
Chapter 5, Creating Custom Objects

John M. Morrison

January 6, 2020

Contents

0 Introduction 2

1 Stick-Building Python Objects 2

2 Making a Class 3

3 A Case Study: Calendar Dates from Scratch 6

3.1 Put on a strring Performance . 7

3.2 A Leap of Faith . 8

3.3 I Take Exception! . 9

3.4 Fraternite, Egalite, Liberte! . 10

4 If it is Saturday, this must be Paris! 10

5 I am afraid your number is up! 12

6 A Case Study: Playing Cards 13

6.1 A Design Decision . 13

6.2 Getting to Know our Number . 14

6.3 Resolving our Identity Crisis . 17

7 Using our Card Class 17

8 A Little Interior Decoration 18

1

9 Shouldn’t a Deck of Cards be an Object? 19

10 Case Study: Fractions 21

0 Introduction

We have learned that objects have state, identity, and behavior. We have worked
with a wide variety of objects: lists, tuples, integers, and strings are examples.
We can leverage these to solve big programming problems with a surprisingly
small amount of code.

We have learned that we can create functions, which allow us to isolate a
task and store a procedure for solving it under a name. These organizational
features give Python a great deal of clarity and they cut clutter in your code.

Now it is time to go to the next level and ask this question How can we
create our own custom objects? For example we might like to create a card
game such as Poker. It would be useful to be able to create our own data type
for representing playing cards.

We will begin by discussing a method for creating a custom object on the
fly you might only use once. We will build the object using the “stick building”
technique. This will allow us to attach state and methods to the object.

All objects in Python are created using the class mechanism; a class is a
blueprint for an object.

1 Stick-Building Python Objects

We will now create a class named First.

>>> class First(object):

... pass

...

Next, we create an object of this class’s type. Since the class just contains a
pass (do-nothing) statement, the object resulting has no state and no behavior.
It does, however, have an identity.

>>> f = First()

>>> f

<__main__.First object at 0x104148668>

Now let us make another instance of our class

2

>>> g = First()

We now have objects f and g floating around. We can attach state to an object
as follows.

>>> f.x = "This is x"

This attaches x to tt f but not to g, as we see here.

>>> g.x

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

AttributeError: 'First' object has no attribute 'x'

We can even attach a method the object f like so.

>>> f.doSomething = lambda y: print(f.x + " is printing " + str(y))

>>> f.doSomething(42)

This is x is printing 42

Our funny little object even has a type.

>>> type(f)

<class '__main__.First'>

You can continue in this way, adding state and methods to the objects f

and g. However, if you intend to mint lots of objects of your new type, this
arrangement is clearly not satisfactory.

2 Making a Class

Now let us do something useful. We will represent vectors in the plane with
integer coördinates. Here we begin by creating an empty class.

class intVector(object):

pass

Our question is How do we endow the vector with two components? Python
has a special type of method called a hook for this purpose. All hooks have this
appearance __hookName__. The hook we shall use is the init hook. This hook
runs right after an object is first created. We can use it to attach coördiantes
to our vector.

3

class intVector(object):

def __init__(self):

self.x = 0

self.y = 0

All of our vectors are now born with an x and a y that are both 0. You notice
the use of the argument self. This symbol refers to the object itself (hence
the name). All functions (methods) created inside of a class must have self as
their first argument. We can improve our class further by doing this.

class intVector(object):

def __init__(self, x, y):

self.x = x

self.y = y

We now drive it as follows.

class intVector(object):

def __init__(self, x = 0, y = 0):

self.x = x

self.y = y

p = intVector()

print("p = {0}i + {1}j".format(p.x, p.y))

q = intVector(3, 4)

print("q = {0}i + {1}j".format(q.x, q.y))

Now run it.

\begin{minted}{shell-session}

unix> python IntVector.py

p = 0i + 0j

q = 3i + 4j

The next question is: Can we get it to print nicely? The __str__ hook
comes to the rescue. While you are a it define the __repr__ hook so it looks
nice in an interactive session.

class intVector(object):

def __init__(self, x = 0, y = 0):

self.x = x

self.y = y

def __str__(self):

out = "" + str(self.x) + "i"

4

if self.y < 0:

out += " - " + str(-self.y) + "j"

else:

out += " + " + str(self.y) + "j"

return out

def __repr__(self):

out = "" + str(self.x) + "i"

if self.y < 0:

out += " - " + str(-self.y) + "j"

else:

out += " + " + str(self.y) + "j"

return out

print(p)

q = intVector(3, 4)

print(q)

r = intVector(3, -4)

Now run this and see the pretty result.

unix> python IntVector.py

0i + 0j

3i + 4j

3i - 4j

unix>

We will now make a regular method called magnitude that computes the vector’s
magnitude.

import math

class intVector(object):

def __init__(self, x = 0, y = 0):

self.x = x

self.y = y

def __str__(self):

out = "" + str(self.x) + "i"

if self.y < 0:

out += " - " + str(-self.y) + "j"

else:

out += " + " + str(self.y) + "j"

return out

def __repr__(self):

out = "" + str(self.x) + "i"

if self.y < 0:

out += " - " + str(-self.y) + "j"

else:

5

out += " + " + str(self.y) + "j"

return out

def magnitude(self):

return math.hypot(self.x, self.y)

q = intVector(3, 4)

print("q.magnitude() = {0}".format(q.magnitude()))

r = intVector(3, -4)

print("r.magnitude() = {0}".format(r.magnitude()))

Now run this.

unix> python IntVector.py

q.magnitude() = 5.0

r.magnitude() = 5.0

unix>

You may add as many regular methods to your class as you wish. Python
has a rich collection of hooks for overriding the behavior of operators such as
+, -, *, / and **. paragraphProgramming Exercises

1. Implement the hook

def __add__(self, other):

so a vector will add itself to the vector other.

2. Implement the hook

def __sub__(self, other):

so a vector subtract other from itself and return the result

3. Implement the hook

def __eq__(self, other):

and have a the the vector self report if it is equal to the vector other.

3 A Case Study: Calendar Dates from Scratch

As you know calendar dates are a type of data riddled with idosyncracies and
funky exceptions. The goal here is to create a nice interface for working with
dates and to understand how Python’s library works. This is a “look from the
inside.”

Let us begin. First we will set up our init hook.

class Date(object):

def __init__(self, day, month, year):

6

self.day = day

self.month = month

self.year = year

Certain pieces of information in this class should be static; to wit, these are
shared data for all objects created from this class. Let us add lists for the month
names and the names of days of the week. The reason for this is that when the
class is read into memory, only one copy of static items is needed.

class Date(object):

monthNames = ["", "January", "February", "March",

"April", "May", "June", "July", "August", "September",

"October", "November", "December"]

dayNames = ["Sunday", "Monday", "Tuesday", "Wednesday",

"Thursday", "Friday", "Saturday"]

def __init__(self, day, month, year):

self.day = day

self.month = month

self.year = year

How do you access these? Observe.

>>> from Date import Date

>>> Date.monthNames[2]

'February'

>>> Date.dayNames[5]

'Friday'

Static data are called by using the class name. Notice the empty string in the
list monthNames; we do this so that 1 is associated with January and 2 with
February, etc, because it’s burnt into our brains.

3.1 Put on a strring Performance

As of yet, we can’t see our dates print and we can’t see them in an interactive
session. So, we will get the str and repr hooks working.

def __str__(self):

return "{0} {1} {2}".format(self.day,

Date.monthNames[self.month], self.year)

def __repr__(self):

return "'{0} {1} {2}'".format(self.day,

Date.monthNames[self.month], self.year)

7

Let us now see what things look like

>>> d = Date(25, 12, 2019)

>>> print(d)

25 December 2019

>>> d

'25 December 2019'

3.2 A Leap of Faith

The next bear we must wrestle with is that of the business of leap years. In
case you don’t know, here are ther rules.

1. If a year is divisible by 4 it leaps.

2. Every 100 years, there is an exception. For instance, 29 February 1900
does not exist.

3. Every 400 years there is an exception to the exception! The day 29 Febru-
ary 2000 was a very special day and almost no one knew about that!

Let us write a function that returns 1 if a year leaps and 0 otherwise and
name it leapAdjust.

def leapAdjust(year):

out = 0

if year % 4 == 0:

out += 1

if year % 100 == 0:

out -= 1

if year % 400 == 0:

out += 1

return out

This method does not depend on any object’s state so we will make it a
static (shared) method. When we do so, it is a good idea to apply the decorator
@staticmethod.

class Date(object):

monthNames = ["", "January", "February",

"March", "April", "May", "June", "July",

"August", "September", "October", "November",

"December"]

dayNames = ["Sunday", "Monday", "Tuesday",

"Wednesday", "Thursday", "Friday", "Saturday"]

8

@staticmethod

def leapAdjust(year):

out = 0

if year % 4 == 0:

out += 1

if year % 100 == 0:

out -= 1

if year % 400 == 0:

out += 1

return out

def __init__(self, day, month, year):

self.day = day

self.month = month

self.year = year

Note that the month lengths cannot be static, since the lengths of months
in a given year depend upon whether the year leaps or not. We now add this to
the init hook.

self.monthLengths = [0, 31, 28 + Date.leapAdjust(self.year),

31, 30, 31, 30, 31, 31, 30, 31, 30, 31]

Here we see our init hook.

def __init__(self, day, month, year):

self.day = day

self.month = month

self.year = year

self.monthLengths = [0, 31, 28 +

Date.leapAdjust(self.year), 31, 30, 31,

30, 31, 31, 30, 31, 30, 31]

3.3 I Take Exception!

Here is a stupid thing an end-user might do with Our Lovely Code.

>>> d = Date(32, 12, 2019)

>>> print(d)

32 December 2019

Heaven forfend! We shall defend the integrity of our work here. Add these two
lines to the init hook.

if self.month < 1 or self.month > 12:

raise ValueError;

9

if self.day < 1 or

self.day > self.monthLengths[self.month]:

raise ValueError

Punishment will be meted out to offenders.

>>> from Date import Date

>>> d = Date(32, 12, 2019)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "/Users/morrison/book/ppp/Date.py",

line 44, in __init__

raise ValueError;

ValueError

>>>

Programming Exercies

1. Write a method called def tomorrow(self) that computes for any given
date the date of the next day.

2. Write a method called def yesterday(self) that computes for any given
date the date of the previous day.

3.4 Fraternite, Egalite, Liberte!

Another piece of low-hanging fruit comes in the forms of the eq and neq hooks.
We just check equality of state.

def __eq__(self, other):

return self.day == other.day and self.month == other.month

and self.year == other.year

def __neq__(self, other):

return self.day != other.day or self.month != other.month

or self.year != other.year

4 If it is Saturday, this must be Paris!

Now we staring a serious problem right in the eye. Given a date, how do we get
the day of the week? We will restrict ourselves to the modern calender, which
has been in force since 1752.

10

Ancillary to this, it will be helpful to know the ordianl position of a given
date in its year. We will write a method dayInYear for this purpose. The idea
is as follows. Add up the lengths of the previous months, then add on the day.
Et Voila! For example for 26 May 2019, you do the following.

Jan 31

Feb 28

Mar 31

Apr 30

May 26

146

We have everything in place!

def dayInYear(self):

return sum(self.monthLengths[:self.month]) + self.day

Now it’s time to get shifty. Notice that 365%7 = 1, so the passage of a
year means that the calendar shifts one day. We are going to compute the
accumulated shift for a date, keeping it between 0 and 6 by modding by 7.

We first get all of the shift up to the previous year. If we have a date d,
let us put y = d.year - 1. Then, ignoring leap years we get y units of shift.
Factoring in the exceptions and the exceptions to the exception, we get

y + y//4 - y//100 + y//400

units of shift. We then mod this by 7. We get the rest of the shift from the
ordinal position of the day in the year, which we already know how to compute.
Our result can be computed like so. The variable out holds the total shift.

y = self.year - 1

out = (y + y//4 - y//100 + y//400)% 7

out += self.dayInYear()

out = out % 7

To set the shift, run it on a day. If your day is Tuesday, you will get 2. So,
Tuesday is a 2, Wednesday is a 3, Thursday is a 4, Friday is a 5, Saturday is a
6, and . . . , Sunday is a 0! Here is our dayOfWeek method.

def dayOfWeek(self):

y = self.year - 1

out = (y + y//4 - y//100 + y//400)% 7

out += self.dayInYear()

out = out % 7

return Date.dayNames[out]

11

5 I am afraid your number is up!

Inspired by what we have just done, we are going to serially number all dates
by computing how many days have elapsed since a fictional “beginning.” We
will do the routine in the dayOfTheWeek method, but we will not mod out by 7.

def number(self):

y = self.year - 1

out = 365*y + y//4 - y//100 + y//400

out += self.dayInYear()

return out

Here is a fun thing we can do with this number method. We can write a
method to subtract dates using the sub hook.

def __sub__(self, other):

self.number() - other.number()

Progrmaming Exercises Use number to implement the following.

1. __gt__

2. __lt__

3. __ge__

4. __le__

OK, Hotshots! A Serious Challenge Here is a right hairy question to
ponder: Given a date’s number, how do you reconstruct the date? Make a static
method called dateFromNumber(num) that computes a date from its number

NC-17 Programming Exercises Use number to implement the following.

1. Use dateFromNumber to define the hook

def ___add__(self, n):

#return the date n ndays from this date

#n can be an integer positive or negative

def __radd(self, n):

allows you to wrte n + date as well as date + n.

2. Upgrade the subtract hook so it detects if a number is passed in as other
instead of a date and which does the right thing.

3. Create the hook __rsub__.

12

6 A Case Study: Playing Cards

Let us imagine that we are writing a game involving playing cards. Using the
class apparatus, we can create a new data type that represents a playing card.

We will adopt the Java naming convention: each class we create will reside
in a file with the same name as our class. Also, we will capitalize all class names.

We begin by creating an empty class like so.

class Card(object):

pass

Observe that the class statement is a boss statement, and therefore has a colon
at the end. It owns a block of code. Recall that if you want to have an empty
block of code, you must place a pass statement in it.

6.1 A Design Decision

What does a card need to know to be a card? We will deal with the standard
Bridge deck of 52 cards here. Each card is determined by a rank of 2, 3, 4, 5,
6, 7, 8, 9, 10, Jack (J), Queen (Q), King (K) and Ace (A). We have listed the
ranks in ascending order here. There are four suits, Clubs, Diamonds, Hearts
and Spades. A card’s identity is determined completely by its suit and its rank.

What does a card need to know? We could keep track of cards by record-
ing their ranks and suits. However there is a simpler and nicer way to do this.
What we shall do here is to connect each card to an integer in range(0,52).
This is an implementation detail; we will enable our cards separately to tell
their ranks and suits. We will call this integer number.

You can accomplish this task several ways; the one shown here is nice and
compact. However, you can try using another way to keep track of cards. You
have the freedom to choose here!

What should a card be able to do? A card needs to be able to tell us its
suit and rank. A card should know whether or not it outranks another card. We
should be able to make a card either by specifying its number or by specifying
nothing and getting a random card.

In a class we specify state variables, which constitute the things objects
created from the class know and methods, which constitute what instance of
the class can do.

This kind of design process occurs in all object-oriented languages including
Ruby, Python, Java and C++.

13

6.2 Getting to Know our Number

Our Card class will have a state variable named number and it will know the
ranks and suits of cards. Since we are coding inside of the Card class, we “are”
a card. Our name inside the class is self. This is a special Python language
keyword.

When a Card is first created, a special method called __init__ swings into
action; we use this to teach the class what it needs to know. First let us teach
the class its number.

class Card(object):

def __init__(self, number):

self.number = number

This worked but the default method of printing out an instance of a class is
pretty uninformative. In the session below we created an instance of Card

number 5, but not much shows when we try to print it.

>>> from Card import *

>>> c = Card(5)

>>> print c

<Card.Card instance at 0xb7eacf4c>

>>>

Now we will add a the string hook to our class, which will create a string
representation of a Card object.

class Card(object):

def __init__(self, number):

self.number = number

def __str__(self):

return "Card#{0}".format(self.number)

Whenever we use print, we will see this string representation put to stdout.

>>> from Card import *

>>> c = Card(5)

>>> print c

Card#5

>>> c

<Card.Card instance at 0xb801af4c>

>>>

It is also nice to have a card print nicely right at the interactive prompt. To
do this, implement the repr method just as you did str . Whatever you

14

print should be a valid Python expression. Here we will show our card as a
string literal. We show the implementation here.

def __repr__(self):

return "'Card#{0}'".format(self.number)

Here is the result.

>>> from Card import *

>>> c = Card(5)

>>> c

'Card#5'

>>>

Implementing the Card Class Now let us make instances of of our class
cognizant of ranks and suits. We will also “show our cards” about our imple-
mentation. We need lists that hold ranks and suits for cards. Observe that the
list of ranks and the list of suits is the same of for all cards, so we will make
those static or shared, variables. Here is how to do that. Notice that the static
variables are “unselfish.”

class Card(object):

#shared data for all cards

ranks = ['2', '3', '4', '5', '6', '7', '8', '9', '10', 'J', 'Q', 'K', 'A']

suits = ['clubs', 'diamonds', 'hearts', 'spades']

def __init__(self, number):

self.number = number

Now let us see how to gain access to these static variables.

\begin{minted}{python}

>>> Card.ranks

['2', '3', '4', '5', '6', '7', '8', '9', '10', 'J', 'Q', 'K', 'A']

>>> Card.suits

['clubs', 'diamonds', 'hearts', 'spades']

You can access them via the class name since they are static. The next step is
to get the __str__ and __repr__ hooks up and running so we can see what we
are doing. You can access them via the class name since they are static. The
next step is to get the __str__ and __repr__ hooks up and running so we can
see what we are doing.

class Card(object):

#static variables shared by all cards

ranks = ['2', '3', '4', '5', '6', '7', '8', '9', '10', 'J', 'Q', 'K', 'A']

15

suits = ['clubs', 'diamonds', 'hearts', 'spades']

def __init__(self, number):

self.number = number

def __str__(self):

return "{0} of {1}".format(Card.ranks[self.number%13], Card.suits[self.number//13])

def __repr__(self):

return "'{0} of {1}'".format(Card.ranks[self.number%13], Card.suits[self.number//13])

It’s time to test this. First we will test our __str__ hook. Add this to our code.

def main():

c = Card(0)

d = Card(1)

print(c)

print(d)

if __name__ == "__main__":

main()

Run it and see this.

unix> python Card.py

2 of clubs

3 of clubs

Next test the __repr__ hook by opening a Python session and importing our
class.

>>> from Card import Card

>>> for k in /ange(0,15):

... print(Card(k))

...

2 of clubs

3 of clubs

4 of clubs

5 of clubs

6 of clubs

7 of clubs

8 of clubs

9 of clubs

10 of clubs

J of clubs

Q of clubs

K of clubs

16

A of clubs

2 of diamonds

3 of diamonds

>>>

We will now add some regular metods, one to return rank, one to return
suit, and a third method that will return a numerical ranking for a card that is
a number 0-12. This will be useful in comparing card ranks. First, let’s write
the methods reporting rank and suit.

def rank(self):

return Card.ranks[self.number % 13]

def suit(self):

return Card.suits[self.number//13]

Now for the numerical value.

def numericalRank(self):

return self.number % 13

6.3 Resolving our Identity Crisis

Here is a surly little problem.

>>> d = Card(51)

>>> c == d

False

>>> print c

A of spades

>>> print d

A of spades

>>>

However, this problem is akin to the problem we had with printing. By default,
when we create a class, the operator == checks for equality of identity, not of
value. We fix this with the __eq__ hook.

def __eq__(self, other):

return self.number == other.number

7 Using our Card Class

This little sample program shows how to program with the class. Place this
code in a file called exercise.py.

17

from Card import Card

c = Card(35)

print("c = {0}".format(c))

d = Card(23)

print("d = {0}".format(d))

print("c.rank() = {0}".format(c.rank()))

print("d.suit() = " + str(d.suit()))

This is what happens when we run the code.

unix> python exercise.py

c = Q of hearts

7

d = Q of diamonds

c.rank() = 7

d.suit() = diamonds

unix>

Programming Exercises

1. Make a list containing a full deck of cards. Look in the random library
and figure out how to shuffle the deck.

2. A poker hand is a sample without replacement of five cards from a bridge
deck. Make a function dealHand() that generates a poker hand (5 cards).

3. Make a function isFlush() that checks if a poker hand contains cards all
of the same suit.

4. Make a function isStraight() that checks if a poker hand contains cards
with five consecutive ranks.

5. Make a function isPair() that checks if a poker hand contains cards two
cards of equal rank and three other cards of different ranks.

8 A Little Interior Decoration

The @property decorator can shorten code and make it easer to understand.
Let us apply it to our rank, suit, and numericalRank methods as follows.

@property

def rank(self):

return Card.ranks[self.number % 13]

@property

def suit(self):

18

return Card.suits[self.number//13]

@property

def numericalRank(self):

return self.number % 13

print(Card(51).rank)

print(Card(51).numericalRank)

print(Card(51).suit)

Now these methods can be called as if they were properties. Here is the
result of runnning the Card class with these three lines.

A

12

spades

9 Shouldn’t a Deck of Cards be an Object?

The short answer is: yes. When card games are played in casinos, several decks
are combined to create a reservoir of cards called a shoe. We will create a class
for shoes of cards and have the shoe deal cards (in a list).

The main information we need is the number of decks in the shoe, and the
order of the cards in the decks.

import random

from Card import Card

class Shoe:

def __init__(self, howMany = 1):

self.howMany = howMany

self.cards = []

for k in range(howMany):

for j in range(51):

self.cards.append(Card(j))

We will now see how this creates a shoe of cards. We begin by making our shoe
know how many decks it contains. That is done by this line of code.

self.howMany = howMany

The programmer using this code will say something like

19

deck = Shoe(2)

and this will create a two-deck shoe. If no value is given to Shoe(), it will create
by default a one-deck shoe.

Now we make our shoe of cards.

self.cards = []

for k in range(howMany):

for j in range(51):

self.cards.append(Card(j))

Our shoe is learning its cards. At first it is empty. The loop populates it with the
appropriate number of decks. At the end of this code, all of the cards are sorted
in numeric order. That is not desirable and could get us shot in a less than
friendly card game. To shuffle the deck using random’s shuffle mechanism, we
create a method shuffle.

def shuffle(self):

random.shuffle(self.cards)

We now have a shoe of cards with the specified number of decks, nicely shuffled
and ready for the dealer’s table.

Now we are going to have the shoe deal cards from itself. We will return the
cards (even one card) in a list of cards. The list method pop() comes in handy.
It takes an item off the list, removes it from the list and returns the item. This
comes in very handy here.

def deal(self, n = 1):

cardsToBeGiven = []

for k in range(n):

cardsToBeGiven.append(self.cards.pop())

return cardsToBeGiven

Programming Exercises It is useful to know if a card is a face card (J, K,
Q) or if it is an ace. This is true if you wish to write a blackjack game. Knowing
a card’s color is important for solitaire games. Add these methods to your card
class.

1. Implement a method isFace that returns True if a card is a face card and
False otherwise.

2. Implement a method isAce that returns True if a card is an ace and False

otherwise.

20

3. Implement a method isRed that returns True if a card is a red card (hearts
or diamonds) and False otherwise.

4. Implement a method isBlack that returns True if a card is a black card
(spades or clubs) and False otherwise.

Hey, a Shoe is a collection! I want to to use the for loop! To do this,
we must implement two hooks, __len__ and __getitem__. The first defines the
builtin len function for our Shoe object. The second allows us to index into the
Shoe object. If you have these two in place, you can use a for loop.

Add ’em.

def __getitem__(self, n):

return self.cards[n]

def __len__(self):

return len(self.cards)

Now do this and watch your cards print

s = Shoe()

for k in s:

print (k)

10 Case Study: Fractions

Python has a built-in class for these but we will create an example class here
to do extended–precision rational arithmetic and use it do do some interesting
things such as producing very close rational approximations of roots of numbers.

To begin we ask: what does a fraction need to know? It needs to know its
numerator and denominator. So we might begin like so.

class Fraction(object):

def __init__(self, num = 0, denom = 1):

self.num = num

self.denom = denom

def __str__(self):

return "{}/{}".format(self.num, self.denom)

def __repr__(self):

return "'{}/{}'".format(self.num, self.denom)

f = Fraction(1,2)

print(f)

Now run this.

21

unix> python Fraction.py

1/2

unix>

Let us now add these four lines to our code. We will be unhappy.

g = Fraction(2,4)

print(g)

h = Fracton(-3, -6)

print(h)

Run this.

unix> python Fraction.py

1/2

2/4

-3/-6

Blecch. We find fauult here. Firstly, any self-respecting fraction allowed to be
seen in public should be in fully-reduced form. Secondly, that negative on the
bottom is ugly and we can easily get rid of it.

So, we will add a function to compute the greatest common divisor of two
integers and we will make a provision to kick any negative sign upstairs. We
will do this in the __init__ hook so our Fractions are “born” fully reduced and
with any negative in the numerator. While we are here, we will pitch a fit if
some hapless client programmer passes in a zero denominator.

def gcd(b, a):

while a > 0:

b, a = a, b%a

return b

class Fraction:

def __init__(self, num = 0, denom=1):

if denom == 0:

raise ValueError

d = gcd(num, denom)

self.num = num//d

self.denom = denom//d

if self.denom < 0:

self.denom = -self.denom

self.num = -self.num

def __str__(self):

return "{}/{}".format(self.num, self.denom)

def __repr__(self):

return "'{}/{}'".format(self.num, self.denom)

22

Run again

unix> python Fraction.py

1/2

1/2

1/2

A glimmer of happiness can now ensue. Now let us add fractions. Recall from
Mrs. Wormwood that

a

b
+

c

d
=

ad + bc

bd

The header of the __add__ hook looks like this.

def __add__(self, other):

Now we do this:

• a← self.num

• b← self.denom

• c← other.num

• d← other.denom

Now we can implement the method.

def __add__(self, other):

return Fraction(self.num*other.denom

+ self.denom*other.num, self.denom*other.denom)

It would be cool to be able to add an integer to a Fraction (Hey... they are both
numbers), so we proceed as follows.

def __add__(self, other):

if type(other) == type(1):

other = Fraction(other)

return Fraction(self.num*other.denom +

self.denom*other.num, self.denom*other.denom)

Now take it for a spin. Add these lines

print(f + g)

print(f + 5)

Run.

23

unix> python Fraction.py

1/2

1/2

1/2

1/1

11/2

Doing subtraction is simple.

def __sub__(self, other):

if type(other) == type(1):

other = Fraction(other)

return Fraction(self.num*other.denom -

self.denom*other.num, self.denom*other.denom)

Next come multiply, divide, and power.

def __mul__(self, other):

if type(other) == type(1):

other = Fraction(other)

return Fraction(self.num*other.num, self.denom*other.denom)

def __truediv__(self, other):

if type(other) == type(1):

other = Fraction(other)

return Fraction(self.num*other.denom, self.denom*other.num)

def __pow__(self, n):

return Fraction(self.num**n, self.denom**n)

24

	Introduction
	Stick-Building Python Objects
	Making a Class
	A Case Study: Calendar Dates from Scratch
	Put on a strring Performance
	A Leap of Faith
	I Take Exception!
	Fraternite, Egalite, Liberte!

	If it is Saturday, this must be Paris!
	I am afraid your number is up!
	A Case Study: Playing Cards
	A Design Decision
	Getting to Know our Number
	Resolving our Identity Crisis

	Using our Card Class
	A Little Interior Decoration
	Shouldn't a Deck of Cards be an Object?
	Case Study: Fractions

