
Chapter 6, Data Analytic Tools

John M. Morrison

December 2, 2019

Contents

0 Introduction to the Toolkit 1

1 Creating Numpy Arrays 1

2 Arithmetic on Numerical Arrays 4

0 Introduction to the Toolkit

To install, we recommend you use the Anaconda package manager for Python.
Complete instructions can be found at https://docs.anaconda.com/anaconda/
install/. You will want to make sure you have these things.

1. ipython This is an enhanced Python interactive shell.

2. numpy This is a high-performance library for matrix calculations

3. matplotlib This is a library that can produce mathematical plots. They
can be viewed locally on your machine, or it can generate graphical files on
a server, which can be viewed off your account’s web presence (public html).

4. pandas This is a powerful tool that supports R-style data frames.

1 Creating Numpy Arrays

To see if numpy is working correctly, open ipython and do this import.

Python 3.6.8 |Anaconda, Inc.| (default, Dec 29 2018, 19:04:46)

Type 'copyright', 'credits' or 'license' for more information

1

https://docs.anaconda.com/anaconda/install/
https://docs.anaconda.com/anaconda/install/

IPython 7.2.0 -- An enhanced Interactive Python. Type '?' for help.

In [1]: import numpy as np

In [2]:

If there is no error, you are good to go. Numpy supports the ndarray, or n–
dimensional array object. These arrays are fixed-size mutable objects. They are
homogeous; to wit, all objects must be of the same type. The type of objects
present in an ndarray is called its dtype; this is short for “data type.” Let us
create an array and explore.

In [2]: x = np.array([0,0,0,0])

In [3]: x.dtype

Out[3]: dtype('int64')

In [4]: y = np.array([[0,0],[0,0]], dtype="float64")

In [5]: y

Out[5]:

array([[0., 0.],

[0., 0.]])

In the first instance, Numpy saw the 0s and said, “Oh, integers.” Note that these
integers are 64 bit integers in two’s complement notation. It auto-detected and
assigned a default dtype.

In the second instance, Numpy was told the dtype was float64 and cast
the zeroes appropriately. It also saw list with two lists inside and made a 2 × 2
array. You have a choice when indexing into a two dimensional array.

In [6]: y[0,0]

Out[6]: 0.0

In [7]: y[0][0]

Out[7]: 0.0

The shape of an array is maintained as a tuple

In [8]: y.shape

Out[8]: (2, 2)

\section{Arithmetic, Functions, and Numpy Arrays}

In [9]: x.shape

Out[9]: (4,)

To fill make an array with nothing but zeroes you can do this.

2

In [10]: x = np.zeros(36)

In [11]: x

Out[11]:

array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,

0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])

You can also specify the data type.

In [12]: y

Out[12]:

array([0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

Watch the array get reshaped two ways.

In [13]: y.reshape(6,6)

Out[13]:

array([[0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0],

[0, 0, 0, 0, 0, 0]])

In [14]: y.reshape(9,4)

Out[14]:

array([[0, 0, 0, 0],

[0, 0, 0, 0],

[0, 0, 0, 0],

[0, 0, 0, 0],

[0, 0, 0, 0],

[0, 0, 0, 0],

[0, 0, 0, 0],

[0, 0, 0, 0],

[0, 0, 0, 0]])

You can make arrays with any number of dimensions; just specify a tuple. We
also demonstrate the fill method.

In [15]: z

Out[15]:

array([[[0., 0., 0.],

[0., 0., 0.],

[0., 0., 0.],

3

[0., 0., 0.]],

[[0., 0., 0.],

[0., 0., 0.],

[0., 0., 0.],

[0., 0., 0.]]])

In [16]: z.fill(5)

In [16]: z

Out[25]:

array([[[5., 5., 5.],

[5., 5., 5.],

[5., 5., 5.],

[5., 5., 5.]],

[[5., 5., 5.],

[5., 5., 5.],

[5., 5., 5.],

[5., 5., 5.]]])

Exercises You should create some array so you can test the functions speced
below.

1. If x is an array, what is x.T? Make sure you try this on a two-dimensional
array.

2. Write a function isSquare(x) which tells if an two-dimensional array
passed to it is a square array.

3. Write a function swapRows(x, j, k) that will swap the jth and kth rows
in an array, and which throws a ValueError if the rows specified are out
of bounds.

4. Write a function swapCols(x, j, k) that will swap the jth and kth
columns in an array, and which throws a ValueError if the columns spec-
ified are out of bounds.

5. What does np.eye(3) produce?

2 Arithmetic on Numerical Arrays

Let us look at the behavior of numerical arrays when presented with arithmetic
operators. We begin by making two 3 × 3 arrays.

In [1]: import numpy as np

4

In [2]: x = np.array([[1,2,3],[4,5,6],[7,8,9]])

In [3]: x

Out[3]:

array([[1, 2, 3],

[4, 5, 6],

[7, 8, 9]])

In [4]: y = np.eye(3)

In [5]: y

Out[5]:

array([[1., 0., 0.],

[0., 1., 0.],

[0., 0., 1.]])

Now let us play with arithmetic.

In [6]: x + y

Out[6]:

array([[2., 2., 3.],

[4., 6., 6.],

[7., 8., 10.]])

The arrays were added element by element.

Programming Exercises Do these NOW!

1. What happens if you attempt to add arrays of different sizes?

2. What happens if you try to add an array to a number?

Apparently, multiplying an array by a number just multiplies every entry by
that number.

In [7]: x + 5*y

Out[7]:

array([[6., 2., 3.],

[4., 10., 6.],

[7., 8., 14.]])

If you are a linear algebra fan, start cringing now. However, you will see
later that all will end well

In [8]: x*y

Out[8]:

5

array([[1., 0., 0.],

[0., 5., 0.],

[0., 0., 9.]])

If you multiply arrays, they multiply entrywise. Let’s inject some power.

In [9]: x**3

Out[9]:

array([[1, 8, 27],

[64, 125, 216],

[343, 512, 729]])

Now we will apply a function. All of the math functions have np. analogs that
apply the entry-by-entry.

In [10]: np.log10(x)

Out[10]:

array([[0. , 0.30103 , 0.47712125],

[0.60205999, 0.69897 , 0.77815125],

[0.84509804, 0.90308999, 0.95424251]])

In [11]: np.sin(x)

Out[11]:

array([[0.84147098, 0.90929743, 0.14112001],

[-0.7568025 , -0.95892427, -0.2794155],

[0.6569866 , 0.98935825, 0.41211849]])

6

	Introduction to the Toolkit
	Creating Numpy Arrays
	Arithmetic on Numerical Arrays

