
1



List Comprehensions

John M. Morrison

September 29, 2015

Contents
1 List Comperehensions 2

1 List Comperehensions
List comprehensions provide a succint and convienent way to filter and transform
lists. These operations produce a transformed copy of the original list. Let us
begin with a simple example.

>>> x = [1,2,3,4,5]
>>> y = [k*k for k in x]
>>> y
[1, 4, 9, 16, 25]
>>> x
[1, 2, 3, 4, 5]
>>>

This operation took every item in the list x and squared it. You can use this
technique to “butter” a function over a list. Suppose we have a function f and
a list x and we want to call the function on every element on the list and return
in in an new list. Then all you need do is this.

[f(k) for k in x]

You can also filter items in a list using this technique.

>>> names = ["smith", "jones", "sims", "boyarsky", "teague", "miller", "doyle"]
>>> hasAnE = [k for k in names if "e" in k]
>>> hasAnE
['jones', 'teague', 'miller', 'doyle']
>>>

This operation created a new list with the names containing the letter e. The
general form of this construct is as follows.

2



[f(k) if k predicate(x)]

The item predicate is a boolean-valued experesion involving x. The items that
pass the filter are those for which predicate(x) evaluates to True.

3


	List Comperehensions

