
JavaScript Events

John M. Morrison

January 2, 2017

Contents

0 Introduction 1

1 Making Elements Event-Aware in HTML 3

2 Using onload 3

3 Cat and Mouse Games: Mouse Events 6

0 Introduction

By and large, the raison d’etre for JavaScript is to make web pages interactive.
We have all seen pages that respond to interaction with page elements such
as menus or buttons, and behavior induced by the mouse entering, clicking,
dragging, or leaving page elements.

Other events inlude such things page loading being completed, the page
closing, or the page being resized. Events are objects; depending on the source,
they contain information about themselves. For example keybord events can
tell you what key was hit, and mouse events can tell you where they occur on
the screen.

Some events are discrete, in that they happen in a single moment. An
example of this is the event of mouse being clicked. Others “poll” and are fired
at close intervals over a period of time, such as when a key is pressed and held
down. This will broadcast events at a short interval until the user releases the
key.

Event handling allows you, the web developer, to respond to thes occurrence
and to execute code in response to them.

1

Remember, we have said that what computers do most of the time is to wait
for user instruction. Modern computers are event-driven machines; we can use
JavaScript event handling to create the kinds of features you would expect on
a web page.

We will deal with a few major types of events. The ones we will look at
come in several categories. First, there are browser-spawned events.

Event Name When it is fired
load When the page is finished loading
unload When the document is being unloaded

The unload event is often used to remind the user that he has not finished
his busineess on a pages. For example, changing pages might cause a post to be
lost, so the page warns the user with an alert box.

The load event is fired when all of the page’s elements are finished loading.
This is important because, if you are using document.getElementById, you
want the element being fetechd to exist before you try to act on it. The most
common place you will see it is in the body tag.

There are events spawned the mouse. Here is a sampling of some of the most
important ones.

Event Name When it is fired
mouseenter the mouse enters an element with a lis-

tener attached
mouseover the mouse is over an element with a lis-

tener attached, or one of its children
mousemove the mouse is moving over an element

with a listener attached, or one of its
children This event is fired continuously
(at the browser’s polling rate) until the
mouse is no longer over the element.

mousedown any mouse button is pressed on an ele-
ment

mouseup any mouse button is released on an el-
ement

click the mouse is clicked on an element
dblclick the mouse is double-clicked on an ele-

ment

There are also key events, triggered by actions of the user on the keyboard.

2

Event Name When it is fired
keydown any key is pressed on an element
keyup any key is released on an element
keypress any key is pressed on an element

1 Making Elements Event-Aware in HTML

Suppose you want to make a button perform an action when clicked. The
following HTML code does this, and causes an alert box to be popped up when
the user clicks.

<button onclick="alert("I've been clicked!");">Click me!</button>

Let us discuss in detail what happens here.

1. The user clicks on the button.

2. The JavaScript code in the onclick property is wrapped in an anonymous
function.

3. That function is called, and its code executes, causing an alert box to pop
up on the screen.

4. The user dismisses the box by hitting the OK button because the browser
session spawning the alert box is blocked until he clicks away the box.

Observe we did not type

<button click="alert('I\'ve been clicked!');">Click me!</button>

or JavaScript would not carry out the action requested. If you want to specify
event-handing code in HTML, you must prepend the event’s name with on.

Warning! Do not attempt to manipulate global variables in your JavaScript
using this mechanism. Remember, the code you specify is wrapped in an anony-
mous function and all of those variables become local to that function.

2 Using onload

Imagine you are the webmaster for the Greasy Spoon Café and that you are
writing up the menu. At the top goes a yummy lunch special of Taylor Ham
and Eggs. You start the page like this. The name of this file is delay.html.

3

<!doctype html>

<html>

<head>

<title>delay</title>

<link rel="stylesheet" href="delay.css"/>

<script type="text/javascript">

var handle = document.getElementById("special");

handle.innerHTML = "Today's lunch special is Taylor Ham with Eggs.";

</script>

</head>

<body>

<h2>The Greasy Spoon Café</h2>

<p>Lunch special </p>

</body>

</html>

You save the file, refresh the browser and BAM, no lunch special. Everythiing
looks fine. What went wrong?

Pages load from top to bottom. Your JavaScript loaded in the head element
of the page. You direct JS to get an element by ID that does not yet exist.
Oops. So, it appears we need to delay the running of the JavaScript until the
page loads. So, when the load event runs, we will execute our JavaScript.

Let us put our JavaScript in a function to make things simple.

function showLunch()

{

var handle = document.getElementById("special");

handle.innerHTML =

"Today's lunch special is Taylor Ham with Eggs.";

}

Then, in the body tag, place the following.

<body onload="showLunch();">

Do this, and what once was lost now is found. Here is the final appearance of
the HTML

<!doctype html>

<html>

<head>

4

<title>delay</title>

<link rel="stylesheet" href="delay.css"/>

<script type="text/javascript">

function showLunch()

{

var handle = document.getElementById("special");

handle.innerHTML =

"Today's lunch special is Taylor Ham with Eggs.";

}

</script>

</head>

<body onload="showLunch();">

<h2>The Greasy Spoon Café</h2>

<p>Lunch special </p>

</body>

</html>

Now let us nag the user when he tries to leave our page. To do this we use
onunload.

<!doctype html>

<html>

<head>

<title>delay</title>

<link rel="stylesheet" href="delay.css"/>

<script type="text/javascript">

function showLunch()

{

var handle = document.getElementById("special");

handle.innerHTML =

"Today's lunch special is Taylor Ham with Eggs.";

}

function nag()

{

alert("Your mama told you not to skip lunch!");

}

</script>

</head>

<body onload="showLunch();" onunload="nag();">

<h2>The Greasy Spoon Café</h2>

<p>Lunch special </p>

</body>

5

</html>

You may not see the alert. In this event, look in the console and you will see
this.

Blocked alert('Your mama told you not to skip lunch!') during unload.

People have abused this feature and now browsers are suppressing alerts fired
on unload. This occurred whilst using Chrome.

However, it is the onload property for the body element that is far more
important.

3 Cat and Mouse Games: Mouse Events

We can make elements on a page sensitive to mouse events. Here is where we
start. Make this file, mouseOne.html.

<!doctype html>

<!-- Author: Morrison-->

<html>

<head>

<title>mouseOne</title>

<link rel="stylesheet" href="mouseOne.css"/>

<script type="text/javascript" src="mouseOne.js">

</script>

</head>

<body onload="main();">

<h2>Mouse Event Demonstration</h2>

<div id="colorBlock">

<p>This div contains text</p>

</div>

</body>

</html>

Now let us give it a little style with the file mouseOne.css.

h1, h2, .display

{

6

text-align:center;

}

#colorBlock

{

width:80%;

padding:1em;

border:solid 1px black;

}

Open the HTML file with your browser. You will see a div with a black
outline containing some text. Now we will make this div be mouse-aware.

Next, make this file, mouseOne.js

/*Author: Morrison*/

var block;

function handleClicked()

{

block.style.color="red";

}

function main()

{

block = document.getElementById("colorBlock")

block.onclick = handleClicked;

}

Now let us write code to react to the mouse entering; we will cause the text to
turn blue when this happens. Modify your JavaScript file to look like this

/*Author: Morrison*/

var block;

function handleClicked()

{

block.style.color="red";

}

function handleOver()

{

block.style.color="blue";

}

function main()

{

block = document.getElementById("colorBlock")

block.onclick = handleClicked;

block.onmouseover = handleOver;

}

7

Now, as soon as your mouse enters the box, the text turns blue. When you click
in the box, the text will turn red. Now let us restore it to black when we leave.
To do this, add this function

function handleOut()

{

block.style.color="black";

}

and this line of code to main

block.onmouseout = handleOut;

Now, when your mouse enters the box, the text turns blue and when you exit i
it, the text is black again. If you click in the box, the text turns red until you
exit the box, at which time it becomes black again.

Let us now turn to a slightly less artificial and more useful example. Let
us see how to make an expandable list of items using mouse events. For this
purpose we shall repair to the Greasy spoon Café.

Here is the main idea. Each portion of the menu will have a heading. When
this heading is moused over, the contents of that area of the menu become
visible. When the mouse leaves the menu contents, they cease to be displayed.

We can achieve this using the style property style.display. Setting this
property to block causes it to display normally. Setting this to none will cause
it to be hidden.

We will need to create an HTML file that gives and ID to each menu heading
as well as the menu heading’s contents.

<!doctype html>

<html>

<head>

<title>expandalbeMenus</title>

<meta charset="utf-8"/>

<link rel="stylesheet" href="expand.css.css"/>

<script type="text/javascript" href="expand.js"/>

</head>

<body onload="main();">

<h2>The Greasy Spoon Café</h2>

<p>Lunch Special </p>

<p><b id="appsHead">Appetizers</p>

<div id="apps">

8

House Salad $3

Tomato Soup $2

Garlic Knots $3

Chips and Salsa $3

</div>

<p><b id="entreesHead">Entrees</p>

<div id="entrees">

Hot Roast Beef Sandwich $3

Tuna Melt $2

Fried Chicken $3

Spaghetti and Meatballs $3

</div>

<p><b id="dessertsHead">Desserts</p>

<div id="desserts">

Apple Pie $3

Cherry Pie $3

Chocolate Cake $3

Banana Pudding $2

Scoop of ice cream with any pie $1

</div>

</body>

</html>

Now create this style file, expand.css

/*Author: Morrison*/

h1, h2, .display

{

text-align:center;

}

Finally, create expand.js.

function main()

{

}

9

Open the .html file with your browser. You should see a page containing
the complete menu for the Greasy Spoon Café.

Now let us begin to work on our JavaScript file. We will begin by creating
handles to all of our IDed elements.

funtion main()

{

apps = document.getElementById("apps");

appsH = document.getElementById("appsHead");

entrees = document.getElementById("entrees");

entreesH = document.getElementById("entreesHead");

desserts = document.getElementById("desserts");

dessertsH = document.getElementById("dessertsHead");

special=document.getElementById("special");

}

Next, we put in today’s special and we suppress the display of the three elements
containing menu contents.

function main()

{

apps = document.getElementById("apps");

appsH = document.getElementById("appsHead");

entrees = document.getElementById("entrees");

entreesH = document.getElementById("entreesHead");

desserts = document.getElementById("desserts");

dessertsH = document.getElementById("dessertsHead");

special = document.getElementById("special");

special.innerHTML = "Tomato Soup and Grilled Cheese Sandwich, $7.";

apps.style.display = "none";

entrees.style.display = "none";

desserts.style.display = "none";

}

Refresh. You should now see the daily speical posted and thhe three main menu
heading with no items below them.

Using addEventListener This is a newer feature in JavaScript. Its usage
looks like this; we will just use false for now for the third argument and discuss
its purpose later.

item.addEventListener(eventType, someFunction, false);

10

Here is what happens. When the event eventType occurs in the element item,
the function someFunction is called.

What we will do is when one of the menu headings is moused over, we will
display the items constituting the contents of that heading. When we leave the
contents, we will no longer display them. This creates the effect of “expandable
menus” in JavaScript.

Here is how we will get the appetizers to display. Note the use of an anony-
mous function to trigger the display of the appetizers.

appsH.addEventListener("mouseover",

function(){apps.style.display="block";}, false);

Refresh. When you mouse over the heading for the appetizers, they appe-
tizers now display. When you move away from them, they persist. Now let us
make them disappear.

apps.addEventListener("mouseout",

function(){apps.style.display="none";}, false);

Now our function looks like this.

/******* Autor: Morrison *********/

function main()

{

apps = document.getElementById("apps");

appsH = document.getElementById("appsHead");

entrees = document.getElementById("entrees");

entreesH = document.getElementById("entreesHead");

desserts = document.getElementById("desserts");

dessertsH = document.getElementById("dessertsHead");

special = document.getElementById("special");

special.innerHTML = "Tomato Soup and Grilled Cheese Sandwich, $7.";

apps.style.display = "none";

entrees.style.display = "none";

desserts.style.display = "none";

appsH.addEventListener("mouseover",

function(){apps.style.display="block";}, false);

apps.addEventListener("mouseout",

function(){apps.style.display="none";}, false);

}

Next, deal similarly with the entrees and desserts.

entreesH.addEventListener("mouseover",

function(){entrees.style.display="block";}, false);

11

entrees.addEventListener("mouseout",

function(){entrees.style.display="none";}, false);

dessertsH.addEventListener("mouseover",

function(){desserts.style.display="block";}, false);

desserts.addEventListener("mouseout",

function(){desserts.style.display="none";}, false);

Programming Exercises

12

	Introduction
	Making Elements Event-Aware in HTML
	Using onload
	Cat and Mouse Games: Mouse Events

