
Chapter 2, Iteration

John M. Morrison

November 15, 2020

Contents

0 Introduction 1

1 Iterables and Definite Loops 2

2 File IO 5

2.1 A Helpful Tool: Raw Strings . 9

3 Some FileIO Applications 10

4 while and Indefinite Looping 15

5 Bigger Programming Projects 16

6 Function Flexibility 17

6.1 A Star is Born . 19

6.2 Keyword Arguments . 21

7 Generators 21

7.1 Holy Iterable, Batman! . 26

8 Terminology Roundup 29

1

0 Introduction

The goal of this chapter is to bring you to the point where Python is Turing-
Complete, which means that, given sufficient time and memory, it can solve any
solvable computational problem.

In the beginning, all Python programs were lists of worker statements that
executed in seriatum. Then we started realizing, “If we keep doing the same
thing over and over again, can’t we store a procedure under a single name so
we can reuse it?” This brought us to functions. Functions are objects that
store sets of instructions. In fact, they are first-class objects of type <class

’function’>.

We then decided that our programs should be able to make decisions based
on visible variables; this brings us conditional logic.

The flow of programs is no longer linear. However, if we do things right,
it is structured. And the use of functions can help make programs more un-
derstandable if we choose names for our functions that are evocative of their
actions.

We have actually taken the final step on the road to Turing-completeness:
all repetition in programs can be done by recursion. However, the appearance
of our code might be somewhat recondite and opaque. Take note, however, that
recursion can be a very handy tool for solving problems that initially appear to
be unwieldy impossible snarls.

Python provides two programming constructs for repetition: while and for.
It also provides objects called iterators that walk through collections and show
us objects in succession, and some python objecs are iterables, which means
they can be walked through with a definite loop.

Once we master these ideas, Python becomes a Turing-complete language;
it, given sufficient memory and time, can be used to solve any computational
problems that is solvable. Let us now set out on this next exploration.

1 Iterables and Definite Loops

Iterables show us a collection of objects in succession. A very simple iterable is
called a range object. If you cast a range object as a list, you can see all of the
values it exposes.

>>> range(10)

range(0, 10)

>>> list(range(10))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> range(1,5)

2

range(1, 5)

>>> list(range(1,5))

[1, 2, 3, 4]

>>> list(range(2,101,7))

[2, 9, 16, 23, 30, 37, 44, 51, 58, 65, 72, 79, 86, 93, 100]

To do something with each value of an iterable, you use the for keyword as
follows.

>>> for quack in range(10):

... print(f"{quack}\t\t{quack*quack}")

...

0 0

1 1

2 4

3 9

4 16

5 25

6 36

7 49

8 64

9 81

Lurking inside of any collection (list/tuple/string/dictionary/set) is an it-
erator that serves its items up in some order; this object is what makes these
collections iterable. For a hashed collection, the iterator serves up the items in
no particualar discernable order. A dictionary iterates through its keys. The
use of the for loop automatically brings out that feature.

>>> for f in os.listdir():

... print(f"{f}\t\t{os.path.getsize(f)}\t{os.path.abspath(f)}"

...

docstring.py 200 /Users/morrison/book/ppp/p1Code/docstring.py

evil_scope.py 78 /Users/morrison/book/ppp/p1Code/evil_scope.py

grades.py 671 /Users/morrison/book/ppp/p1Code/grades.py

rectangle.py 215 /Users/morrison/book/ppp/p1Code/rectangle.py

Here we see the name, size and absolute path of each file in a directory.

Watch the for loop work on tuples and strings.

>>> t = (1,2,3,4,5)

>>> tot = 0

>>> for k in t:

... tot += k

...

3

>>> print(tot)

15

We just found the sum of the entries in the tuple. A string’s iterator walks
through the string one character at a time.

>>> for k in s:

... print(k*6)

...

ffffff

oooooo

oooooo

mmmmmm

eeeeee

nnnnnn

tttttt

A Cautionary Tale Watch this attempt to zero out a list.

>>> x = [1,2,3,4,5,6]

>>> for k in x:

... k = 0

...

>>> x

[1, 2, 3, 4, 5, 6]

What happened? What the iterator did is assign each element in succession to
the temporary name k, so reassigning k has no effect on the list itself.

Contrast that to this.

>>> for k in range(len(x)):

... x[k] = 0

...

>>> x

[0, 0, 0, 0, 0, 0]

Here we are indexing into the list using copies of the integers starting at 0 and
ending before len(x). Note that the indexed entries of the list are lvalues, so
we can assign to them.

The for loop is a definite loop; its purpose is to walk through a specified
collection of objects, or visit all of the objects offered up by an iterable. Its
“food” is an iteraable. Objects of type range are iterables. Lists, tuples, and
strings all automatically offer their iterators when used in a for loop.

4

Two Useful Modifiers Here is clunkiness of the first class.

>>> for k in range(len(x) - 1, -1, -1):

... print(x[k])

...

elephant

dingo

carical

bat

aardvark

>>>

This is a far better way. Use it.

>>> for k in reversed(x):

... print(k)

...

elephant

dingo

carical

bat

aardvark

So, the reversed function hands you an iterator that walks backward through
a collection.

Now consider this. It’s kinda ugly.

>>> for k in range(len(x)):

... print(f"x[{k}] = {x[k]}")

...

x[0] = aardvark

x[1] = bat

x[2] = carical

x[3] = dingo

x[4] = elephant

>>>

Now let’s see the better way.

>>> for k, item in enumerate(x):

... print(f"x[{k}] = {item}")

...

x[0] = aardvark

x[1] = bat

x[2] = carical

5

x[3] = dingo

x[4] = elephant

In general, you should only rarely walk through a list or tuple by traversing
its indices. These two tools will help make that occasion rare. The underlying
collection is never altered by either of them.

Programming Exercises

1. Can you use reversed and enumerate on a range object?

2. Write a loop that will produce this output

5. aardvark

4. bat

3. carical

2. dingo

1. elephant

Can you come up with two reasonable solutions?

2 File IO

Reading and writing text files in Python is achieved using the built-in open

function. This function has one required argument, a filename. The second,
optional, argument is the mode for opening the file; its default value opens a file
for reading. It is recommended you open a file for reading explicitly; remember,
“explicit is better than implicit.” When we open a file, there is an iterator in it
that can read the file line-by-line.

6

r This is read mode. It is the default mode as well.
The file you are reading from needs to exist, and you
need to have read permission, or your program will
error out.

w This is write mode. It clobbers any existing If the file
exists and you lack write permission, your program
will error out. file you open. If the file does not exist,
it is created.

a This is append mode. It causes additional text to be
appended to the end of an existing file. If the file
does not exist, it gets created.

b This is binary mode. It opens a file as raw bytes and
can be combined with read or write mode.

t This is text mode. It opens a file as text; it is the
default.

x This opens a file for writing but throws a
FileExistsError if the file exists. if the file exists.

In read mode, there are several ways to access the contents of the file. Create
this text file.

abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ

0123456789

!@#$%^&*()_+

,./;'[]\<>?:"{}|+

Now we will demonstrate some features in a live session. Let us open the file
for reading.

>>> fp = open("sampler.txt", "r")

>>> fp

<_io.TextIOWrapper name='sampler.txt' mode='r' encoding='UTF-8'>

>>>

Now we take a byte.

>>> fp.read(1)

'a'

>>> fp.tell()

1

We pass the number of bytes we want to read to read and they are returned.
In addition, the file object has inside it a pointer to the next byte it is to read.
You can be told that byte by using tell. You can move to any byte by using
seek.

7

>>> fp.seek(10)

10

>>> fp.read(1)

'k'

To go back to the beginning of the file, use seek(0). To read the rest of the
file, pass no argument like so.

>>> fp.seek(0)

0

>>> fp.read()

'abcdefghijklmnopqrstuvwxy... 789\n!@#%$^&*()_+\n,./;\'[]\\<>?:"{}|+\n'

In this case, you get the entire file in a single string. If the file is large, you
might not want to do that. In addition to having the file pointer, the file object
has its own iterator. Watch this.

>>> for line in fp: print(line)

...

abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ

0123456789

!@#%£^&*()_+

,./;'[]\<>?:"{}|+

Hey, why did this double space? Remember, print puts a newline at the end
by default. But each line of the file has a newline at the end as well. We can
suppress this annoyance as follows.

>>> for line in fp: print(line, end="")

...

abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ

0123456789

!@#%£^&*()_+

,./;'[]\<>?:"{}|+

Here is one other nifty trick.

>>> fp.seek(0)

0

8

>>> stuff = fp.readlines()

>>> stuff[0]

'abcdefghijklmnopqrstuvwxyz\n'

>>> stuff[1]

'ABCDEFGHIJKLMNOPQRSTUVWXYZ\n'

>>> len(stuff)

5

The readlines method returns a list of strings each containing a line of the file
in seriatum.

Now, let us turn to writing files. The w mode corresponds to C’s and UNIX’s
write mode for open and fopen. If you open an existing file for writing it will
be clobbered. You must use append mode (a) to open a file and to add text to
it. Both write and append mode will create the file if it does not yet exist. Let
us now create a file in an interactive session.

>>> out_file = open("bilge.txt", "w")

>>> out_file.write("quack")

5

>>> out_file.write("moo")

3

>>> out_file.write("baa")

3

>>> out_file.close()

>>> in_file = open("bilge.txt", "r")

>>> print(in_file.read())

quackmoobaa

What can be gleaned from this session? Firstly, the write method returns the
number of bytes written to the file. Notice that it does not put a newline at
the end of the byte sequence you are entering. You have to do this yourself
or you will end up with a file with one long line. Also beware that the file is
not saved until you close it. Why is this? FileIO in Python is buffered so that
python is not pestering the kernel every time it wants to write a character to
a file. It has a temporary storage place for the characters you write, and when
that storage place gets full, Python ships the buffer to the file. Similarly, when
you read from a file, you are actually reading from a buffer. Most kernels will
do file operation a disk sector at a time. Closing the file causes the buffere to
be flushed into the file, where it belongs, and it discontinues the use of certian
system resources.

Know when to flush You can trigger this manually with the flush method.
Observe this.

9

>>> fout = open("dragons.slay", "w")

>>> fout.write("Bart, eat my shorts")

19

>>> fout.write("NOW")

3

Now, during this session, do this

unix> cat dragons.slay

and you will see that the file is empty! Now do this.

>>> fout.flush()

unix> cat dragons.slay

Bart, eat my shortsNOW

unix>

Most of the time you never need to flush, because if you do this

>>> fout.close()

the buffer is automatically flushed.

2.1 A Helpful Tool: Raw Strings

Python supports a version of strings called raw strings. To make a raw string
literal, just prepend with an r. When Python encounters a raw string, all
backslashes are read literally. No special meaning is given them by the language.
This interactive session shows how it works.

>>> path = 'C:\nasty\mean\oogly'

>>> print (path)

C:

asty\mean\oogly

>>> path = r'C:\nasty\mean\oogly'

>>> print (path)

C:\nasty\mean\ugly

>>>

Notice that in the raw string, the \n did not expand to a newline; it was a
literal backslash-n. This is a great convenience when dealing with file paths in
Windoze and for writing regular expressions. You can also make a triple-quoted
string a raw string.

10

Warning! You may not end a raw string with a \. This causes the close-quote
to be escaped to a literal character and causes a string-delimiter leak. Think
for a moment: there is an easy work-around for this!

3 Some FileIO Applications

Let us try to imitate the UNIX command cat, which puts a file to the screen.
We begin by developing an outline for what we want to do.

The filename we wish to cat should be a command-line argument

It will be argv[1].

We will open this file for reading

read the contents

put them to the screen

finish up by closing the file.

Now, let’s get started with the command-line arguments.

The filename we wish to cat should be a command-line argument

from sys import argv

filename = argv[1]

We will open this file for reading

read the contents

put them to the screen

finish up by closing the file.

Now, let’s open the file and aspirate its contents.

The filename we wish to cat should be a command-line argument

from sys import argv

filename = argv[1]

We will open this file for reading using the \texttt{with} statement

with open(filename, "r") as fp:

read the contents

s = fp.read()

put them to the screen

Now let’s finish up.

The filename we wish to cat should be a command-line argument

from sys import argv

filename = argv[1]

We will open this file for reading

11

with open(filename, "r") as fp:

read the contents

s = fp.read()

put them to the screen

print(s)

You think we are done? Think again. It’s time to run this raw program.

from sys import argv

filename = argv[1]

with open(filename, "r") as fp:

s = fp.read()

print(s)

Create this little test file, simple.txt

Here is a file

with a little text in it.

We are going to use this to see how

well our at program works.

Now run our program on it.

unix> python cat.py simple.txt

Here is a file

with a little text in it.

We are going to use this to see how

well our at program works.

It looks great, eh? Now let us do this.

unix> python cat.py

Traceback (most recent call last):

File "cat.py", line 2, in <module>

filename = argv[1]

IndexError: list index out of range

Uh oh. That idiotic end user. Let us now fend off this form of folly with a little
parry.

from sys import argv

if len(argv) < 2:

print("Usage: python cat.py filename; enter a filename")

quit()

12

filename = argv[1]

with open(filename, "r") as fp:

s = fp.read()

print(s)

Now let’s run this.

python cat.py

Usage: python cat.py filename; enter a filename

Think we are in the clear? Check this out.

MAC:Thu Dec 06:14:23:ppp> python cat.py not.real

Traceback (most recent call last):

File "cat.py", line 6, in <module>

fp = open(filename, "r")

FileNotFoundError: [Errno 2] No such file or directory: 'not.real'

We ran this, giving a file that fails to exist. There are two ways to handle this.
One way is to take exception.

from sys import argv

if len(argv) < 2:

print("Usage: python cat.py filename; enter a filename")

quit()

filename = argv[1]

try:

with open(filename, "r") as fp:

s = fp.read()

print(s)

except FileNotFoundError:

print("File {0} does not exist.".format(filename))

quit()

unix> python cat.py not.real

File not.real does not exist.

Another way is to use os.path.exists

from sys import argv

import os

if len(argv) < 2:

print("Usage: python cat.py filename; enter a filename")

quit()

13

filename = argv[1]

if not os.path.exists(filename):

print("File {0} does not exist.".format(filename))

quit()

with open(filename, "r") as fp:

s = fp.read()

print(s)

Feel safe? Not yet. One more form of nonsense can occur.

unix> chmod 000 simple.txt

We just revoked all read, write, and execute privileges for this file. Now watch
this.

unix> python cat.py simple.txt

Traceback (most recent call last):

File "cat.py", line 10, in <module>

fp = open(filename, "r")

PermissionError: [Errno 13] Permission denied: 'simple.txt'

We could take exception and handle this that way. Or, here is another useful
too, os.access. Let’s do this.

unix> chmod 644 simple.txt

Now start Python in interactive mode.

>>> os.access("simple.txt", os.F_OK)

True

>>> os.access("simple.txt", os.R_OK)

True

>>> os.access("simple.txt", os.W_OK)

True

>>> os.access("simple.txt", os.X_OK)

False

The first line tests if the file exists. It does. The second, third and fourth check
for read, write and execute permission.

from sys import argv

import os

if len(argv) < 2:

print("Usage: python cat.py filename; enter a filename")

14

quit()

filename = argv[1]

if not os.path.exists(filename):

print("File {0} does not exist.".format(filename))

quit()

if not os.access(filename, os.R_OK):

print("You lack permission to read file {0}. Bailing....")

quit()

with open(filename, "r") as fp:

s = fp.read()

print(s)

Now revoke all permissions and run

unix> chmod 000 simple.txt

MAC:Thu Dec 06:15:09:ppp> python cat.py simple.txt

You lack permission to read file {0}. Bailing....

Our suit of armor is complete.

Programming Exercises In these exercises, you will learn how to imitate
the behavior of various UNIX commands for file processing. You will need to
prowl the os and os.path documentaton to solve this problems.

1. Write a program named ls.py which accepts a filename as a command
line argument. If the file is a regular file, display the file’s name. If the
file is a directory, list the directory’s contents. If the file does not exist or
cannot be read, emit an appropriate nastygram.

2. Write a function named p string(filename) which shows the permission
string for a file, and which takes appropriate action if the file does not exist.
Example: if a file has 644 permissions and is not a directory its permission
string is "-rw-r--r--". If a file is a directory and it has 711 permissions,
its permission string is "drwx--x--x".

3. Write a program show sizes.py that accepts a commmand-line argument
that is a file (regular or directory) and which displays the file name with
its size if it is a regular file and which displays the contents and their sizes
it it is a directory.

4. Write a program copy.py that copies a donor file to a recipient file. Give
appropriate error warnings if something goes awry.

5. Open a file for reading and the invoke the readlines method. What does
it do?

6. Write a program named wc.py that counts the number of characters, lines,
and words in a file. Test it against UNIX’s wc.

15

7. Write a program named grep.py that takes as arguments a string and a
filename and which puts all of the lines of the file containing the specified
string to stdout.

4 while and Indefinite Looping

Python has a second looping construct, while. Let us begin by showing an very
simple example.

def main():

x = input("Enter a number ")

x = int(x)

while x < 100:

print("The number you entered, {}, is less than 100".format(x))

x = int(input("Enter a number "))

print("You finally entered {} and it is at least 100.".format(x))

main()

This is an example of a “nag” loop that will keep asking until the user does the
desired thing.

Indefinite loops can be dangerous. It is very easy to have an “infinite loop,”
which just keeps running until the OS or the user calls the process running it
to halt. Look at this little program.

x = 5

while x < 10:

print(x)

x -= 1

The value of x will keep marching farther and farther from resolution. This loop
will just keep printing a countdown to the screen. If you run this, use control-C
to stop it. This loop causes “spewing;” to wit, it causes great volumes of text
to keep streaming into stdout.

Loops can also “hang;” in this event, the program simply sits there doing
nothing. You can kill a hung or spewing program with control-C.

Here is a loop that is guaranteed to hang.

x = 1

while x > 0:

x += 1

16

Programming Exercises Wrap these solutions in functions.

1. Write a while loop that prints out the entries in a list.

2. Repeatedly roll a pair of dice until you get doubles. Print the rolls as they
occur. If a double 1 occurs, print "Snake Eyes! and if a double 6 occurs,
print "Boxcars!

3. Repeatedly toss a coin until you get five heads in a row. return the tosses
in a string like this: "HTHHHTTTHTTTHHHTTTTTHHHHH".

5 Bigger Programming Projects

Here you will use your skills to perform simulations of two stochastic systems.
One will introduce you to stopping times, which entail experiments that are
repeated until a specified event occurs.

The other is an analysis of risk in the Parker Brothers’ game Monopoly.
Everyone should love the orange monopoly.

Project 1: System Simulation for a Waiting Time In the first project,
you will perform a simulation of a stochastic (random) system. In this project,
you are going to perform a simulation in which you toss a fair coin until a head
appears. You are going to run this experiment one million times and maintain a
tally of how many times the first head came up on the first toss, second toss...,
etc. An outline of suggested functions for you to implement is shown.

1. Implement the function toss coin, which produces an ”H” or a ”T” at
random.

2. Implement the function first head, which tosses a fair coin until a head
appears and returns the number of that trial.

3. Implement the function perform Sim(num trials) that returns a dictionary
whose keys are integers and whose values are the number of times that
result was returned by repeated trials of first Head. This dictionary just
amouts to a tally of the trials.

4. Run this first Head for one million trials. What do you see? What seems
to happen as you double the number of trials?

Project 2: The Orange Monopoly Simulation In this next project, you
are playing Monopoly and your client is on the square Just Visiting/Jail, and
is just visiting. His opponent has hotels on the New York Avenue Monopoly.
You have the actuarial duty of determining the price for an insurance policy to
indemnify your client against the cost of the visiting the hotels for one turn.

17

To do this project, you will need to find an image of a Monopoly board.
Here are the pertinent rules. The rent for New York Avenue is $1000. The rents
for St. James and Tennessee Ave are $950. You do not need to concern yourself
with the other squares, save for Go to Jail, which ends your turn and puts you
in jail.

To start a turn, you roll a fair pair of dice (6-sided) and advance that number
of squares. If you land on a property with a hotel, you must pay the applicable
rent. If you roll doubles, you roll again and the same rules apply. If you roll
doubles three times in a row, you go to jail for speeding and your turn ends.

So it’s possible to have #$!$!@# and roll double threes, hit St. James then
roll a 1 and a 2 and hit New York Avenue for a total damage of $1,950.

Here are some suggestions for how to proceed.

1. Write a function that produces a tuple with two fair die rolls in it.

2. Make a tuple that represents all reachable squares in one turn.

3. Write a function that peforms the rolls in a single turn and which returns
the total damage from the hotels in that turn.

4. Write a function doTrials(n) that accepts an integer as an argument,
and which computes the average damage from the hotels in n trials.

5. Run a ton of trials and see what the average damage is. How would you
price this policy?

6. Can you do a big trial, keep running averages in a file, and plot the results?

Project 3: Gambler’s Ruin Suppose we have two gamblers and they have
a total of $M (an integer) between them. They repeatedly play a game until one
of them goes bust; each trial of the game has win probablility p for Player One
and 1´ p for Player Two. For M “ 10, perform simulations of this experiment.
What do the probabilities of bust look like for Player one if his initial stake is
$ k, 1 ă k ă 10? What is the average time to bust in each of these cases?

6 Function Flexibility

When you define a function such as this one

def f(x, y, z):

return x + 2*y + 3*z

the arguments x, y, and z are called positional arguments. This is so because
when you call the function like this

18

print(f(1,2,3))

the arguments are sent, in order to f. Notice that the position of each argument
is critical. Permute them and the result is not the same.

You have seen some nifty stuff that make functions flexible and which expand
their purpose, but now the time has arrived to for you to be able to use these
things yourself.

Let us begin with an example. Consider the function math.log. This func-
tion can be called as follows.

>>> math.log(10) #natural log

2.302585092994046

>>> math.log(1000, 2)

9.965784284662087 #log base 2

You see an optional second argument. How did they do this? We can make it
happen. We will create a function called lincoln that does the same thing.

import math

def lincoln(x, b = math.e):

return math.log(x)/math.log(b)

print(lincoln(1000,2))

print(math.log(1000, 2))

The second argument has a default value of math.e. Notice that at least one
argument is required.

Here is another example. We create the illusion that this function can have
as many as five arguments.

def product(a = 1, b = 1, c = 1, d = 1, e = 1):

return a*b*c*d*e

print("product() = ", product())

print("product(3) = ", product(3))

print("product(3, 4) =", product(3, 4))

print("product(3, 4, 5) =", product(3, 4, 5))

print("product(3, 4, 5, 6) =", product(3, 4, 5, 6))

print("product(3, 4, 5, 6, 7) =", product(3, 4, 5, 6, 7))

If you take the default values away from the first two arguments, then at least
two arguments are required to call this function. You should try this now.

End of List Rule All default arguments for any function must be grouped
together at the end of the argument list. Something like this is illegal.

19

def dumb(x, y = "cows", z):

pass

Run this program and see the error message. This is because these arguments
are really polymorphic. If you pass a value to them, they behave as positional
arguments. If you don’t the default value is used. It does not take a great deal
of imagination to see why the End of List Rule is necessary.

6.1 A Star is Born

Now let us consider the print function. You have noticed this sort of flexibility
in its use.

print("Foo", "Bar", "Baz", sep="moo", end="cats\n")

It seems that this function accepts an unlimited number of comma-separated
arguments, and they allows you to specify behavior at the end of the argument
list using keywords. We might like to have this particular arrow in our quiver,
so let us set about getting it.

Consider the problem of finding writing a function to find the sum of a a
bunch of numbers whose call looks like this.

>>> total(2,3,6,8)

19

To solve it, let us see if we can plagiarize print’s mechanism. Here is what
print’s header looks like.

def print(*objects, sep=' ', end='\n', file=sys.stdout, flush=False):

Its first argument is a star argument or stargument. A star argument must
appear after all other positional arguments.

Now let’s make total. We will use a stargument.

def total(*x):

out = 0

for k in x:

out += k

return out

print(total(2, 3, 6, 8))

You might want to require at least one argument be passed to total. We can
enforce this by adding a postional argument at the beginning. We do this in
function totall.

20

def total(*x):

out = 0

for k in x:

out += k

return out

def total1(y, *x):

out = y

for k in x:

out += k

return out

print(total(2,3,6, 8))

print(total1(2,3,6, 8))

print(total())

print(total1())

Note the opprobrious ululation after the last call. At least one number is re-
quired.

unix> python keywords.py

19

19

0

Traceback (most recent call last):

File "keywords.py", line 15, in <module>

print(total1())

TypeError: total1() missing 1 required positional argument: 'y'

unix>

Let us now make a simple function to count the number of files in a directory
with a given extension that uses all default arguments. For defaults, we will have
the directory be the cwd and the extension be .txt.

import os

from sys import argv

def countFiles(directory=".", end="txt"):

files = os.listdir(directory)

out = 0

for item in files:

if item.endswith("." + end):

out += 1

return out

folder = "." if len(argv)== 1 else argv[1]

ext = "" if len(argv) < 3 else argv[2]

print(folder)

print("There are {0} files in {1} with extension .{2}".format(countFiles(directory=folder, end=ext), folder, ext))

21

Programming Exercise Modify the output routine so that no mention of
extension is made if argv[2] does not exist and all files are counted.

6.2 Keyword Arguments

Now let us see how to use keyword arguments. Recall that print’s header looks
like this.

def print(*objects, sep=' ', end='\n', file=sys.stdout, flush=False):

Its first argument is a stargument. Following it are several keyword arguments.
Each has the form keyword=value. Each of the specified values is the default
for that argument. If no value is passed to a keyword argument, its default
value is used.

Order in the court! You can have positional, star, and keyword arguments
in a function. You must obey these rules

1. Positional arguments come first.

2. One star argument can come next.

3. Keyword arguments must all occur at the end.

Here is a cheesy example of these rules at work.

def f(*x, y="cows", z = "horses"):

return "{}{}{}".format(sum(x), y ,z)

def g(a, b, *x, y="cows", z = "horses"):

return "{}{}{}{}{}".format(a, b, sum(x), y, z)

print (f(2,3,4,5,y="rhinos", z="pigs"))

print (g("moo", "baa", 2,3,4,5,y="rhinos", z="pigs"))

7 Generators

A generator is a stateful function that remembers its local symbol table between
calls. You will meet a new keyword yield when creating genearators, which
returns a value to the caller without destroying the stack frame containing the
function. Between calls, this object remembers where it left off and it remembers
the values of local variables. Note that the scope of these local variables is still
confined to the body of the generator. Let us see this at work in a very simple
example.

22

Each time a generator is called it can either yield a value, in which case it can
be called again, or it can return a value, which termimnates its execution. We
begin with a super-simple example, and we see how a generator is an iterable.

def simple():

yield "quack"

yield "moo"

yield "baa"

yield "neigh"

yield "woof"

s = simple()

for k in s:

print(k)

Now we run it.

unix> python simple.py

quack

moo

baa

neigh

woof

Generators can iterate through finite or infinite sets, as we shall soon see.
Let’s make one that starts counting at 1. Generators are a handy form of
iterable.

def counter(n):

k = 0

while k < n:

k += 1

yield k

for k in counter(10):

print(k)

Now run it.

unix> python counter.py

1

2

3

4

5

23

6

7

8

9

10

Here is an imitation of range.

def strange(start=0, stop = 10, skip = 1):

while start < stop:

yield start

start += skip

for k in strange(0, 11, 2):

print(k)

for k in strange(0, 1, .1):

print("{0:.2f}".format(k))

unix> python strange.py

0

2

4

6

8

10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Generators can serve up infinite sequences. For example, we will create a
generator here that serves up the nonnegative integers.

def z():

out = 0

while True:

out += 1

yield out

24

progression = z()

for k in progression:

print(k)

Now we run it. Be prepared to hit control-C to stop the spewage.

unix> python z.py

0

1

2

...

(big number)

You will see that the value of the local variable out is rememembered between
calls. This will iterate through all of the positive integers.

This beast requires some taming. You could put logic into z to tell it to
stop, but here is a more flexible way. We pass our generator to a function that
does the dirty work for us.

def z():

out = 0

while True:

out += 1

yield out

def stopper(generator, n):

well = z()

for k in well:

if k < n:

yield k

else:

return

progression = z()

for k in stopper(progression, 10):

print(k)

Now we run it.

25

Now we run it.

unix> python z.py

1

2

3

4

5

6

7

8

9

The stopper routine can be recycled.

def z():

out = 0

while True:

out += 1

yield out

def squares():

out = 0

while True:

out += 1

yield out*out

def stopper(generator, n):

well = generator

for k in well:

if k < n:

yield k

else:

return

progression = squares()

for k in stopper(progression, 200):

print(k)

Now we run it.

unix> python z.py

1

4

9

16

25

26

36

49

64

81

100

121

144

169

196

7.1 Holy Iterable, Batman!

A generator is an iterable! Here is proof.

def squares():

out = 0

while True:

out += 1

yield out*out

def stopper(generator, n):

well = generator

for k in well:

if k < n:

yield k

else:

return

s = squares()

for k in range(10):

print(next(s))

Now we run it.

unix> python z.py

1

4

9

16

25

36

49

64

81

100

121

27

144

169

196

You can also make generators on-the-fly using a mechanism akin to a com-
prehension. Here is an example.

>>> s = (x*x*x for x in range(1,10))

>>> for k in s:

... print(k)

...

1

8

27

64

125

216

343

512

729

Take note that once you do this, the generator is ”used up.” Watch this; we are
iterating with it again.

>>> for k in s:

... print(k)

...

>>>

The solution? Just make another one. Here is another way to use it. We will
begin by reconstituting it.

>>> s = (x*x*x for x in range(1,10))

>>> next(s)

1

>>> next(s)

8

>>> next(s)

27

>>> next(s)

64

>>>

What happens if you go too far? Watch.

28

>>> next(s)

125

>>> next(s)

216

>>> next(s)

343

>>> next(s)

512

>>> next(s)

729

>>> next(s)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

StopIteration

>>>

This next function is handy if a generator generates an infinite progression. We
create an example with Fibonacci numbers.

def fib():

little = 1

big = 0

while True:

little, big = big, little + big

yield little

f = fib()

for k in range(10):

print(next(f))

Now run this.

unix> python fibonacci.py

0

1

1

2

3

5

8

13

21

34

29

8 Terminology Roundup

� definite loop This is a loop that walks through a collection or an iterable,
executing a block of code for each item. Python implements this with the
for construct.

� indefinite loop This is a loop that repeats until its predicate becomes
false. Python implements this with while

� iterable This is an object that can be walked through using a for loop.
All Python collections are iterables that are walked through an item at a
time. Python strings are walked through a character at a time. Generators
and range objects are also iterables.

� star argument This is an argument in a function that is preceded by a
star (*), which behaves like an array inside of a function.

� stargument Synonym of for star argument.

� Turing-Complete This describes a full-featured computer language ca-
pable of solving any computational problem, given sufficient time and
memory.

30

	Introduction
	Iterables and Definite Loops
	File IO
	A Helpful Tool: Raw Strings

	Some FileIO Applications
	while and Indefinite Looping
	Bigger Programming Projects
	Function Flexibility
	A Star is Born
	Keyword Arguments

	Generators
	Holy Iterable, Batman!

	Terminology Roundup

