
Chapter 0, Python Fundamentals

John M. Morrison

November 15, 2020

Contents

0 Running Python 2

1 Python Scalar Types 2

2 Variables and Assignment 8

2.1 The Lowdown on Assignment . 9

3 Pooling 11

4 Writing a Program 12

5 Python Objects 13

5.1 How do I find all of the string behaviors? 14

5.2 Compound Assignment Operators 16

6 Python Sequence Types 16

6.1 Slicing of Sequences . 19

6.2 Slicing of Lists . 20

7 Casting About 21

8 List Behaviors 22

9 Python Hashed Container Types 23

9.1 What hashing? Why do it? . 23

1

10 Sets 25

11 Python Dictionaries 29

12 Terminology Roundup 30

0 Running Python

You can visit [?] for installing the entire Python apparatus. This is available for
the MacOSX, Windoze, and Linux platforms. This book will be an introduction
to both plain-vanilla Python and the SciPy stack, which is an important tool
for data visualization and analysis.

You will also want a plain text editor (not a word processor). If you are a
UNIX/Mac user, there is good old vim. Other excellent choices for all platforms
include include SublimeText, Atom, and VSCode. Notepad++ is an excellent
choice for Windoze users. All are free and all do a great job, and can be easily
found with a little Googling.

Throughout this book, we will use the symbol unix> to represent your system
prompt, whether it is a Windoze cmd window or a UNIX terminal window. You
can start Python at the command line like so.

unix> python3

Python 3.7.4 (default, Aug 13 2019, 15:17:50)

[Clang 4.0.1 (tags/RELEASE_401/final)] :: Anaconda, Inc. on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>>

What you see is the Python prompt. To exit, type control-D or quit(). To
make a program, you can use your favorite text editor (vi, gedit, Atom, Sublime
Text, etc). We will go into this in more detail later.

A useful accompaniment to this chapter is a series [?] of videos by the zany
Net Ninjas. Corey Schaefer’s YouTube channel [?] contains a wealth of infor-
mation on Python.

1 Python Scalar Types

We begin by looking at the simplest types Python’s type system. We will
explore this via the interactive Python prompt. All of these types are immutible
objects. The most basic type is the integer type, int. Integers have the expected
behavior in the presence of arithmetic operators. We demonstrate the basic
operators here.

2

You also see how comments are done; everything on a line after a # is a
comment.

>>> 42 + 58 #addition

100

>>> 21-57 #subtraction

-36

>>> 66*5 #multiplication

330

>>> 44/3 #division

14.666666666666666

>>> 44//3 #integer division

14

>>> 365%7 #mod

1

>>> 2**20 #exponentiation

1048576

Integers do not overflow. This type admits integers of arbitrary precision, sub-
ject to the (gargantuan) limits on memory.

>>> 2**1000

10715086071862673209484250490600018105614048117055336074437503883703510511249361

22493198378815695858127594672917553146825187145285692314043598457757469857480393

45677748242309854210746050623711418779541821530464749835819412673987675591655439

46077062914571196477686542167660429831652624386837205668069376

>>>

Python 2 Note Note that division is integer division in Python 2. In Python
3, division of integers returns a floating-point number that conforms to the
IEEE754 standard; you can learn about it in [?]. Python 2 automatically con-
verts huge integers into a separate type called long. To do integer division in
Python 3, use the // operator.

Programming Exercises

1. Can you compute 210000?

2. There is an infix binary operator on the integers, ^. Can you experiment
with this and figure out what it does? Hint. Look at the binary expansions
of numbers you operate on. Use the built-in Python function bin to
compute binary expansions for the integers you fiddle with. We show bin

in action here. A 0b prefix means, “this is a binary number.”

>>> bin(42)

'0b101010'

3

>>> 0b1110

14

3. There is an infix binary operator on the integers, &. Can you experiment
with this and figure out what it does? Look at binary expansions for a
clue.

4. There is an infix binary operator on the integers, |. Can you experiment
with around with this and figure out what it does?

Since we have seen a floating point number, let us formally introduce those.
This type is known as float. You will see few surprises.

>>> 2.0 + 3

5.0

>>> 6.02e23 * 100

6.02e+25

>>> 5.3 - 6.1

-0.7999999999999998

>>> 3/666

0.0045045045045045045

>>> 1.0001**10000

2.7181459268249255

Notice that when you add an integer and a floating point number, that the
integer gets converted into a floating point number. As we said before, Python’s
floating point numbers are IEEE 754 double-precision 64 bit numbers.

Programming Exercise: Exploring Numbers This is a little puzzler
project in which you do some scientific calculations. You are allowed only these
facts. Remember in the metric system, centi- means 1/100, milli- means 1/1000
and kilo- means 1000. Use Python’s interactive mode to make this happen.

� 1 in = 2.54 cm (length)

� 1 liter = 33.8 fluid ounces (volume) = 1000 cm3

� 1 mile = 5280 ft (length)

� 1 foot = 12 in (length)

� 1 hour = 60 min (time)

� 1 min = 60 sec (time)

� 1 yr = 365.24 days (time)

� 1 kg = 2.204 lbs

� 1 hr = 60 min, 1 min = 60 s, 1 day = 24 hr(time)

� 1 ton = 2000 lbs

4

� 1 acre = 1/640 mi2

Now use these facts to answer these questions.

1. Given that light travels at 2.9979e8 (that’s 2.9979*108 in scientific no-
tation) meters per second, figure out how fast light moves in miles per
second. Then convert this to miles per hour.

2. Tell the time it take for light to go from the sun to the earth if the mean
distance of the sun to the earth is 93.0 million miles.

3. Use the fact that a liter of water weighs one kilogram and that one gallon
of water weighs 8.33 lbs to determine the number of cubic inches in a
gallon and the number of pounds in a cubic foot of water.

4. Let us assume that humans weigh an average of 140 lbs and that humans
have about the same density as water. If the population of the earth is
7.0 billion humans, estimate the total volume of humanity in cubic miles.
Do you find this counterintuitive?

5. An acre-foot of water is enough water to cover one acre one foot deep.
How many gallons of water are in an acre-foot? What does that water
weigh in tons?

Programming Exercises: A peek ahead Note: you will see we are using
the new Python3 style of f-string, instead of the old “%” and format methods.
Eventually % that will be deprecated. If you are going to write new code, use
the newer methods.

1. Enter these things in an interactive session.

f"{3/7:.1f}"

f"{3/7:.2f}"

f"{3/7:.8f}"

What kind of object is returned? What do you see? What does the
number to the right of the point do? If it’s not clear from the examples
shown, try a few more.

2. Enter this in an interactive session.

f"{3/7:.8e}"

Experiment with different numbers. What is nice about this?

3. Now test-drive this.

f"{2:.5f}"

4. What happens if you put an integer in front of the point? What if that
integer is negative? Experiment and determine. You will learn some nifty
stuff about formatting numbers.

5

The most commonly-used type in any programming languages is the string;
you just got a preview of strings in the exercises above. Strings are used in
Python to hold globs of text. Strings support the infix binary operator + and
an infix operator * that takes an integer and a string as arguments.

>>> "Happy " + "Happy"

'Happy Happy'

>>> "*"*50

'**'

The * operator requires an integer and a string and it returns a string that
repeats the string operand the integer number of times. If the integer is 0 or
negative, an empty string is returned.

Python has a boolean type, bool which has two elements True and False.
There are two infix binary operators on Booleans; they are and and or. If P and
Q are predicates (Boolean-valued expressions), then P and Q is true precisely
when both P and Q are true. The predicate P or Q is true precisely when at
least one of P and Q is true.

There is also a unary prefix operator not which reverses the truth-value of
its operand. The order of operations in Boolean expressions is not, and, then
the lowest is or. As you would expect, you can use parentheses to override this
order of operations; when in doubt avail yourself of them.

Python has the standard relational operators. They all return a Boolean
value, as you would expect. We show them here in a table.

< less than
> greater than
<= less than or equal to
>= greater than or equal to
== equal to
!= not equal to

For number types they do numerical comparison. For strings, they compare
asciicographically. Python has an additional infix binary operator, is, which
tests for equality of identity.

All of the scalar types we have seen so far are immutable objects. Once
created they cannot be changed in-place. You might ask, “why this immutabil-
ity?” Immutability allows Python to pool objects, which enables the recycling of
commonly used objects without wasting a lot of time creating and deallocating
them. In fact, when Python runs, it pre-loads small integers into its memory

For evidence of this take note of this little Python session.

6

>>> hex(id(0))

'0x10b242470'

We see the virtual address where Python is storing zero. Now watch this.

>>> id(1) - id(0)

32

Notice that 1 is stored 32 bits away from zero. Now observe this.

>>> id(256) - id(0)

8192

>>> id(260) - id(0)

3130752

We see that 0-256 are in the little integer pool. Once you get to 257 we surnmise
things get stored elsewhere because of what we see here.

>>> hex(id(256)

...)

'0x10b244470'

>>> hex(id(257))

'0x10b53edf0'

You are encouraged to do a little spelunking and see where the negative integers
go.

Programming and Writing Exercise: PEMDAS for George George
Boole was a pioneer of modern logic, as well as a versatile mathematician who
studied differential equations. He is the source of the name boolean you see
that refers to a calculus of true/false values.

You are to perform experimments in the interactive shell to make an airtight
case for your deteerminiation of the order of operations and, or and not.

7

2 Variables and Assignment

You have programmed in some other language, and if you did, you might have
seen that variables have a type. This is true in Java, C, and C++. This is not
true in Python. Variables are typeless names that allow you to refer to objects.

Do not make the mistake of thinking Python is “weakly typed.” Objects are
keenly aware of their types. Bear witness to this little session. Every Python
object knows its type.

>>> type(1)

<class 'int'>

>>> type(1.0)

<class 'float'>

>>> type("caterwaul")

<class 'str'>

>>> type(True)

<class 'bool'>

Objects do not have an identity crisis either. Every object in a Python
program has a unique ID during its lifetime. We will use Python’s built-in hex

function to see these as hex numbers. These values will vary for your session.

>>> hex(id(1))

'0x100214870'

>>> hex(id(2))

'0x100214890'

>>> hex(id(1))

'0x100214870'

>>> hex(id(1.0))

'0x10036f180'

>>> hex(id("caterwaul"))

'0x1019a4bf0'

>>> hex(id(True))

'0x1001b76b0'

The rule for Python variable naming is that the first character must be
alphabetical or an underscore. Remaining characters can be alphanumeric or
underscores. The operator = is used to bind variable to objects. It works in a
manner entirely similar to other languages. Here we show it at work.

>>> x = 5

>>> y = 6

>>> x*y == 30

True

8

The value x is not storing the value 5. What it is storing is the location in
memory (memory address) where the value 5 is being kept. You can see that
what x is actually storing is the id of 5. In a word: Python variables know where
to find their objects. In all cases, variables refer indirectly to their objects. What
they actually store is a integer indicating where that object is being stored in
memory. Bear this in mind as we proceed; it will save you a lot of confusion.

>>> hex(id(x))

'0x1002148f0'

>>> hex(id(5))

'0x1002148f0'

What happened on the last line, x*y == 30? Here, the expression was
evaluated by fetching the values of x and y, substituting them into the expression
and finding that 5 ∗ 6 indeed equals 30.

2.1 The Lowdown on Assignment

The familiar arithmetic operations and the Boolean operations all associate from
left to right. To wit, when you evaluate expressions, you work from left to right.
Here we see this in action with multiplication and division.

4 ∗ 5/2 ∗ 8 = 20/2 ∗ 8 = 10 ∗ 8 = 80.

Now see it in a complex operation. Consider this expression.

43 − 2 ∗ 7 ∗ 5/35 + 4 ∗ 18

We begin by doing all exponentiation.

43 − 2 ∗ 7 ∗ 5/35 + 4 ∗ 18 = 64− 2 ∗ 7 ∗ 5 + 4 ∗ 18

We then munch up the multiplication and division in each term from left to
right.

64− 2 ∗ 7 ∗ 5 + 4 ∗ 18 = 64− 14 ∗ 5 + 72 = 64− 70 + 72

Lastly we resolve addition and subtraction.

64− 14 ∗ 5 + 72 = 64− 70 + 72 = −6 + 72 = 66.

Notice how we work in each case from left to right.

Assignment works backwards. It begins on the right and works left. It also
has lower precedence than any other arithmetic operation, so it happens last.

Here is a very typical assignment you might see.

9

>>> x = 5

>>> x = 2*x + 10

>>> x

20

Let us look at this in detail. Python first sees the variable x being bound to the
value 5. Now we turn our attention to the second line. We begin with

x = 2*x + 10.

Multiplication is first carried out. The term 2*x evaluate to 10 and we have

x = 10 + 10.

Now addition occurs.

x = 20

Now, x is bound to the value 20. What happened to its prior value 5? This
value got orphaned. To change the value of any variable pointing at any of scalar
types we have seen so far, we have we get it to point at an entirely different
object. We never modify the object sitting in memory. All of the scalar types
are immutable; once created in memory they never change. In particular, the
objects True and False are unique in memory.

Things that can appear on the left-hand side of an assignment are called
lvalues. Variables are always lvalues; we will meet a few other things as we go
along that are also lvalues. Literals, or actual objects, are not. You cannot
assign to numbers, Booleans, or strings.

Python offers a lagniappe that is a twist on assignment. Look at this.

>>> a = 5

>>> b = 4

>>> a,b = b,a

>>> a

4

>>> b

5

Just a spoonful of syntactic sugar helps the medicine go down.

Programming Exercises

1. Do this and see how Python hisses.

10

5 = x

2. What happens here?

>>> a = 1

>>> b = 2

>>> c = 3

>>> a,b,c = b,c,a

3. What happens when you do this?

>>> a, b, c = c

3 Pooling

Python is a garbage-collected language. A mechanism called the garbage col-
lector lurks behind the scene, deallocating the memory for objects no longer in
use.

Some objects don’t get picked up by the garbage collectors; these exceptions
are pooled objects. Python caches small integers in memory; when they reap-
pear because a variable needs to point at them, the variable just points at the
pooled value. Python also caches small strings in memory in an area called the
string pool. Pooling of these immutable objects increases efficiency; equality of
pooled strings is achieved by comparing memory addresses, obviating the need
to loop through the strings.

Now, it’s time to break out the is operator and see it at work.

>>> x = 5

>>> y = 5

>>> x is y

True

>>> name = "flibbertygibbet"

>>> elisa = "flibbertygibbet"

>>> name is elisa

True

The variables x and y are sharing the common item 5 in memory. The same is
true for the two strings pointing at "flibbertygibbet". Note that only two
Boolean values are ever stored in memory, True and False.

>>> True is True

True

>>> False is (6*4 == 5*50)

True

11

Programming Exercises: Time for a dip!

1. Run this code.

for k in range(200,300):

print(k, hex(id(k)))

What can you discern about the pooling of small integers?

2. Can you find anything out about negative integers by replaying this theme?

4 Writing a Program

A Python program is just a sequence of Python statements in a file. We will use
the creation of this example as an opportunity to introduce the built-in function
print, which puts things to stdout. Enter this with your favorite text editor
into a file named print example.py.

print("Hello, World")

print(1,2,3,4, sep="|")

print(1,2,3,4, sep = " ", end = "peep")

Now open a cmd or terminal window and navigate to the directory containing
your program. Run this program at the command line as follows. The items
sep and end are referred to as keyword arguments.

unix> python print_example.py

Hello, World

1|2|3|4

1 2 3 4peep

unix>

A Note to UNIX (Yes, Mac too... Users) When you make your program,
place this line at the top

#!/usr/bin env python3

and use chmod to make the program executable If you do this to our litle sample
program, you can do this. Notice what the keyword arguments sep and end do.

unix> ./print_example.py

Hello, World

1|2|3|4

1 2 3 4peep

unix>

12

Programming Exercises

1. You can get textual input from the user with the input function. It works
like this.

some_variable = input("Your prompt: ")

Write a program that asks for a name and which replies with Hello,

<Name>.

2. Write a program that asks for two numbers and which presents the user
with their product. Note that input returns a string.

5 Python Objects

The term object simply refers to a datum stored in memory along with its
associated code. There are three important properties of an object

� State This refers to things an object knows.

� Identity This refers to an object’s physical presence in memory. It is not
possible for two different objects to occupy the same space in memory.
This is what an object is.

� Behavior This refers to what an object does.

Let us look at the scalar types we have seen through this lens. Integers
exhibit expected behavior when in the presence of arithmetic and relational
operators. They know the value that they store. The same is true of floating-
point numbers.

Strings are more complex. Their state is simple; this is just the blob of text
being stored in the string.

Strings have a wide variety of behaviors. Let us look at a few. We can index
into a string; most languages you have seen have this feature.

>>> x[0]

'a'

>>> x[1]

'b'

>>> x[2]

'c'

>>> x[25]

'z'

Notice that the indexing is zero-based. The best way to think about these
indices is that they live, like rats, “inside of the walls.” We say thes because
they reside between then entries of the string.

13

---------------------------------- -----------

| | | | | |

| a | b | c | . . . | z |

0 1 2 4 | |

--------------------------------- 25----------26

As you can see in the picture, there is an index 26 in this string; it is just
at the far right-hand end. Each index points at the character just to its right.
There is no character for index 26 to point at. Try and see it; Python will hiss
at you.

Let us illustrate another behavior, find.

>>> x.find("c")

2

>>> x.find("fgh")

5

>>> x.find("cow")

-1

When find does not find, it punts and returns a -1. This is often referred to
as a sentinel value. Notice how find needs to be told what to find.

5.1 How do I find all of the string behaviors?

Visit the URL https://docs.python.org/3/library/stdtypes.html for in-
formation on all of Python’s built-in types. Then find the section on the “Text
Sequence Type.” Here is what you will find at the top.

String literals are written in a variety of ways:

1. Single quotes: ’allows embedded "double" quotes’

2. Double quotes: "allows embedded ’single’ quotes".

3. Triple quoted: '''Three single quotes''', """Three double quotes"""

Triple quoted strings may span multiple lines, and all associated whitespace
will be included in the string literal. You can use single or double quotes to
bound a triple-quoted string.

Now scroll down the page a short bit to the section entitled “String Meth-
ods.” The capitalize() method is very simple. We show its action. It creates
a new string that is capitalized. The original string is untouched.

>>> president = "lincoln"

>>> president.capitalize()

'Lincoln'

14

https://docs.python.org/3/library/stdtypes.html

Let us look at how to read the documentation for center().

str.center(width[, fillchar])

Return centered in a string of length width. Padding is done using the specified
fillchar (default is an ASCII space). The original string is returned if width is
less than or equal to len(s).

This method has two arguments. The first one, width, is required. The
second, fillchar, is optional; this is indicated by the presence of the square
brackets surrounding it. Let us show this at work.

>>> x = "Cows With Guns"

>>> x.center(10) #too little space: same string comes back

'Cows With Guns'

>>> x.center(50) #default padding is spaces

' Cows With Guns '

>>> x.center(50, "*") #padding with stars

'******************Cows With Guns******************'

>>> x.center() #error: width is required.

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: center() takes at least 1 argument (0 given)

>>>

We should mention that Python has many useful built-in functions. Here
are three you want to know about.

Function Input Output
len a string the string’s length
ord a one-character string the char’s ASCII code
chr an integer the char with the given

ASCII code

Programming Exercises Experiment with these useful string methods. Fig-
ure out what they do.

1. rfind

2. endswith

3. startswith

4. lower

5. upper

6. strip, lstrip and rstrip

15

5.2 Compound Assignment Operators

Many languages have this feature.

>>> x = 5

>>> x += 3

>>> x

8

Here x += 3 is shorthand for x = x + 3. If you have an infix binary operator
op, then x op= foo is the same as x = x op foo. The compound assignment
operator works from right to left. Its precedence, like that of = is lower than
almost everything else.

Notice this little session with strings.

>>> x = "some"

>>> id(x)

4323956024

>>> x += "thing"

>>> x

'something'

>>> id(x)

4323954160

The variable x is a pointing at a new string, because strings cannot be changed
in-place. You can see this because the id of the object pointed at by x changed.

6 Python Sequence Types

So far, we have concerned ourselves with scalar types that hold a single datum.
Now we will look at two new types, lists and tuples. These types have some
common features with strings, because a string can be thought of as a character
sequence, as well as a glob of text.

Sequences in Python store sequences of memory addresses where the objects
comprising them can be found. The objects themselves are not stored in these
containers.

Let us first look at lists. We make a list, show its type, and index into it.
Notice that the indexing mechanism looks identical to that of strings.

>>> x = [1,2,3,4,5]

>>> type(x)

<class 'list'>

16

>>> x[0]

1

>>> x[1]

2

>>> x[4]

5

>>> x[5]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

IndexError: list index out of range

>>>

What is different is that lists are mutable. Watch this.

>>> id(x)

4323859272

>>> x[0] = 100

>>> id(x)

4323859272

>>> x

[100, 2, 3, 4, 5]

>>>

We changed this list in-place. It is the same object, but its state has been
changed by the assignment x[0] = 100. Each entry in the list is an lvalue.

Python tuples are similar to lists, but they are immutable. Once you make
a tuple, you cannot change it in-place. Let us imitate the list session. All of
this looks the same.

>>> x = (1,2,3,4,5)

>>> x

(1, 2, 3, 4, 5)

>>> x[0]

1

>>> x[1]

2

>>> x[4]

5

>>> x[5]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

IndexError: tuple index out of range

>>> type(x)

<class 'tuple'>

>>>

17

Now watch this.

>>> x[0] = 100

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: 'tuple' object does not support item assignment

Oops. You cannot change a tuple in-place. Tuple entries are not lvalues.

Both tuples and lists are heterogeneous. You can put objects of any types
into them.

>>> motley = [True, "foo", 2, 2.0, ["cat", False, -1]]

>>> motley[4]

['cat', False, -1]

>>> motley[4][1]

False

>>>

You can do all of this stuff with a tuple, since you are only reading from it. Try
it now!

The + operator works just as you might expect for tuples and lists.

>>> [1,2,3] + [4,5,6]

[1, 2, 3, 4, 5, 6]

>>> (1,2,3) + (4,5,6)

(1, 2, 3, 4, 5, 6)

The built-in len function will calculate the length of any sequence. For
tuples and lists, this is the number of items present in the tuple or list. For
strings, this is the number of characters in the string.

Here are common features for all sequences.

Operation List/Tuple String
x in s True if x equals a member

of s
True if x is a substring of
s

s + t concatenates s and t

s*n or n*s repeats s n times
len(s) number of objects in s number of characters is s

min(s) smallest object in s character in s with small-
est ASCII value

max(s) largest object in s character in s with largest
ASCII value

s.count(x) counts the number of
times x is equal to an el-
ement of s

counts the number of
times the sting x appears
in s

18

When we refer to the “largest” item in a sequence, we need to do this operation
on a list where it makes sense to compare the items. It is best to use this on
sequences that are homogeneous, i.e., where all elements are of the same type.

6.1 Slicing of Sequences

Slicing is convenient way of obtaining a subset of a sequence. For strings and
tuples, a slice returns a copied subset of the sequence. First we see slicing at an
index for a list and a string. Notice that the slice goes all the way to the end.

>>> min(x)

'a'

>>> x = "abcdefg"

>>> x[:2]

'ab'

>>> x[2:]

'cdefg'

>>> foo = ["a", "bc", "defg", "hijk"]

>>> foo[2:]

['defg', 'hijk']

>>> foo[:2]

['a', 'bc']

You can specify both ends of a slice.

>>> foo[1:3]

['bc', 'defg']

>>> x[1:3]

'bc'

You can also specify a third “skip” parameter.

>>> alpha = "abcdefghijklmnpqrstuvwxyz"

>>> alpha[::3]

'adgjmqtwz'

>>> alpha[5::3]

'filpsvy'

>>> alpha[5:10:3]

'fi'

In the first case, we extracted every third character from the string. In the
second we did so starting at index 5. In the third, we did so between indices
5 and 10. Be reminded: the indices of a sequence lurk between the sequence’s
elements.

19

Programming Exercises

1. How do you find the item in a list or tuple of strings that is first in
asciicographical order?

2. How do you count the number of elements in a list of integers of even
index that equal 5?

3. How do you count the number of times the letter A appears in a string,
case insensitive?

4. If you have a sequence what does the slice [::-1] return? What happens if
you put indices between the colons?

6.2 Slicing of Lists

Because lists are mutable, they have additional behavior when slicing occurs.
Observe this.

>>> x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

>>> x[:5] = []

>>> x

[5, 6, 7, 8, 9, 10, 11, 12]

A slice is an lvalue. We can, within bounds, assign to it. If you assign an empty
list to a slice of a list consisting of consecutive elements, the slice is removed
from the list. Beware of this.

>>> x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

>>> x[::2] = []

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: attempt to assign sequence of size 0

to extended slice of size 7

There are limits. Here the slice you tried to assign to had non-consecutive
elements. You can, however assign this slice to a list of equal length like so.

>>> x[::2] = [0, 10, 20, 30, 40, 50, 60]

>>> x

[0, 1, 10, 3, 20, 5, 30, 7, 40, 9, 50, 11, 60]

It is interesting to compare the action of += on lists, strings and tuples.
Compare these three sessions.

>>> x = [1,2,3,4,5]

>>> id(x)

20

4323953160

>>> x += [6,7, 8]

>>> x

[1, 2, 3, 4, 5, 6, 7, 8]

>>> id(x)

4323953160

Here we just modified an object in-place

>>> id(x)

4298553304

>>> x += (6,7,8)

>>> x

(1, 2, 3, 4, 5, 6, 7, 8)

>>> id(x)

4323935288

Here a new object got created because tuples are not mutable.

>>> x = "12345"

>>> id(x)

4323956024

>>> x += "678"

>>> x

'12345678'

>>> id(x)

4323953840

The same thing happened to the string and the tuple. New objects got created
by +=.

7 Casting About

A cast is a temporary request to view an object of one type as being that of
another. We show some examples here. Any Python object may be cast to a
string.

>>> int("12345")

12345

>>> float("12345")

12345.0

>>> str(12345)

'12345'

21

>>> int("12345", 2)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: invalid literal for int() with base 2: '12345'

>>> int("10101110", 2)

174

>>> int("22123312", 4)

42742

Observe that you can pass a radix to cast a string to a number in that base.
Lists can be cast to tuples and vice versa in the obvious way. You can also cast
a string to a list.

>>> t = (1, 2, 3, 4)

>>> list(t)

[1, 2, 3, 4]

>>> l = [1,2,3,4]

>>> tuple(l)

(1, 2, 3, 4)

>>> list("caterwaul")

['c', 'a', 't', 'e', 'r', 'w', 'a', 'u', 'l']

Programming Exercises

1. Cast all of the types we have seen so far to a string and see what happens.

2. Strings have a method called join that takes a list or tuple as an input.
If you cast a string to a list, how can you use join to undo the action?

8 List Behaviors

Because they are mutable, lists exhibit some behaviors not available to tuples
and strings. We have noted already that they behave differently when slices are
taken. Here is a table of some of the most important operations and methods.

22

Operation Action
s[x] = y reassigns the value held by s at index x

to y. List entries are lvalues.
s[m:n] = [], del s[m:n] deletes all values between the indices m

and n provided m < n.
del s[a:b:c] deletes all elements of the indicated

slice
s.append(x) appends item x to the list s
s.extend(t), s += t appends items in the sequence t to the

list s
s.clear() empties the list s
s.insert(i, t), s[i:i]=t splice in the sequence t into the list s
s.reverse() reverses the list in place.

9 Python Hashed Container Types

Python has two unordered types, dictionary (dict) and (set). A set is a con-
tainer that does not admit duplicate entries, as defined by ==. A dictionary is
a container holding key-value pairs. These are made very efficient via a means
called hashing. We will begin by describing this very clever mechanism. It
makes access to items in sets and dictionaries fast and efficient.

9.1 What hashing? Why do it?

A hash function is a mathematical function whose domain is some collection
of Python objects (e.g. strings) and whose codomain is the integers. Here we
show the hashing function at work on strings.

>>> hash("a")

-8506767599803020586

>>> hash("b")

-7609782221146829849

>>> hash("c")

-5419851217699219052

>>> hash("ab")

-2244008983755709986

Here it is on integers. “Small” integers hash as themselves; once they get to
a certain outrageous size, a truncation process occurs.

>>> hash(0)

0

>>> hash(1)

23

1

>>> hash(1024)

1024

>>> hash(1024576)

1024576

>>> hash(331214214214241)

331214214214241

>>> hash(413908140942980249081902)

97417085330101598

>>>

A perfect hash function will give different values to different objects. Hash
functions depend on the state of the object they are hashing. Because mutable
objects can have their state changed, this hashing process is not possible for
them. Were a mutable object hashable, its hash would change whenever its
state did. And, for the purposes we are about to describe here, that is very bad
news.

One way we could implement a set us just to use a list and to reject the
addition of duplicate elements. This causes inefficiency. Searching a list for an
item is an O(n) process, because the amount of resources it takes is at worst
proportional to n, the size of the list.. As the set got big, adding new elements
would become burdensome.

So what do we do? The hash function provides the key. First, we reserve a
big chunk of memory, say of size M . When we add an element we hash it, mod
out by M and get an nonnegative integer less than M . We then store that object
at that index in the chunk of memory (I lied... we store its memory address
so we have access to it). So, to check for the presence of that object, we hash
it and know precisely where it is stored. Hey, this is an O(1) (constant-time)
procedure.

The Nasty Hairy Fly in the Sweet Ointment Even if you have a perfect
hash function (in practice never), this process of modding by M can cause a
new item to be placed into an occupied slot. Beezlebub! Defeat!

Nah, what we do is store a little list of objects; we can go to that location
and check that list. This kind of thing happens if the chunk of memory gets too
crowded.

At some level of crowding, the whole thing will be put in a new, bigger,
chunk of memory and everything will be rehashed to relieve the crowding.

Both sets and dictionaries achieve quick access of elements in this manner.
Next, we will learn about sets mathematically and learn how they are imple-
mented in Python.

24

10 Sets

Informally, in mathematics, a set is a collection of objects with along with a
notion of belonging. In computer science, we are concerned with finite collec-
tions of objects, so some of the hairier aspects of axiomatic set theory will not
come our way. However, we will have a brief discussion of some basic ideas of
set theory and we will see how they are implemented in Python.

No meaningful discussion is possible in the absence of context. So, when we
discuss sets, we will discuss them withing a universe of discourse which we will
generally denote by Ω. Such a thing is often infinite. Example: the set of all
ASCII characters strings. Or, perhaps the set of all integers. When we discuss
sets, we will always have some universe of discourse in mind.

Inside of our universe of discourse, we can define sets two ways. One is by
making an explicit list of elements. For example if Ω = Z, the set of all integers,

A = {1, 6,−5, 4, 3}

is a legitimate way to define a set. For belonging, we use the symbol ∈. So,
here 6 ∈ A. To negate belonging, we use /∈; for example 100 /∈ A.

A set in our universe is well-defined if we can tell if any given element in the
universe is or is not in the set. This leaves us another way to define a set, by
using a predicate. For example let

E = {x ∈ Ω|x%2 = 0}

is the set of even numbers. Note we are using mathematical notation here; the
Python form of this predicate is x % 2 == 0.

If A and B are sets in a universe Ω, we will write A ⊆ B to mean that every
element of A belongs to B. We define A = B to mean A ⊆ B and B ⊆ A. In
other words, sets are equal if they contain exactly the same elements. We write
A ⊂ B to indicate that A ⊆ B, but that B has some element not in A and we
say that A is a proper subset of B.

One implication of this definition is that the order in which elements of a set
are presented is immaterial, and if you list an element twice, it is no different
from having the element in once.

Now it’s time for some nitty-gritty with Python. Let’s put some animals on
our farm in a list. We will then cast the list to a set.

>>> farm = ["sheep", "sheep", "cow", "horse",

"pig", "goose", "pig", "cow"]

>>> animals = set(farm)

>>> animals

{'pig', 'horse', 'goose', 'sheep', 'cow'}

25

Notice that all duplicates got removed.

Take note that only hashable elements can be placed in a set. In this book,
we will only put immutable objects in a set; these are always hashable. This
restriction makes access to items in a set very fast, as we described at the
beginning of this section.

Bear witness to this punishment dished out by an irate python when we try
to hash the unhashable.

>>> hash("cow")

7419535498109472991

>>> hash([1,2,3])

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: unhashable type: 'list'

Also, notice that items in a set seem to be presented in no seemingly discernible
order.

Now let us see how Python implments these concepts. We begin with ∈.

>>> "horse" in animals

True

>>> "rhino" in animals

False

We see that x ∈ A if x in A is True, and x /∈ A otherwise.

Python also implements /∈. If x not in A is true, then x 6∈ A.

Now let’s go for ⊆.

>>> sample = {"goose", "cow"}

>>> animals.issubset(sample)

False

>>> sample.issubset(animals)

True

You can also do this; its a nice mnenomonic.

>>> animals <= sample

False

>>> sample <= animals

True

The relational operator <= is the subset relation on sets. It has a strict version
to indicate the “is a proper subset of” relation ⊂.

26

>>> sample < animals

True

>>> animals < animals

False

>>>

Now we will see how boolean operations can be used in set-world. If A and
B are sets in a universe Ω, we define the complement of A by

Ac = {x ∈ Ω|x /∈ A}.

The union of A and B is defined by

A ∪B = {x ∈ Ω|x ∈ A ∨ x ∈ B}.

Note that math uses ∨ for the infix binary or operator, and ∧ for the infix and

operator. It is easy to see that A ∪ B = B ∪ A, since this set is everything
belonging to at least one of A or B.

We define the intersection of A and B by

A ∩B = {x ∈ Ω|x ∈ A ∧ x ∈ B}.

To say it quickly, A ∩ B contains exactly all elements common to A and B.
Think: street intersection, that which belongs to both streets.

Let us now see what Python has for union and intersection. There is no
surprise here.

>>> zoo = {"rhino", "zebra", "sheep", "horse", "elephant"}

>>> zoo.intersection(animals)

{'sheep', 'horse'}

>>> zoo.union(animals)

{'horse', 'elephant', 'pig', 'zebra', 'goose', 'rhino',

'sheep', 'cow'}

>>> zoo | animals

{'horse', 'sheep', 'rhino', 'pig', 'elephant', 'goose', 'cow', 'zebra'}

>>> zoo & animals

{'horse', 'sheep'}

There are two other set-theoretic operations that come in handy when han-
dling data. There is the relative complement defined by

A−B = A ∩Bc = {x ∈ Ω|x /∈ B}.

This is the set of all things present in A not present in B. And there is the
symmetric difference

A4B = (A−B) ∪ (B −A),

27

which consists of all elements belong to exactly one of A or B. Note the

A4B = {x ∈ Ω|x ∈ A⊕ x ∈ B},
where ⊕ is the infix exclusive or operator. Python handles this with aplomb.

>>> animals.symmetric_difference(zoo)

{'elephant', 'pig', 'zebra', 'goose', 'rhino', 'cow'}

>>> animals.difference(zoo)

{'cow', 'goose', 'pig'}

>>> zoo.difference(animals)

{'zebra', 'rhino', 'elephant'}

>>> animals ^ zoo

{'goose', 'rhino', 'elephant', 'pig', 'cow', 'zebra'}

>>> animals - zoo

{'goose', 'pig', 'cow'}

A set is a mutable object. It supports the len function, which will tell you how
many elements it has.

Here is how to add new elements to a set.

>>> new_set=set()

>>> ne_set.add(1)

>>> ne_set.add(False)

>>> ne_set.add("cows")

>>> ne_set

{False, 1, 'cows'}

Now let’s add a duplicate.

>>> ne_set.add("cows")

>>> ne_set

{False, 1, 'cows'}

The addition of the duplicate is ignored. To get rid of an element, use discard

>>> new_set.discard("cows")

>>> new_set

{False, 1}

Here is how to chuck everything.

>>> new_set.clear()

>>> new_set

set()

28

Programming Exercises

1. What does is disjoint() do?

2. What does pop do? What is maddening about it?

3. Spelunking exercise: What types can you cast a set to? What types can
you cast as a set? What happens in each case?

4. What happens if you try to index into a set?

11 Python Dictionaries

Imagine that you might want to have a list indexed by something other than
numbers. For this purpose, Python features a second hashed data structure, the
dictionary. Hashing, as we discussed before, gives rapid access to dictionary
entries. Here we create a dictionary that stores telephone extensions. First we
show how to create an empty dictionary.

>>> phone = {}

Now we show how to pre–populate a dictionary with a couple of entries.

>>> phone = {"morrison":2746, "yeh": 2725}

>>> phone["morrison"]

2746

Each dictionary entry consists of two parts. The first part is called the key and
the second part is called the value. For any key k, its corresponding value is
phone[k]. Shortly, we shall see that the value phone[k] is an lvalue. Because
dictionary entries are retrieved via their keys, the keys of the dictionary must
be hashable objects.

Notice the action of the in operator in a dictionary; this checks for mem-
bership in the keys.

>>> "morrison" in phone

True

>>> "sarocco" in phone

False

We can also check for the presence of a value.

>>> 2746 in phone.values()

True

29

>>> 2020 in phone.values()

False

>>>

It is very easy to add a new entry. Just associate a value with a key not present
in the dictionary.

>>> phone["sarocco"] = 2722

>>> phone

{'yeh': 2725, 'sarocco': 2722, 'morrison': 2746}

>>> phone["miller"] = 2741

>>> phone

{'miller': 2741, 'yeh': 2725, 'sarocco': 2722, 'morrison': 2746}

You can get all of the key values in a list by using the keys() method. You can
do a similar thing for getting all of the values in the dictionary.

>>> phone.keys()

dict.keys('miller', 'yeh', 'sarocco', 'morrison')

>>> phone.values()

dict.values([2741, 2725, 2722, 2746])

>>>

Finally you can change the value for any key as follows.

>>> len(phone)

3

So if you make an assignment phone[foo] = blah, the dictionary checks itself
for the presence of foo; if foo is present, the value attached to it is changed to
blah. If not, then the value foo is added to the keys and blah is assigned as
its value.

Also, dictionaries know their size; just use len.

>>> phone["miller"] = 3714

>>> phone

12 Terminology Roundup

� cast This is a temporary request to regard an object to be regarded as
another type

� complementA is a set, then the complement of A is the set of all elements
in the universe of discourse not belonging to A.

30

� disjoint Two sets are disjoint if the have no elements in common.

� garbage-collected language these languages manage memory for you.
Unused objects are automatically deallocated by a background process
called the garbage collector

� f-string This is a format string. It is preceded by an f and can contain
expressions that are surrouned by curly braces. These expressions are
evaluated, converted into strings, and placed in evaluation of the f-string.

� hash function This is a function whose domain is a set of Python objects
and whose codomain is the integers. A hash function is perfect if different
objects always return different values.

� intersection The intersection of two sets is the set of all elemenets be-
longing to both of the sets.

� keyword arguments These are named arguments which are optional
and which go at the end of a function’s argument list.

� lvalue This is a symbol representing addressable memory. Variables, list
items, and list slices are all lvalues. The term object simply refers to a da-
tum stored in memory along with its associated code. Objects have three
attributes, state (what an object knows), identity (an object’s presence in
memory), and behavior (what an object does).

� proper subset We say that A is a proper subset of B if every element of
A belongs to B as well, and B contains at least one element not belonging
to A.

� relative complement This is the set of all elements lying in one set but
not another.

� string This refers to a contiguous piece of a sequence type. You can use
the postfix [:::] operator to obtain a slice of a sequence

� string pool This is an area of memory in which small strings are kept
and which is not garbage collected.

� sentinel value This is a return value for function that tells you something
has gone wrong.

� string This is a character sequence.

� subset We say that A is a subset of B if every element of A belongs to B
as well.

� symmetric difference The symmetric difference of two sets is the set of
all element beloning to exactly one of the two sets.

� type This refers to the species of an object. Examples include integer,
string, and boolean. The union The union of two sets is the set of all
elements belonging to at least one of the sets.

� universe of discourse In set theory, this is the contextual bounds of the
discussion; to wit, it is the set of all objects we speak of.

31

	Running Python
	Python Scalar Types
	Variables and Assignment
	The Lowdown on Assignment

	Pooling
	Writing a Program
	Python Objects
	How do I find all of the string behaviors?
	Compound Assignment Operators

	Python Sequence Types
	Slicing of Sequences
	Slicing of Lists

	Casting About
	List Behaviors
	Python Hashed Container Types
	What hashing? Why do it?

	Sets
	Python Dictionaries
	Terminology Roundup

