctly, you will be able to click on a menu, see its contents,
and select one.

31

8 Creating a Complex View

In this section, we will create a view for a calculator. We will create a panel to
hold the a 4× 3 number pad that looks like this.

1 2 3
4 5 6
7 8 9
0 . (-)

The (-) button is for changing the sign of a number. To its right we might
have a vertical panel of operator buttons that includes +, -, *, / and =. We
shall do this, but first let us attend to an important matter. Begin by entering
this code into the DrJava code window.

import javax.swing.JFrame;
import javax.swing.JButton;

32

import javax.swing.JPanel;
import java.awt.BorderLayout;
import java.awt.GridLayout;

public class Calculator extends JFrame implements Runnable
{

public void run()
{
}
public static void main(string[] args)
{

Calculator c = new Calculator();
javax.swing.swingutilities.invokelater(c);

}
}

Compile right away to ensure you have entered it correctly. We have several
import statements which will be the ones we will need as we develop this appli-
cation. Now we add more code. We need two JPanels to hold the number keys
and the op keys. We need to set layouts for each panel and then, in turn, add
them to the content pane.

import javax.swing.JFrame;
import javax.swing.JButton;
import javax.swing.JPanel;
import java.awt.BorderLayout;
import java.awt.GridLayout;

public class Calculator extends JFrame
{

JPanel numberPanel;
JPanel opPanel;
public Calculator()
{

numberPanel = new JPanel(new GridLayout(4,3));
opPanel = new JPanel(new GridLayout(5,1));

}
public void run()
{

getContentPane().add(BorderLayout.CENTER, numberPanel);
getContentPane().add(BorderLayout.EAST, opPanel);

}
public static void main(string[] args)
{

Calculator c = new Calculator();

33

javax.swing.swingutilities.invokelater(c);
}

}

So far, nothing is visible, so let us select a size and make it visible. We also
set a default close operation so the app quits when its go-away button is clicked.

import javax.swing.JFrame;
import javax.swing.JButton;
import javax.swing.JPanel;
import java.awt.BorderLayout;
import java.awt.GridLayout;

public class Calculator extends JFrame implements Runnable
{

JPanel numberPanel;
JPanel opPanel;
public Calculator()
{

numberPanel = new JPanel();
opPanel = new JPanel();

}
public void run()
{

setSize(500,400);
opPanel.setLayout(new GridLayout(5,1));
numberPanel.setLayout(new GridLayout(4,3));
getContentPane().add(BorderLayout.CENTER, numberPanel);
getContentPane().add(BorderLayout.EAST, opPanel);
setDefaultCloseOperation(EXIT_ON_CLOSE);
setVisible(true);

}
public static void main(String[] args)
{

Calculator c = new Calculator();
javax.swing.SwingUtilities.invokeLater(c);

}

}

Now let us add a little code to the run method so the application will be
visible when it runs.

When you compile this, next hit F2 to run it. An empty, title-less window
will appear on your screen. Go to the first line of the constructor and place the
line at the beginning of the constructor.

34

super("Calculator Demo");

Your window will get a title in the title bar. Recall that the super keyword
launches a call to the parent constructor. This constructor causes a title to be
placed in the title bar. Our calculator, however, is still bereft of buttons. Let
us create these next. Add two new state variables

JButton [][]numberKeys;
JButton [] opKeys;

These are arrays of buttons. The numberKeys array is a two-dimensional array,
i.e. a grid of buttons. Think of the first number as specifying the number of
rows and the second as specifying the number of columns. It makes sense to use
an array since we are keeping related things all in one place, and the collections
we are keeping are of a fixed size. It will next be necessary to initialize the
buttons in the constructor. First we will take care of the number keys. Add
this code to the constructor.

numberKeys = new JButton[4][3];
//get in digits 1-9 with a dirty trick
for(int k = 0; k < 3; k++)
{

for(int l = 0; l < 3; l++)
{

numberKeys[k][l] = new JButton("" + (3*k + l + 1));
numberPanel.add(numberKeys[k][l]);

}
}
//fill in the rest of the number keys manually
numberKeys[3][0] = new JButton("0");
numberPanel.add(numberKeys[3][0]);
ys[3][1] = new JButton(".");
numberPanel.add(numberKeys[3][1]);
numberKeys[3][2] = new JButton("(-)");
numberPanel.add(numberKeys[3][2]);

Let us explain some of the things occurring here. The line

numberKeys = new JButton[4][3];

directs that we create an object capable of pointing at an array of JButtons
with four rows and three columns. Next comes a for loop for getting each entry
of the array to point at an actual button. It then causes that button to be added
to the panel of number keys. Do you see how this dirty trick got the digits 1-9
in their proper places? Notice the exploitation of lazy evaluation as well.

35

for(int k = 0; k < 3; k++)
{

for(int l = 0; l < 3; l++)
{

numberKeys[k][l] = new JButton("" + 3*k + l + 1);
numberPanel.add(numberKeys[k][l]);

}
}

After the for loop, we just added the remaining buttons in one–by–one.

Now compile and run; you will see a numerical keyboard occupying the
content pane. Since we haven’t put anything in the op panel, it does not yet
appear. We shall now create the op panel. Append these pieces of code to the
constructor. Compile and check after you add each one. We begin by creating
all of the op buttons. They live in an array with five elements.

opKeys = new JButton[5];
opKeys[0] = new JButton("+");
opKeys[1] = new JButton("-");
opKeys[2] = new JButton("*");
opKeys[3] = new JButton("/");
opKeys[4] = new JButton("=");

This handy little for loop finishes the job.

for(int k = 0; k < 5; k++)
{

opPanel.add(opKeys[k]);
}

Compile and run and you will see the completed product. You can see that
we can integrate various containers into the content pane, each with a different
layout manager to achieve professional–looking effects.

Let us conclude by showing the entire program.

import javax.swing.JFrame;
import javax.swing.JButton;
import javax.swing.JPanel;
import java.awt.BorderLayout;
import java.awt.GridLayout;

public class Calculator extends JFrame implements Runnable
{

36

JPanel numberPanel;
JPanel opPanel;
JButton [][]numberKeys;
JButton [] opKeys;
public Calculator()
{

super("Calculator Demo");
numberPanel = new JPanel();
opPanel = new JPanel();

}
public void run()
{

setSize(500,400);
opPanel.setLayout(new GridLayout(5,1));
numberPanel.setLayout(new GridLayout(4,3));
getContentPane().add(BorderLayout.CENTER, numberPanel);
getContentPane().add(BorderLayout.EAST, opPanel);
setDefaultCloseOperation(EXIT_ON_CLOSE);
numberKeys = new JButton[4][3];
//get in digits 1-9 with a dirty trick
for(int k = 0; k < 3; k++)
{

for(int l = 0; l < 3; l++)
{

numberKeys[k][l] = new JButton("" + (3*k + l + 1));
numberPanel.add(numberKeys[k][l]);

}
}
//fill in the rest of the number keys manually
numberKeys[3][0] = new JButton("0");
numberPanel.add(numberKeys[3][0]);
numberKeys[3][1] = new JButton(".");
numberPanel.add(numberKeys[3][1]);
numberKeys[3][2] = new JButton("(-)");
numberPanel.add(numberKeys[3][2]);
opKeys = new JButton[5];
opKeys[0] = new JButton("+");
opKeys[1] = new JButton("-");
opKeys[2] = new JButton("*");
opKeys[3] = new JButton("/");
opKeys[4] = new JButton("=");
for(int k = 0; k < 5; k++)
{

opPanel.add(opKeys[k]);
}
setVisible(true);

37

}
public static void main(String[] args)
{

Calculator c = new Calculator();
javax.swing.SwingUtilities.invokeLater(c);

}
}

Programming Exercises

1. Look up the class JTextField in the API guide. Modify the calculator
code to place a JTextField with a white background on the top of the
calculator. This is preparation for producing a display in which to show
numbers. Cause the JTextField to display some text.

2. Look up the class Font in the API guide. Look in the JButton class and
see if you can set the font to be bold and to have size 36 numbers on the
buttons.

3. Make the text in the JTextField right-justified. You may need to look in
fields or methods from parent classes.

4. Make the background of the JTextField black and the type red, as you
might see on an old-fashioned calculator.

9 Model-View-Controller

So far, we have confined ourselves to creating the graphical faces, or views, of
applications. They have pretty faces but do no useful work. The next job is to
enable the graphical features we place in a GUI app.

The basic anatomy of a GUI application will be created along the lines of
the Model-View-Controller design pattern. The view is simply the graphical
interface of the application. The model is the application’s state, or business
logic. The controller mediates between the model and the view. When a button
is pushed, the state of the application (the model) is updated, and the view
receives any necessary updates as well. The controller in Java GUI programs
consists of listener classes that “hear” events and execute code in reaction to
them.

Both buttons and menu items broadcast an ActionEvent when they are
selected or pushed. Note that a menu item, fundamentally, is just a button;
when it is selected, it broadcasts an ActionEvent. So, here is how the whole
thing goes.

1. The user pushes a button or selects a menu item.

38

2. The widget broadcasts an ActionEvent.

3. An ActionListener attached to the widget executes the code in its method

{actionPerformed(ActionEvent e)}

This code may carry out actions or change object state. This causes the
widget to be “live” in the sense that the program reacts when the widget
is activated.

Notice that the listener must have a method called

public void actionPerformed (ActionEvent e)
{
}

in its public interface. How is this enforced? It is enforced via the mechanism
of interfaces. We shall now turn our attention to building the controller.

10 Making a JButton live with ActionListener

A We have created a GUI with buttons, and in the exercises, you made an
application with menus in the exercises. If you haven’t done that, now is a good
time for you to go back and create that. So far, what we have accomplished
is the creation of a view for an application. However, these pretty things do
nothing.

A button requires a class that implements ActionListener to make it live.

We begin by creating the graphical shell with the button.

import javax.swing.JButton;
import javax.swing.JFrame;

public class LiveButton extends JFrame implements Runnable
{

private JButton b;
public LiveButton()
{

super("Live Button Demo");
b = new JButton("Panic");

}
public void run()
{

getContentPane().add(b);
setSize(300,300);

39

setDefaultCloseOperation(EXIT_ON_CLOSE);
setVisible(true);

}
public static void main(String[] args)
{

LiveButton l = new LiveButton();
javax.swing.SwingUtilities.invokeLater(l);

}
}

Compile and run; you will have a window with a button in it. Next, create
another class called ButtonListener that implements ActionListener. Note
the necessary import statements.

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

public class ButtonListener implements ActionListener
{

public void actionPerformed(ActionEvent e)
{

System.out.println("AAAAAAAAAAAAAAAAAAAAHHHH!!");
}

}

Now add the following line of code to run inside of LiveButton.

b.addActionListener(new ButtonListener());

When you click on the button, it broadcasts an event, telling your program, “I
have been pushed.” When a button is not live, no one is listening. Now we create
an instance of a ButtonListener. That is like buying a radio allowing you to
listen for ActionEvents, which are broadcast by pushed buttons. When you
do b.addActionListener(new ButtonListener()), you are now telling that
ButtonListener to tune in on b and to execute its actionPerformed method
each time the button b is clicked. For any given button, you may attach as
many ActionListeners as you wish, subject of course, to limits on memory.

For your convenience, we display the entire program here

import javax.swing.JButton;
import javax.swing.JFrame;

public class LiveButton extends JFrame implements Runnable
{

40

private JButton b;
public LiveButton()
{

super("Live Button Demo");
b = new JButton("Panic");

}
public void run()
{

getContentPane().add(b);
setSize(300,300);
setDefaultCloseOperation(EXIT_ON_CLOSE);
b.addActionListener(new ButtonListener());
setVisible(true);

}
public static void main(String[] args)
{

LiveButton l = new LiveButton();
javax.swing.SwingUtilities.invokeLater(l);

}
}

You will need this, too, in the same directory.

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

public class ButtonListener implements ActionListener
{

public void actionPerformed(ActionEvent e)
{

System.out.println("AAAAAAAAAAAAAAAAAAAAHHHH!!");
}

}

11 Lambdas and Functional Interfaces

We will now look at another route to doing event handling for buttons using
the fact that ActionListener is a functional interface. Here we introduce a
new construct, a lambda, which is an anonymous function not belonging to any
class. Lambdas are also found in Python.

Consider this example

e -> System.out.println("AAAAAAAAAAAAAAAAAAAAHHHH!!");

41

This is an anonymous function which has one argument, e and which has body
System.out.println("AAAAAAAAAAAAAAAAAAAAHHHH!!");. Note the arrow in
the syntax: it is formed by a minus sign followed by a greater-than sign. It is a
token; whitespace within it will break it. So, note that - > will reap you some
really ugly compiler errors.

We will now modify our class LiveButton to take advantage of this. We will
then see how it all works.

import javax.swing.JButton;
import javax.swing.JFrame;

public class LiveButton extends JFrame implements Runnable
{

private JButton b;
public LiveButton()
{

super("Live Button Demo");
b = new JButton("Panic");

}
public void run()
{

getContentPane().add(b);
setSize(300,300);
setDefaultCloseOperation(EXIT_ON_CLOSE);
b.addActionListener(
e -> System.out.println("AAAAAAAAAAAAAAAAAAAAHHHH!!");
);
setVisible(true);

}
public static void main(String[] args)
{

LiveButton l = new LiveButton();
javax.swing.SwingUtilities.invokeLater(l);

}
}

You no longer need the ButtonListener class.

It is time to ask, “How did this work?” The change we made in our code all
lies in the line where we call b.addActionListener(...). In the original ver-
sion, we passed an object of type ButtonListener to it. Since ButtonListener
implements the ActionListener interface, it must have an actionPerformed(ActionEvent
e) method. When the button is pushed actionPerformed is called and the
message gets put to stdout.

In the new version, we passed the lambda

42

e -> System.out.println("AAAAAAAAAAAAAAAAAAAAHHHH!!");

Recall we said that ActionListener is a functional interface: it has exactly one
abstract method. The Java8 compiler performs a feat of type inference here: it
says, after putting on its Sherlock Holmes hat and firing up its pipe, “Gee, this
lambda has a single argument and a void return type. It is being passed to the
method b.addActionListener, which requires an action listener. Therefore,
I must deduce that this lambda, is, in fact, the required actionPerformed
method!”

Sneaky, eh? This is a benefit that solely inheres to functional interfaces.
You can happily exploit it for both buttons and menu items. Later, we will
meet MouseListener, which requires five methods. You won’t be able to use
this nifty trick there. At least not without some serious trickery, which in fact
can be managed.

11.1 Lambdas in General

Let us make clear all the features of lambdas. Recall that Python has lambdas.
A typical Python lambda looks like this

lambda x : x*x

Lambdas, in both Python and Java, are function literals. The Python
lambda depicted here is the squaring function. Python lambdas are assignable.
You can do this

f = \lambda x: x*x
print f(5)

and the output 25 will be put to stdout. You can create lambdas like these

lambda : print("foo") ##this has an empty sig and prints "foo"
##Tacit return of None.

lambda x,y,z: x*y*z ##this returns the product of three numbers

In Python, lambdas are primarily meant for short functions. If you are doing
something complex, you really need to fall back to the defmechanism. Lambdas
in Python have a tacit return.

In Java, it’s a little different. The simplest Java lambdas look like this

e -> System.out.println("foo") //same as lambda : print("foo")
(x,y,z) -> x*y*z //same as lambda x,y,z : x*y*z

43

You can also specify types in the sig. For example, you can make a lambda like
this.

(int n, String s) -> n*s.length()
(int x, int y, int z) -> x*y*z

In all of these one-line lambdas, there is a tacit return, just as there is in Python.
Note that e -> System.out.println("foo") has void return type.

In Java, if your lambda has more than one line in its body, you can format
it like so.

e -> {
//line 1
//line 1
//line 2
}

In this case, there is no tacit return. You must put in a return statement if you
wish to return a value from a lambda whose body is enclosed in curly braces.

Can a variable point at a lambda? The answer is yes. The key is provided
by using a variable of functional interface type. Recall that ActionListener
is a functional interface which specifies one method, public void actionPer-
formed(ActionEvent e). You can do the following.

JButton duck = new JButton("Event Emitter");
ActionListener quack = e -> System.out.println("I emit an event.");
duck.addActionListener(quack);

How does this work? It occurs via the magic of type inference. The ActionListener
interface specifies exactly one method. We create a variable of interface type,
duck. Since Java is strongly typed, it knows duck’s type. We now assign a
lambda with a void return type with sig [ActionListner]. Java 8 now says,
"I know that this must be the actionPerformed method, since the lambda’s sig
and return type match this functional interface’s sole specified method. Bam!
You have created an instance of an anonymous class.

Since this is an ActionListener, it can be passed to the JButton’s addActionListener
method.

Programming Exercise Get out your code for MenuDemo.java.

1. Use lambdas to have menu items print out “You ordered xxx for a yyy”
where xxx denotes the name of the item, and yyy can be “appetizer,” “en-
tree,” or “dessert.” You can do this becasue JMenuItems emit ActionEvents
when they are selected.

44

12 Inheritance and Graphics

We will begin by creating the standard graphical shell.

import javax.swing.JFrame;

public class DrawFrame extends JFrame implements Runnable
{

public void run()
{

setSize(500,500);
setDefaultCloseOperation(EXIT_ON_CLOSE);
setVisible(true);

}
public static void main(String[] args)
{

DrawFrame df = new DrawFrame();
javax.swing.SwingUtilities.invokeLater(df);

}
}

To draw, we do the following. We create a class that inherits from JPanel.
We then override the method public void paintComponent(Graphics g).

This method is called automatically by the OS whenever the window re-
freshes. You can also call it by using the repaint() method. Windows refresh
when they are maximized, minimized or re-sized. They may also refresh at other
times when the OS sees fit to do so. Repainting any component causes all of
the components inside of it to repaint recursively.

So, to get started we create a class such as DrawPanel.java shown here.
Note the use of the @Override annotation.

import javax.swing.JPanel;
import java.awt.Graphics;
import java.awt.Color;

public class DrawPanel extends JPanel
{

@Override
public void paintComponent(Graphics g)
{

super.paintComponent(g);//always do this.
//Place instructions here to draw all of the
//stuff that goes in this window.

}

45

Now add one of these panels to the DrawFrame. Just add this line in run()
method.

getContentPane().add(new DrawPanel());

That embeds the DrawFrame inside of your app. You can impose a layout
manager on the content pane and add several panels for drawing if you wish.

What is a Graphics? It is a combined pen and paintbrush that has 16,777,216
colors. You should visit the API page and experiment with the methods. We
will show a few examples here. Note that you can set the color of the pen by
using g.setColor().

Place these lines in paintComponent().

g.setColor(Color.BLACK);
g.fillRect(0,0,getWidth(), getHeight());

This will fill the pen with black pixels and then paint the entire window black.
Try re-sizing the window. The entire window will be filled with black. Why?
When the window is re-sized, the window repaints. A JPanel knows its
width and height; we obtain these with the accessor methods getWidth() and
getHeight(). Now augment the paintComponent method with these lines.

System.out.printf("height = \%s\n", getHeight());
System.out.printf("width = \%s\n", getWidth());

Re-size the window and watch the stdout window. As the window re-sizes,
updates the height and width to the terminal. Experiment with this and watch
its behavior.

Now let’s make a Carolina blue rectangle in the window. Just add this.

g.setColor(new Color(0xabcdef));
g.fillRect(100,100,75,75);

Here is a little magic; we can make a Wolfpack red rectangle that re-sizes with
the window.

g.setColor(Color.RED);
g.fillRect(getWidth()/4,getHeight()/4,

getWidth()/2,getHeight()/2);

Now make some colorful circles. Add this.

g.setColor(Color.BLUE);
g.fillOval(200, 200, 50, 50);

46

g.setColor(Color.YELLOW);
g.drawOval(250,250,100,100);

Finally put it all in a green jail.

g.setColor(Color.GREEN);
for(int k = 0; k < getHeight(); k+= 20)
{

g.drawLine(0, k, getWidth(), k);
}

You can see that drawing in a window is a simple process. To recap you do
the following.

1. Write a class that extends JPanel
2. Override the parent method

public void paintComponent(Graphics g){}

3. In the first line of this method, put

{super.paintComponent(g);}

for safety; this clears the screen gracefully before repainting.
4. Place an instance of this class in the content pane of your JFrame.

13 Abstract Classes: Second Pass

Suppose you have a closely related group of classes. You are remembering
the eleventh commandment, “Thou shalt not maintain duplicate code!” This
animadversion reminds us that, to maintain programs, we sometimes need to
change code. When we do, we do not want to be ferreting out identical code
segments in a group of classes and making the same edit on all of them. That
is folly-filled nonsense to be avoided at any cost.

Such a thing, does, indeed exist and we have already seen it: the abstract
class. We already know that, like an interface, an abstract class cannot be
instantiated. Like an interface, you can create variables of abstract class type
that can point at any descendant class. The abstract class is the item that lies
between the empty–looking interface and the fully furnished class.

An abstract class can have zero or more abstract methods. Abstract methods
are just bodyless method headers. Any non-abstract class inheriting from your
abstract class must have all of the method specified by your abstract class.

We shall create an example of a related group of classes. Suppose you are
Old MacDonald and you have a farm. You are going to write code to keep track

47

of the many things that are on your farm. There are several broad categories you
might have: Animal, Implement, Building and Crop might be some of these
categories. These sorts of things are good choices for being abstract classes or
interfaces.

The main thing that motivates you to use abstract classes is that you might
actually have classes that share code. This is when you use abstract classes. If
the classes merely share functionality, you might want to use an interface.

We will build small class hierarchy. All classes live in a family tree. All of
our farm classes descend from the root class FarmAsset.

public abstract class FarmAsset
{

private String name;
public FarmAsset(String _name)
{

name = _name;
}
public String getName()
{

return name;
}

}

Since this class is marked abstract, it cannot be instantiated. You must pro-
duce a new descendant class to make an actual instance, but you can create
variables of FarmAsset type Now let us make an Animal class. Some class
designers would make their variables protected for convenience, but we make
them private and initialize them via calls to super. This is consistent with
the design principle that we make our internal working of our classes private.
Observe that Animal inherits getName from its parent.

public abstract class Animal extends FarmAsset
{

private String noise;
private String meatName;

public Animal(String _name, String _noise, String _meatName)
{

super(_name);
noise = _noise;
meatName = _meatName;

}
public String getNoise()
{

48

return noise;
}
public String getMeatName()
{

return meatName;
}

}

Next we create a class for crops.

public abstract class Crop extends FarmAsset
{

private double acreage;
public Crop(String _name, double _acreage)
{

super(_name);
acreage = _acreage;

}
}

Finally, we create a concrete (non-abstract) class which we can instantiate.
We shall begin with the honorable pig. Notice the brevity of the code. What we
did here was to push the common features of farm assets as high up the tree as
possible. You do not need to create the getName, getMeatName and getNoise
for each animal. We added a toString method for Pig so it would print nicely.

public class Pig extends Animal
{

public Pig(String _name)
{

super(_name, "Reeeeet! Snort! Snuffle!", "pork");
}
@Override
public String toString()
{

return "Pig named " + getName();
}

}

> Pig p = new Pig("Wilbur");
> p.getNoise()
"Reeeeet! Snort! Snuffle!"
> p.getName()
"Wilbur"
> p.getMeatName()

49

"pork"
> p
Pig named Wilbur

Here is another simple example. Suppose you run a school and are in
charge of keeping track of all people on campus. You might have a class called
Employee, with an abstract method computePay(). You know that all employ-
ees are paid, so you place this line in your Employee class.

public abstract double computePay(double hoursWorked);

Your school likely has hourly and salaried employees. A salaried employee’s
paycheck is fixed each pay period. An hourly employee’s pay is computed by
multiplying the hours worked by the hourly rate of pay, and adding in the legally
required time-and-a-half for overtime. You would likely have two classes extend-
ing the abstract Employee class, HourlyEmployee and SalariedEmployee. All
employees have many things in common: these go into the parent class. You
have to know their social security number, mail location, and department. Your
Employee class might have a parent class Person, which would keep track of
such details common to everyone on a school campus, including, name, address,
and emergency contact information. From Person, you might have child class
Student. A Student should know his locker number, class list, and grade.

Using classes, we model the school in a “real-life” way. We create a hierarchy
of classes, some of which are abstract. We look at various bits of information
germane to each class, and we keep that information as high as possible in the
class hierarchy; for instance, the name of an individual is really a property of
Person, so this class should have a getName() method. All employees have a
paycheck, so we create the abstract computePay() method so that every class of
employee we ever create is required to to have the computePay() method. That
requirement is enforced by the compiler, just as it is for interfaces. It confers
an additional benefit. A variable of type Employee can call the computePay()
method on the object it points to, and that object will compute its pay, regard-
less of the type of employee it represents.

Programming Exercises

1. Create a class for Cow and Goat. Instantiate these and have a variable of
type FarmAsset point at them. What methods can you call successfully?
Have a variable of type Animal point at them. What methods can you
call now?

2. Have you ever noticed that the meat name for fowl is the same as the
animal’s name. For instance, we call chicken meat “chicken” and duck
meat “duck.” Create a new abstract class Fowl that exploits this. Then
create classes Chicken, Goose and Duck. Point at these with an Animal
variable, and see what methods you can call.

50

3. Create a new abstract class Implement to encompass farm implements
such as tractors, combines, or planters. Make some child classes for farm
implements.

14 Examining Final

The keyword final pops up in some new contexts involving inheritance. Let
us begin with a little sample code here

public class APString extends String
{
}

We compile this, expecting no trouble, and we get angry yellow, along with this
error message.

1 error found:
File: /home/morrison/book/texed/Java/APString.java [line: 1]
Error: /home/morrison/book/texed/Java/APString.java:1:

cannot inherit from final java.lang.String

The String class is a final class, and this means that you cannot extend it.
Why do this? The creators of Java wanted the String class to be a standard.
Hence they made it final, so that every organization under the sun does not
decide that it would like to create (yet another annoying....) implementation of
the String class. An example of this undesirable phenomenon existed during
the days of the AP exam in C++. Subclasses of the string and vector classes
were created for the the exam. Near the top of the API page for the String
class, you will see it says

public final class String extends Object

Look here on any API page to see if a given class is final. Methods in classes
can also be declared final, which prevents them from being overridden. We
present a table with all of the uses of final, including a new context in which
we mark the argument of a method final. Note the all of the wrapper classes
are final.

51

final Exam!
primitive When a variable of primitive type is marked final, it

is constant, since it cannot be assigned a new value.
Object When a variable of object type is marked final, it can

never point at an object other than the object with
which it is initialized. Mutator methods, however
can change the state of an object being pointed at
by a final variable. What is immutable here is the
pointing relationship between the identifier marked
final and its object. Note that finality is a property
of a variable, and not an object.

class When a class is marked final, you cannot inherit
from it.

method When a method is marked final, you cannot over-
ride it in a descendant class.

argument When an argument of a method is marked final,
it is treated as a final local variable inside of the
method.

14.1 final Classes and Performance

In the days of yore, people used the final keyword to improve performance.
When a method is overridden, the selection of the code to be executed is done
dynamically, i.e. at run time. In old versions of java, this came at some cost to
performance. Today that is no longer really true. Use finality to enforce design
intent and to keep the structure of any hierarchy of classes you produce rational.
Do not feel obliged to use it for performance reasons. We will now return to the
world of GUIs.

15 Terminology Roundup

We have blasted through a lot of important ideas here, so we will make a tidy
list of all of the new terms we have encountered.

• abstract class An abstract class cannot be instantiated. Any class con-
taining an abstract method must be marked abstract. However, any
class can be marked abstract to prevent instances of it from ever being
made.

• abstract method Abstract methods are bodyless method headers. They
appear in both abstract classes and interfaces.

• compositional relationship This is a has-a relationship, the most com-
mon in object-oriented programming. One class uses instances of other
classes for state. For example, a BigFraction has two BigIntegers.

52

• delegation principle This is the principle that says that an object is
responsible for executing method codes, regardless of the type of variable
pointing to it.

• event dispatch thread This is the thread through which all GUI events
are passed and processed. It is a single-file thread that executes events in
order in which they are received.

• extends If you have two classes A and B and if A extends B, then A
inherits all of the public non-static methods of B. This is how we signify
inheritance in Java.

• inheritance This is an is-a relationship between classes. If class A inherits
from class B, then A is a B.

• interface An interface is a named list of abstract methods.

• implements This keyword indicates a class is signing the implementation
contract of an interface.

• lambda A lambda is an anonymous function. It is not affiliated with any
class.

• listener classes are classes that “hear” events and respond to them by
executing code. So far, we have met the ActionListner interface for
classes whose objects respond to button pushes and menu item selections.

• model-view-controller design pattern This is the general anatomy
of a GUI app. It consists of the view, which is the graphical visual por-
tion, the model, which is the state embodying the business logic, and the
controller, which consists of the listeners.

• override When a child class re-implements a method of the parent class,
this takes primacy and supercedes the parent method.

• @Override This is a request to the compiler to verify that we are overriding
a method from an ancestor class correctly.

• polymorphism This refers to the ability of variables of interface type to
point at any object whose class implements the variable’s interface type,
or the ability of variables of class type to point down the inheritance tree.

• sibling classes Two classes are sibling if they have the same parent class.

• super Used in the first line of a constructor, super can be used to call
one of the parent constructors. It is a compiler error to use it in a con-
structor after the first line. You can also use super to call parent class
methods. For example in the method paintComponent in a JPanel, you
call super.paintComponent(g) to properly clear the panel between re-
paintings.

• thread A thread is an independent sub-process of your java code that has
its own call stack.

• visibility principle This is the principle that says that a variable’s type
determines the methods that are visible to it.

53

• widget This is the general term for graphical items that appear on the
screen. A top-level widget such as a JFrame can contain an entire applica-
tion. A container widget such as a Container or a JPanel can have other
widgets added to it.

54

	What is ahead?
	A Prelude to Inheritance: A Short GUI Program
	Inheritance
	Abstract Classes: A First Pass
	Polymorphism, Delegation, and Visibility
	Understanding More of the API Guide
	The @Override Annotation
	Why Not Have Multiple Inheritance?
	A C++ Interlude

	Interfaces
	The API Guide, Again

	A Framework for our GUI Programs
	Fun with Mohammed Ali: How to Achieve the Desired Layout
	Can I have Layouts Within Layouts?
	Sur l'Carte: What's on the Menu
	Step 1, Create a Frame and insert a menu bar.

	Creating a Complex View
	Model-View-Controller
	Making a JButton live with ActionListener
	Lambdas and Functional Interfaces
	Lambdas in General

	Inheritance and Graphics
	Abstract Classes: Second Pass
	Examining Final
	final Classes and Performance

	Terminology Roundup

