
JavaScript Events I

John M. Morrison

August 6, 2018

Contents

0 Introduction 1

1 Making Elements Event-Aware in HTML 3

2 Achieving Better Separation 5

3 Interacting with Text Inputs 7

4 Slider Inputs 11

5 Color Pickers 17

6 Dropdown Menus: CSS and JS on the Same Team 19

0 Introduction

By and large, the raison d’etre for JavaScript is to make web pages interactive.
We have all seen pages that respond to interaction with page elements such
as menus or buttons, and behavior induced by the mouse entering, clicking,
dragging, or leaving page elements. What we often notice is that communication
is made between page elements. For example, you might slide a slider and have
an element on the page change color, or you might push a button and have text
appear on the page. So, how we establish this communication channel?

This is done via the mechanism of events, which will be the subject of this
chapter and the next. You have already learned that, when a page is done
loading, the browser broadcasts a load event. Also, when a page is being

1



exited, the browser broadcasts an unload event. These are browser-spawned
events. When we created the tag

<body onload="init();">

what we did is to attach an event listener to the body element that would call
the function init when the body hears a broadcast load event.

Events are objects; depending on the source, they contain information about
themselves. For example keyboard events can tell you what key was hit, and
mouse events can tell you where they occur on the screen.

Some events are discrete, in that they happen in a single moment. An
example of this is the event of mouse being clicked or a button being clicked.
Others “poll” and are fired at close intervals over a period of time, such as when
a key is pressed and held down. This will broadcast events at a short interval
until the user releases the key.

Event handling allows you, the web developer, to respond to these occur-
rences and to execute code in response to them.

Remember, we have said that what computers do most of the time is to wait
for user instruction. Modern computers are event-driven machines; we can use
JavaScript event handling to create the kinds of features you would expect on
a web page.

We will begin by looking at the basic types of events in JavaScript and then
we will see how to use these to create interactivity on web pages.

Event Name When it is fired
load When the page is finished loading
unload When the document is being unloaded
resize When an element is resized

The unload event is often used to remind the user that he has not finished
his business on a page. For example, changing pages might cause a post to be
lost, so the page warns the user with an alert box.

The load event is fired when all of the page’s elements are finished loading.
This is important because, if you are using document.getElementById, you
want the element being fetched to exist before you try to act on it. The most
common place you will see it is in the body tag.

There are events spawned the mouse. Here is a sampling of some of the most
important ones.

2



Event Name When it is fired
mouseenter the mouse enters an element with a lis-

tener attached
mouseover the mouse is over an element with a lis-

tener attached, or one of its children
mousemove the mouse is moving over an element

with a listener attached, or one of its
children This event is fired continuously
(at the browser’s polling rate) until the
mouse is no longer over the element.

mousedown any mouse button is pressed on an ele-
ment

mouseup any mouse button is released on an el-
ement

click the mouse is clicked on an element
dblclick the mouse is double-clicked on an ele-

ment

There are also key events, triggered by actions of the user on the keyboard.

Event Name When it is fired
keydown any key is pressed on an element
keyup any key is released on an element
keypress any key is pressed on an element

1 Making Elements Event-Aware in HTML

Let us begin with a simple HTML element, a button. We will create a page and
have its color scheme flop when the button is clicked. Let us begin by creating
some HTML in a file called flip.html. Notice that, in the header, JavaScript
and CSS are included.

<!doctype html>

<html>

<head>

<title>flip</title>

<meta charset="utf-8"/>

<link rel="stylesheet" href="flip.css"/>

<script type="text/javascript" src="flip.js"></script>

</head>

<body>

<h2>A Page with a Split Personality</h2>

3



<p class="display"><button onclick="flip();">Go to the Dark Side!</button></p>

<p>Click on the button and the color scheme on this page will

invert.</p>

</body>

</html>

Next we set the page color scheme with a little CSS.

h1, h2, .display

{

text-align:center;

}

body

{

background-color:#99BADD;

color:#001A57;

}

Create these two files and open them in a browser tab to see our shiny new
page. A button is present on page, but when it is clicked, nothing happens.
Now let us talk about the JavaScript. What we want to have happen is for the
color scheme to invert when the button is clicked. To do this we will create a
“flag,” i.e. a boolean to tell if we are using the light color scheme. We will set
it to true at the start.

let light = true;

Next we create the function flip we have for the onclick attribute of the
button.

let light = true;

function flip()

{

}

If light is true, we will flip the color scheme like so.

let light = true;

function flip()

{

if(light)

{

document.body.style.color = "#99BADD";

4



document.body.style.backgroundColor = "#001A57";

}

}

It is now clear what to do when light is false. Also, after each button push,
we should negate light so the setup toggles.

let light = true;

function flip()

{

if(light)

{

document.body.style.color = "#99BADD";

document.body.style.backgroundColor = "#001A57";

}

else

{

document.body.style.color = "#001A57";

document.body.style.backgroundColor = "#99BADD";

}

light = !light;

}

Programming Exercise

1. Give the button an id of flipper.

2. Use document.getElementById to change the text in the button so that
when the color scheme is dark, the button says, “Go to the Lighter Side!”
and when it is light, the buttons says “Go to the Dark Side!”

2 Achieving Better Separation

You will notice that we had to introduce JavaScript into to our HTML files to
get things to work. It is better style to achieve a complete separation between
the layers. We did this in CSS by using the link tag. So, how do we do this in
JavaScript?

We will re-engineer the page we just created to achieve this separation. One
consequence of this will be the elimination of the global variable light.

You already did this in the programming exercise

<button id="flipper" onclick="flip();">Go to the Dark Side!

</button>

5



Let us get rid of the onclick attribute, leaving this.

<button id="flipper">Go to the Dark Side!</button>

Now, open flip.js. Modify it to look like this.

let light = true;

let flipper = document.getElementById("flipper");

flipper.addEventListener("click", flip);

function flip()

{

if(light)

{

document.body.style.color = "#99BADD";

document.body.style.backgroundColor = "#001A57";

}

else

{

document.body.style.color = "#001A57";

document.body.style.backgroundColor = "#99BADD";

}

light = !light;

}

Open the developer tools and look in the console, and you will get this very sad
news.

flip.js:3 Uncaught TypeError: Cannot read property

'addEventListener' of null at flip.js:3

Uh oh. What happened? Well, we have to remember that pages load from top
to bottom. When the JavaScript loads in the head of the page, the button

element we are seeking does not exist. How do we disentangle that? Get a load
of this.

window.addEventListener("load", init);

function init()

{

let light = true;

let flipper = document.getElementById("flipper");

flipper.addEventListener("click", flip);

function flip()

{

if(light)

{

6



document.body.style.color = "#99BADD";

document.body.style.backgroundColor = "#001A57";

}

else

{

document.body.style.color = "#001A57";

document.body.style.backgroundColor = "#99BADD";

}

light = !light;

}

}

The mysterious first line just says, “Hey, when this page is done loading call the
function init.” This is the same as giving the body and onload attribute, but
it bears the benefit of doing JavaScript in a JavaScript file, not on an HTML
page. The symbol window is just a name for the global object. Notice how we
simply get the button by its id and attach a listener that calls flip when the
button is pushed.

The other new feature here is that you can have a function inside of a function
and that the inner function has access to the outer function’s symbol table.

Programming Exercise It’s time to break out the for loop and our old
friend document.getElementsByTagType.

1. Create a style sheet that gives paragraphs a padding of .25em.

2. Create an HTML page with several paragraphs on it and a button at the
that says “Outline all paragraph elements.”

3. Add a button that says ”Supersize me!” When the user clicks on it, have
a padding of 1em put around the paragraphs.

4. When the user clicks on the button, have it put a solid 1px black border
around every paragraph.

5. Make the supersizer button a toggle and, when the paragraphs are super-
sized, have it read ”Make me normal sized!”

6. Do a similar thing for the outliner button.

3 Interacting with Text Inputs

JavaScript has a wide array of different inputs; we will begin with text boxes.
We will see how to get text from text boxes and place them in elements on our
page. Let us begin by creating this style sheet, text.css.

7



h1, h2, .display

{

text-align:center;

}

#papaHears, #mamaHears, #babyHears

{

padding:1em;

border:solid 1px black;

background-color:black;

color:lightgreen;

}

body

{

padding:1em;

background-color:#FFF8E7;

}

Next, we create this HTML file, text.html.

<!doctype html>

<html>

<head>

<title>text</title>

<meta charset="utf-8"/>

<link rel="stylesheet" href="text.css"/>

<script type="text/javascript" src="text.js"></script>

</head>

<body>

<h2>Text Input Demonstration</h2>

<p>This page has three text boxes, and this page will take the input from

the boxes and place them in the areas below.</p>

<p>Papa bear <input type="text" id="papa"/><button

id="papaButton">Send</button></p>

<p>Mama bear <input type="text" id="mama"/><button

id="mamaButton">Send</button></p>

<p>Baby bear <input type="text" id="baby"/> <button

id="babyButton">Send</button></p>

<p>Here is what Papa has heard</p>

<div id="papaHears"></div>

<p>Here is what Mama has heard</p>

<div id="mamaHears"></div>

<p>Here is what Baby has heard</p>

<div id="babyHears"></div>

8



</body>

</html>

Open the file text.html in your browser to reveal this.

Since we have appropriate ids for everything, we no longer need to edit the
HTML or CSS files. It’s time to create the JavaScript. Begin with this.

window.addEventListener("load", init);

function init()

{

}

Notice that the method addEventListener takes two arguments. The first is
the event type, and the second is a function that is called when that event
occurs. What we are about to see is that we can create an anonymous function,
on-the-fly, for an event listener to call.

9



But, before that, let us assemble all of the page elements our JavaScript will
modify.

window.addEventListener("load", init);

function init()

{

//round up our widgets

let mama = document.getElementById("mama");

let papa = document.getElementById("papa");

let baby = document.getElementById("baby");

let mamaHears = document.getElementById("mamaHears");

let papaHears = document.getElementById("papaHears");

let babyHears = document.getElementById("babyHears");

let mamaButton = document.getElementById("mamaButton");

let papaButton = document.getElementById("papaButton");

let babyButton = document.getElementById("babyButton");

}

Here is the desired action. When we click on one of the send buttons, the
text is sent from that bear’s text box, to its “heard” box and the text in the
bear’s box is cleared. Each time, let’s put a newline at the end of the sent text.

Question is, “How do we get the text out of the box?” Happily, a text input
box has a property named value, which has the text. So, mama.value will give
us the text in Mama Bear’s box. We will take that text, stick a newline on the
end of it, and add it to the text in the mamaHears div. The code will look like
this.

mamaHears.innerText += mama.value + "\n";

mama.value = "";

The first line grab’s the text in mama and appends it, along with a newline to
the mamaHears box. The second line clears the mama box so the user does not
have to backspace over old text.

Now we must attach this behavior to the mamaButton. We could write a
separate function and then use it as the second argument to addEventListener.
But why introduce this clutter. Instead we will create an anonymous function
like so.

mamaButton.addEventListener("click", function()

{

mamaHears.innerText += mama.value + "\n";

mama.value = "";

});

You can also do this.

10



mamaButton.addEventListener("click", () =>

{

mamaHears.innerText += mama.value + "\n";

mama.value = "";

});

They do the same thing. They wrap the two statements we can executed in a
function, which gets executed when the send button is clicked. Now run this
and watch green text appear in Mama’s box.

Programming Exercises

1. Enable similar capabilities for baby bear and papa bear.

2. Make Papa Bear’s font 2em, Mama Bear’s font 3em, and Baby Bear’s font
1em in the black boxes. What file did you modify? Do the simplest thing
possible.

4 Slider Inputs

We will now build a little application that will move a rectangle around inside
of a canvas object using two sliders, one to control vertical position, the other
horizontal. We will also report the coördinates of the rectangle as it moves.
In the programming exercises, you will add some features to this application.
Begin by creating this HTML file, slide.html.

<!doctype html>

<html>

<head>

<title>slide</title>

<meta charset="utf-8"/>

<link rel="stylesheet" href="slide.css"/>

<script type="text/javascript" src="slide.js"></script>

</head>

<body>

<h2>Slider Demonstration</h2>

<p class="display">

<canvas width="700" height="500" id="surface">

Get a modern browser, chump.

</canvas>

</p>

<div class="table">

11



<div class="row">

<div class="cell">

<p>Horizontal:</p>

<input type="range" id="hor"/>

</div>

<div class="cell">

<p>Vertical:</p>

<input type="range" id="ver"/>

</div>

</div>

</div>

</body>

</html>

Open this in a browser tab and here is what you will see.

12



Let us put on a pretty face with a little CSS.

h1, h2, .display

{

text-align:center;

}

canvas

{

border:solid 1px black;

background-color:white;

}

.table

{

margin-left:auto;

margin-right:auto;

display:table;

border-spacing:1em;

}

.row

{

display:table-row;

}

.cell

{

display:table-cell;

text-align:center;

}

body

{

padding 1em;

background-color:#FFF8E7;

}

The result looks like this.

13



Now we get down to real business, the JavaScript. We begin by assembling
all of the widgets we want interacting.

window.addEventListener("load", init)

function init()

{

let c = document.getElementById("surface");

let pen = c.getContext("2d");

let hor = document.getElementById("hor");

let ver = document.getElementById("ver");

}

What we propose to do is to move a little square around inside of the canvas.
Let’s, for now, make the square be 50 × 50 pixels and we will color it blue. We
can begin to see we will need some variables. Here is a list of some considerations

14



1. The x-coördinate of the center of the square

2. The y-coördinate of the center of the square

3. The vertical and horizontal sizes of the canvas are needed so we can put
the right range on the square

4. Look into the future: you might want to change the square’s size, so let’s
make a variable for that.

DLet’s add all of this good stuff to init.

let hSize = c.width;

let vSize = c.height;

let xCenter = hsize/2;

let yCenter = vsize/2;

let squareSize = 50;

What we need to do is to set the ranges of the sliders so the square can’t go out
of bounds. We can set the min and max properties in JavaScript appropriately
to do this. Here is a big advantage to this: if you go into the HTML and change
the size of the canvas, your code will not break. We will have the square start
in the center of the canvas.

hor.min = sqaureSize/2;

hor.max = hSize - squareSize/2;

hor.value = xCenter;

ver.min = sqaureSize/2;

ver.value = yCenter;

ver.max = vSize - squareSize/2;

Nothing demonstrable yet is visible. We now need to activate the sliders. They
have two event types: change which fires after a change is made and input,
which fires as they are changing. We will use input so we can see it happen
live.

When the sliders move, we need to repaint the square in its new location.
Let us write a function, inside of init, called refresh to do just that.

function refresh()

{

pen.fillStyle = "blue";

xCenter = Number(hor.value);

yCenter = Number(ver.value);

pen.fillRect(xCenter - squareSize/2, yCenter - squareSize/2, squareSize, squareSize);

}

15



Let us now see if it puts the square in the right place. We will call it to bring
the square to the center.

window.addEventListener("load", init)

function init()

{

let c = document.getElementById("surface");

let pen = c.getContext("2d");

let hor = document.getElementById("hor");

let ver = document.getElementById("ver");

let hSize = c.width;

let vSize = c.height;

let xCenter = hSize/2;

let yCenter = vSize/2;

console.log(xCenter);

console.log(yCenter);

let squareSize=50;

hor.min = squareSize/2;

hor.max = hSize - squareSize/2;

hor.value = xCenter;

ver.min = squareSize/2;

ver.max = vSize - squareSize/2;

ver.value = yCenter;

pen.fillStyle = "white";

pen.fillRect(0,0,hSize, vSize);

pen.fillStyle = "blue";

xCenter = Number(hor.value);

yCenter = Number(ver.value);

pen.fillRect(xCenter - squareSize/2, yCenter - squareSize/2, squareSize, squareSize);

refresh();

function refresh()

{

pen.fillStyle = "blue";

xCenter = Number(hor.value);

yCenter = Number(ver.value);

pen.fillRect(xCenter - squareSize/2, yCenter - squareSize/2, squareSize, squareSize);

}

}

Whee! Now add this to init.

hor.addEventListener("input", refresh);

ver.addEventListener("input", refresh);

Refresh your browser. You will notice the square gets “smeared.” This is

16



because we have to repaint the background as well. Change refresh to look
like this.

function refresh()

{

pen.fillStyle = "white";

pen.fillRect(0,0,hSize, vSize);

pen.fillStyle = "blue";

xCenter = Number(hor.value);

yCenter = Number(ver.value);

pen.fillRect(xCenter - squareSize/2, yCenter - squareSize/2, squareSize, squareSize);

}

Et voila! The square moves as we want it to.

Programming Exercises

1. Change the size of the canvas and see that the application still works.

2. Add a slider to control the size of the square. The square should only
expand as far as it can while still staying inside the bounds of the canvas.

3. Add a row of colored buttons and have them change the color of the square
to their color when they get pushed.

4. After the word “Vertical” on the page, place a span and show the vertical
coördinate. Deal similarly with the horizontal slider.

5 Color Pickers

In this section, we will learn how to allow users of our sites to select a color with
a color picker. Begin by creating this HTML file. You will notice that we have
two input elements of type color.

<!doctype html>

<html>

<head>

<title>color</title>

<meta charset="utf-8"/>

<link rel="stylesheet" href="color.css"/>

<script type="text/javascript" src="color.js"></script>

</head>

<body>

<h2>Color Picker Example</h2>

17



<p class="display">Click on the square to change the background

color: <input type="color" id="bgpicker" value="#FFFFFF"/></p>

<p class="display">Click on the square to change the text

color: <input type="color" id="fgpicker"/ value="#000000"></p>

</body>

</html>

Now let’s add a little very minimal CSS.

h1, h2, .display

{

text-align:center;

}

We will now activate the color pickers. If you click on them now, a color picker
will come up and it won’t do anything. We add this JavaScript. Note the use of
anonymous “arrow functions” as second arguments to the addEventListener

method.

window.addEventListener("load", init);

function init()

{

let bgpicker = document.getElementById("bgpicker");

bgpicker.addEventListener("input", e =>

{

document.body.style.backgroundColor = bgpicker.value;

});

let fgpicker = document.getElementById("fgpicker");

fgpicker.addEventListener("input", e =>

{

document.body.style.color = fgpicker.value;

});

}

As you change the color in a color picker, the color on the page changes.

Programming Exercise

1. Change the first argument in addEventListener to "change". What
happens?

2. Add a color picker to slider.html to change the color of the square and
make it work.

18



6 Dropdown Menus: CSS and JS on the Same
Team

19


	Introduction
	Making Elements Event-Aware in HTML
	Achieving Better Separation
	Interacting with Text Inputs
	Slider Inputs
	Color Pickers
	Dropdown Menus: CSS and JS on the Same Team

