
Chapter 1, Page Apperance and CSS

John M. Morrison

February 28, 2020

Contents

0 Introduction 2

1 Getting Started with CSS 3

1.1 How do I Make CSS Work on a Page? 4

1.2 Precedence Rules . 5

2 Color 6

2.1 Named Colors . 8

3 divs, spans and Classes 8

3.1 Classes . 9

3.2 Giving Elements IDs . 10

4 CSS and Tables 10

5 The Box Model 13

5.1 CSS Units . 16

6 Creating New Selectors From Old 18

7 CSS Layout 19

7.1 Table-Style Display with CSS . 23

8 Pseudoclasses 29

1

9 A Brief Introduction to FlexBox 30

10 Properties of Flex Containers 34

10.1 A Pain in the Axis . 34

10.2 Justify your existence, puny Earthling! 38

10.3 Working at Cross Purposes: Aligning Items 41

10.4 It’s a wrap! . 47

11 Properties of Items in a Flex Container 52

12 CSS Grid: A Learning Lab 52

13 Setting up a Website on a Server 52

13.1 Step 0, Obtain a Server Account 52

13.2 Step 1, For Windoze Users Only 53

13.3 Step 2: Obtaining and Using FileZilla 53

13.4 Step 3, Prepare the Server . 54

13.5 Step 4, Configure your server . 56

13.6 Subfolders for public html . 57

14 Terminology Roundup 57

0 Introduction

So far, your pages have very little personality. They are black-and-white and
all text is formatted with the default options. This is as it should be.

Now we will deal with a second language whose grammar is different from
that of HTML, that of Cascading Style Sheets (CSS). The purpose of this lan-
guage is to control the appearance of web pages. So a web page has two layers:
HTML provides the structure layer and CSS provides the presentation layer.
You got a preview of it when you learned about tables.

Many of the references we saw in the last chapter will be of a great deal of
use to you. This includes such things as [?] and [?]. The Mozilla Developer
Network [?] also contains a ton of useful resources. A little poking around in it
can pay off in big ways. You are also encouraged to become a member of [?];
this is an extremely useful forum and reference. It is highly searchable and it

2

is prowled by some very smart people who are wonderfully generous with their
knowledge.

1 Getting Started with CSS

We show a very simple CSS File here.

h1, h2

{

text-align:center;

}

body

{

background-color:blue;

color:red;

}

Each line you see of the form foo:baz; is called a style declaration. Here we see
style declarations that govern the headline tags h1 and h2, and the body tag.
We see statements of the following form.

selector

{

property1:value1;

property2:value2;

.

.

.

propertyN:valueN;

}

These statements are called style rules. Each style declaration consists of a
property and a value; the property and value are separated by a colon and each
line is terminated with a semicolon.

The selector is so-called because it selects page elements. The most basic
type of selector consists of one or more tag types. If there are several tag types,
use a comma-separated list as we did for h1 and h2 in our example. The purpose
of the selector is to select the elements listed; in the style declaration

h1, h2

{

text-align:center;

}

3

all h1 and h2 elements are selected and the style declaration listed are in force in
those elements. When you begin to use CSS, you can see why it is very desirable
that your document be well–formed; it is important for style declaration to begin
and end in the right places.

Curly braces bound the list of style declarations belonging to each selector.
Each style declaration is ended with a semicolon. Omit this and experience
pain; your style declaration after this omission will just not work.

Every tag in HTML has a list of admissible properties. For example, the
body tag has the properties color and background-color. The color property
controls the color of text on the page and the background-color property
controls the background color of the page. Elements that bound text, such
as headline elements, table cells, or paragraphs have the property text-align

which has possible values left, right, justify, and center. The W3Schools
site has a complete reference on this.

You can check the validity of your CSS with the CSS Validator at https:

//jigsaw.w3.org/css-validator/. You can enter a URL, upload a file, or
paste text into a box; just click the appropriate tab to do so. Validating your
CSS finds mistakes so you don’t have to ferret them out on your own.

1.1 How do I Make CSS Work on a Page?

There are three ways to use style rules on a page. They are as follows.

• Local Style Sheet You can impose style declaration on any element on
a page by using the style attribute. For example if you do this

<p style="color:red;"> Some text</p>

all of the text in the paragraph element will be red. You can have several
style declarations in a local style sheet but you must separate them with
semicolons. The scope, or lifetime, of this style rule is confined to this one
paragraph element. More generally, the scope of any attribute is confined
to the element bounded by its tag. Note that if a rule applies to an
element, it “cascades” down onto the elements inside of that element. We
have seen a few examples of this already.

• Page Style Sheet In the head of your document, you can place a style
sheet inside of a style element. The scope of these style rules is the one
page. A typical application looks like this

<style>

h1, h2

{

text-align:center;

}

</style>

4

https://jigsaw.w3.org/css-validator/
https://jigsaw.w3.org/css-validator/

On this page, all text in h1 and h2 headlines will be centered. You should
use this mechanism only for style rules that are particular to a single page.

• External Style Sheet You can create an external style sheet in a file
with a .css extension. Using the self-closing link tag in the head of the
document, you can link the style rules from this file to your document. In
this manner, one style sheet can control the appearance of many pages. If
you wish to link the file myStyle.css, you would place this in the head of
your document.

<link rel="stylesheet" href="myStyle.css"/>

You should place any style element after linking any external style sheets.
You can link several sheets by using several link tags.

1.2 Precedence Rules

Let us learn about these rules by seeing an example. Begin by creating this
page and naming it bareBones.html.

<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8"/>

<link rel="stylesheet" href="myStyle.css"/>

<title>Page with CSS</title>

</head>

<body>

<h2>Page with CSS</h2>

</body>

</html>

Then create this file, myStyle.css, in the same directory. Using a .css exten-
sion for style files causes your text editor to give you productivity-enhancing
syntax coloring.

body

{

background-color: #FFFFCC;

}

h1, h2

{

text-align: center;

}

The style sheet myStyle.css is linked to our page bareBones.html so it is
in force throughout the page. We can link this style sheet to as many pages as

5

we would like. Make sure your style sheet has 644 permissions so it is visible to
the world. Otherwise, the client browser cannot fetch it and use it to style your
page.

Notice the use of a 24 bit hexadecimal integer (FFFFCC) to describe a color;
CSS grammar requires a pound-sign (#) be placed as a prefix to this hexadecimal
integer. We will take a brief detour in the next section to discuss color. For
now, just know you can use any 6 digit hex number to specify a color, and that
you can call some colors by name, (e.g. blue, red, green, and some others). See
if you can fiddle with the hex code and try to figure out how it works before it
explained to you. See what kind of color names you can get away with using.

You can view this page by typing

http://yourURL/bareBones.html

where you place your URL in lieu of yourURL, or if you are working locally, by
opening it via the file menu in the browser. The style file myStyle.css controls
the page’s appearance. Change the hex code in the style file, reload your page
and see the background color change! Experiment with some named colors as
values for background-color. Type some stuff inside of an h1 or h2 tag. Watch
it automatically center.

The main rule of precedence is simple: The most local rule prevails. Local
rules have the highest precedence and the smallest scope. Page style sheets only
are in force on a single page. You can use them to override style rules you get
by linking in external style sheets. The scope of a page style sheet is just the
page it is placed in. Finally, external style sheets can govern many pages on a
website. They have the biggest scope and the lowest precedence.

Programming Exercise Do some Googling and see if you can find a list of
named colors your browser will accept. Try making them appear on your page.

2 Color

One reason we discussed hex numbers is that they are used to specify color. The
representation of color you learn about here is used in virtually all modern com-
puting languages, so the usefulness of this section far transcends the purposes
we are discussing here.

Color on web pages lies in the purview of CSS. If you are dealing with colors,
you should be doing it in the context of a style sheet.

There are three primary colors of light: red, green and blue. This is different
from the primary colors of pigment: red, yellow and blue. This is because
pigment is a subtractive phenomenon, and the colors of light are an additive

6

phenomenon; it is a physical phenomenon that involves the combination of
wavelengths. The modern standard for rendering color on a computer is called
24-bit color.

The 24 bits are organized into six hex digits; remember, each hex digit can
be expanded to 4 bits. A typical color hex code looks like this: 0xFF0000.
Remember, the 0x prefix simply says, “This is a hex number.” Colors are
represented with the “RGB”, or red-green-blue system. The first two hex digits
tell how much red is in the color. The second pair controls green, and the last
pair controls blue. The hex code we just showed, 0xFF0000 has 0xFF parts of
red, 0x0 (no) blue, and 0x0(no) green. This hex code is the hex code for the
color red. Now what does the FF mean? If you convert this to base 10, 0xFF =

255.

Each of the three primary colors has 256 levels from 0 (0x0) up to 255
(0xFF). You may use any hex code from 0x0 to 0xFF for a color’s level. As a
result, you have a choice of 16,777,216 colors. Since the human eye only perceives
about 3–5 million colors, you can see that 24-bit color does an excellent job of
rendering color on a computer screen.

To see a color, change your minimum page by inserting a style attribute
into the body tag as follows.

<body style="background-color:#FF0000;">

Save this change, then open your page with a browser. If the color is still white,
the browser is using an old version of the page it has stored (caching). Hit the
reload button and watch your page turn red. By changing the hex code in the
body tag, you can see the color associated with any hex code. Note the usage
for a hex code in the body tag: omit the 0x and replace it with a #.

Exercises Try these things out so you get more comfortable with colors.

1. Change the hex code to 0x00FF00 and 0x0000FF to see green and blue.

2. Change the hex code to 0xFFFF00, 0xFF00FF, 0x00FFFF, 0x000000, and
0xFFFFFF. What do you see? Do you know the names of all of these colors?
Are you surprised by 0xFFFF00?

3. Change your body tag to look like this

<body style="background-color:#FF0000; color:#0000FF;">

Here we are using two style rules for the body tag. Is the result aestheti-
cally pleasing?

4. Experiment with mixing colors and seeing them on the screen. You can
look on the web and see tables with colors and hex codes. Fool around
with color and get used to it.

7

5. Open a page with Firefox and find Eyedropper in its development tools.
Then do some exploring. It’s a really cool tool you will find very useful.

2.1 Named Colors

There are color names that are recognized by browsers. Different browsers
recognize different names, but all browsers understand hex codes. This makes
hex codes the preferred way to specify color. All browsers understand the colors
red, green and blue. You can look on the web for more named colors. The usage
for named colors looks like this.

<body style="background-color:blue; color:green">

3 divs, spans and Classes

Sometimes you will find you want an portion of a page to have a set of style
rules applied to it that are different from the rest of the page. This brings us
to two tags that exist to control scope for style rules: div and span. A div tag
controls a vertical segment of a page; it is a block-level element. A span tag
controls an inline segment of a page; it is an inline element.

Suppose you want some text to appear in red on a page. You might do
something like this.

This is a really hot topic.

The text within the span element will be displayed in red.

Suppose you have a run of text you wish to have centered. Then you might
do something like this.

<h2>The Gettysburg Address by A. Lincoln</h2>

<div style="text-align:center">

<p>Fourscore and seven years ago our fathers brought forth on

this continent a new nation, conceived in liberty, and

dedicated to the proposition that all men are created

equal.</p>

<p>Now we are engaged in a great civil war, testing whether

that nation, or any nation, so conceived and so dedicated, can

long endure. We are met on a great battle-field of that war. We

have come to dedicate a portion of that field, as a final

resting place for those who here gave their lives that that

8

nation might live. It is altogether fitting and proper that we

should do this.</p>

<p>But, in a larger sense, we can not dedicate, we can not

consecrate, we can not hallow this ground. The brave men,

living and dead, who struggled here, have consecrated it, far

above our poor power to add or detract. The world will little

note, nor long remember what we say here, but it can never

forget what they did here. It is for us the living, rather, to

be dedicated here to the unfinished work which they who fought

here have thus far so nobly advanced. It is rather for us to be

here dedicated to the great task remaining before us|that from

these honored dead we take increased devotion to that cause for

which they gave the last full measure of devotion|that we here

highly resolve that these dead shall not have died in vain|that

this nation, under God, shall have a new birth of freedom|and

that government of the people, by the people, for the people,

shall not perish from the earth.</p>

</div>

3.1 Classes

Suppose you are creating a style sheet for a collection of pages and you want
important text to be colored red. You could, for each segment of important
text, do this.

This is a really hot topic.

Next week your boss comes along and says, “Our focus groups find that red
text judgmental. It reminds them of Miss Wormwood’s dreaded red grading
pen. You have to make it green instead.” Ugh. You now must go through and
change all of those local style sheets so the important text is green. What if
there are hundreds of them? You have a tedious, time consuming, error-prone
task in front of you. This brings us to an important issue.

The Eleventh Commandment Thou shalt not maintain duplicate code.

How do we avoid this kind of duplicate code horror? How do we escape the
mind-numbing Kafkaesque world of unending search-and-replace? In our CSS
we can do the following.

.important

{

color:red;

}

9

We have created a class called important. To use it you can do this. The
.important selector will select all elements with the attribute class="important",
and apply the style rules inside to them.

This is a really hot topic.

With this mechanism, you can fulfill your boss’s request by making a single
change in the style sheet. Goodbye duplicate code. Hello easier page mainte-
nance.

3.2 Giving Elements IDs

You can give a name to any element in your document by using an id. Here we
will give a paragraph and id of cows.

<p id = "cows"> We bovines choose to ruminate at length on our

meals. It affords us the opportunity to bring up a pleasing

subject again.</p>

Selecting by ID is simple. In any style sheet, you can do this

#cows

{

/*style rules*/

}

The # sign triggers selection by ID and the style declarations listed to be applied
in that element. One caveat applies here: An ID can only be used once on a
page. The beauty of the ID will really show when we study JavaScript and use
the ID to grab and change an element on a page specified by ID. At this point
in the development, it’s best to stick to classes and not use IDs.

4 CSS and Tables

There are three basic ways to present data in HTML: ordered lists, unordered
lists, and tables. You can use styles to customize the appearance of all of these.

Ordered lists are, by default, enumerated with Arabic Numerals. They are
delimited by the ol tag. Items in unordered lists are set off with a bullet
character, •, by default; they are delimited by the ul tag. List items are each
delimited by the li tag. Text may be placed directly inside of a li tag.

Below we show some code for each. An unordered list of presidents listed
backwards looks like this.

10

 Donald Trump

 Barack Obama

 George W. Bush

 William Clinton

 George H. Bush

An ordered list of the same presidents looks like this.

 Donald Trump

 Barack Obama

 George W. Bush

 William Clinton

 George H. Bush

Place these in an HTML file and view them with your browser. Note their
appearance. Go to http://www.htmldog.com and now look up styles for lists,
and create a style sheet to change the appearances of both lists. Can you
enumerate alphabetically? With roman numerals? Can you use an image as a
“bullet?”

As we saw in the previous chapter, without CSS, tables are very plain. They
just show their data in a very plain rectangular array. For your ready reference,
here is a list of the pertinent tags.

• <table> This tag bounds the table element. You may use the width at-
tribute to control the table’s width. It is best to use a percentage to set
width, as in width = "50%", rather than using pixels or other units. Re-
member, you have no control over the size of the client’s browser window.

• <thead> This can delimit an element for the table’s header and you can
attach style rules to it.

• <tbody> This can delimit an element for the table’s body and you can
attach style rules to it.

• <tfoot> This can delimit an element for the table’s footer and you can
attach style rules to it.

• <tr> This tag bounds a table row element. Tables are set row-by-row.
Table datum and table header elements go inside of table row elements.

• <th> This tag bounds a table header element. By default, text is centered
and boldface in a table header.

• <td> This tag bounds a table datum element. By default, text is plain and
left-justified. For both table header and table row elements, the attribute

11

http://www.htmldog.com

colspan can be used to make a cell span more than one colum and rowspan

can be use to make a table cell span more than one row.

Here is a common way to center a table.

table.center

{

margin-left:auto;

margin-right:auto;

}

When making an HTML table you type

<table class="center">

.

.

</table>

and your table will be centered on the page. By using the table.center nota-
tion, you restrict the use of this class to tables.

This is the style sheet table.css we used in the previous chapter.

table

{

border-collapse:collapse;

border: solid #000000 1px;

}

td, th

{

border-collapse:collapse;

border: solid #000000 1px;

}

th

{

background-color:#FFFF00;

}

Exercise Create a web page that tells about you or one of your interests. Use
good color and tasteful design. Validate it with the W3C validator.

Here are some free resources on the web for learning about web pages.

• http://www.w3schools.com This site has a huge array of tutorials on
CSS, HTML5, JavaScript and other web site technologies. It features the

12

http://www.w3schools.com

“Try it” editor that allows you to easily enter HTML and preview it. Avail
yourself of this and do lots of experimenting.

• http://www.webmonkey.com This site offers useful tutorials on an array
of subjects.

• http://www.w3c.org This is the World Wide Web Consortium site.

• https://html5.validator.nu/ This is the html5 validator.

5 The Box Model

Elements defined by self-closing tags are empty elements. Elements bounded by
a matching open and close tag within the body form rectangles on the screen.
CSS uses the box model to define rules about spacing around and with page
elements. The following are important

content This is the “good stuff” inside of the
element.

margin This is the spacing around the outside
of an element. You can individually
control the margin on the four sides
with margin-left, margin-right,
margin-top, and margin-bottom.

padding This is spacing around the content
that is inside of the element. You
can individually control the padding
on the four sides with padding-left,
padding-right, padding-top, and
padding-bottom e element.

border This is the border that goes around the
element. You can specify the border
for the four sides using border-left,
border-right, border-top, and
border-bottom.

When you specify a with and a height, you specify the width and height of
the content; the margin, border, and padding all add to this.

Create this document. You will see a header tag; this is just a named div
that will go at the top of your document. The main tag bounds an element
containing the main content of the document.

<!doctype html>

<html lang="en">

<head>

13

http://www.webmonkey.com
http://www.w3c.org
https://html5.validator.nu/

<title>Box Model Demo</title>

<link rel="stylesheet" href="box.css">

<meta charset="utf=8"/>

</head>

<body>

<header>

<h2>Document Header</h2>

</header>

<main>

<p>The main content goes here.</p>

</main>

</body>

</html>

Now create this style sheet and name it box.css.

h1, h2, .display

{

text-align:center;

}

header

{

border: solid 1px red;

background-color:#001A57;

color:#FFF8E7;

}

This is the result.

14

You will notice an irritating white rim around your header. You are doing battle
with browser defaults. We can get rid of this annoyance by adding this code to
our CSS file.

html, body

{

margin:0;

padding:0;

}

You should now change margin, padding, and border on the style rules for the
header selector and observe the effects.

Programming Exercises

1. Add this to your CSS file. The unit em is the size of the letter ‘m’ in the
element’s font size. It is very mobile friendly and it is a recommended way
of specifying margin and padding.

main

{

background-color:#FFF8E7;

padding:1em;

}

2. Create a class for divs that puts text inside of a yellow box that is 80% of
the width of the page. Put a solid black 1 pixel border around it. Choose
padding so it looks nice.

15

3. How can you specify margin for a paragraph to control the size of the line
skip between paragraphs?

5.1 CSS Units

Many properties carry a value that is a length. CSS units come in two species,
absolute and relative. Let us begin by seeing the absolute units available in
CSS.

cm centimeters
in inches
mm millimeters
px pixels (1/96 of an inch)
pt points (1/72 of an inch)
pc picas (1/12 of an inch)

Pixels seem to be the most popular unit. Absolute unit do not scale with screen
size.

Relative units are relative to some other length property. By and large they
tend to be more mobile-friendly than absolute units. However, you might use
absolute units maintain the integrity of images or other page elements. You
can set properties such as min-width and min-height in absolute units to
accomplish this.

em This is relative to the current font size.
For example, 1.5 em makes a enlarges
the font size by 50% in the selected el-
ement.

rem This is relative to the current font size
in the root element. For example, 1.5
rem makes a enlarges the font size by
50% from the size specified in the root
element (usually the HTML element).

vw This is relative to the size of the view-
port. It is 1% of the viewport’s width.

vh This is relative to the size of the view-
port. It is 1% of the viewport’s height.

vmin This is relative to the size of the view-
port. It is 1% smaller of the viewport’s
height or width.

vmax This is relative to the size of the view-
port. It is 1% larger of the viewport’s
height or width.

% This is relative to the parent element.

16

Programming Exercise Time for a little spelunking! Create these two files,
units.html and units.css

<!doctype html>

<!--Author: Morrison-->

<!--Date: 2020-02-25-->

<html lang="en">

<head>

<title>units</title>

<meta charset="utf-8"/>

<link rel="stylesheet" href="units.css"/>

</head>

<body>

<h1>CSS Unit Demonstration</h1>

<div class="bigBox">

<div class="littleBox">

</div>

<div class="littleBox">

</div>

<div class="littleBox">

</div>

</div>

</body>

</html>

/*Author: Morrison*/

/*Date: 2020-02-25*/

*

{

box-sizing:border-box;

}

body

{

margin:0;

padding:0;

}

h1

{

text-align:center;

font-size:10vmin;

}

.bigBox

{

width:80%;

17

border:solid 1px black;

height:40vh;

margin-left:auto;

margin-right:auto;

min-width:400px;

}

.littleBox

{

width:30%;

border:solid 1px red;

height:50%;

display:inline-block;

margin-left:1.3%;

margin-right:1.3%;

}

Modify the units to be various relative and absolute units. Resize the browser
window and observe what happens.

6 Creating New Selectors From Old

We can create new selectors from old using a means called combinators. We
have seen that you “or” several selectors by using a comma-separated list of
selectors. For example

p, .foo, #me

{

/*style rules*/

}

will select all paragraphs, anything marked with class="foo", or with id me.
Hence, the comma combinaor acts as an or operator for CSS. There are quite a
few ways of combining selectors; we will mention a few here.

The selector ul li will select all list items inside of an unordered list. Mak-
ing a list of selectors with no comma such as this looks for all elements that are
within all of the specified elements. For example

.hot ul li em

{

/*style rules*/

}

will apply the listed style rules to any em element which is inside of a list item
belonging to an unordered list that is, in turn, inside any element marked with

18

a class of hot. You can see that the space is acutally on operator. Think of it
as ”descendent of” in the document tree.

The cobinator > is the “child-of” cobinator. The selector A > B selects if
an element of type B is an immediate child of an element of type A. Here is an
example

body > ul

{

color:red;

}

Suppose the page it is linked to contains this HTML.

one

two

three

<div>

four

five

six

</div>

The list items in the first list will be red since the ul element resides directly
in the body. The second list will not be red; it is not an immediate child of the
body; it is actually a grand-child. You might find this useful.

ul > li

{

/*style rules*/

}

This selects list items that are direct children of unordered lists. The W3Schools
site has a complete list of combinators.

7 CSS Layout

HTML5 presents several new tags that are basically divs, but which have names
evocative of their purpose. You have met two, header and main. Here are a
few some others.

19

nav This is for a navigation area, which you
can configure to be vertical or horizon-
tal.

aside This is for side notes to main content.
footer This is for content at the bottom of the

page.
figure This is for self-contained content such

as images, code listings, or diagrams.
figcaption This is for a caption for a figure.

To achieve layout effects, you will want to use the display property. This
table gives some common, very useful values for this property.

none This suppresses the display of the ele-
ment. You will often use this in con-
juction with JavaScript, which can dy-
namically change the display property
to cause text to appear in response to
an event such as clicking on a button.

inline This makes an element an inline ele-
ment.

block This makes an element a block element.
inline-block The inside of the element behaves like a

block, but the entire element is treated
as inline element.

table This makes an element a block-level el-
ement and displays it like a table. If
you use this, you will put items inside
of it whose display property is marked
table-cell. inside of it.

table-cell This makes an element a block-level ele-
ment inside of the element and displays
it like a table cell inside of an element
whose display is marked table. it like
a table. If you use this, you will put
table-cell items inside of it.

Now we are going to create this, using our shiny new toys.

20

To to this, we will create a div that goes all the way across and we will stick
the five divs for each of the colored rectangles inside of it. We will give each
little square an id, which is a unique identifier for that element. So here is what
happens in the HTML.

<!doctype html>

<html lang="en">

<head>

<title>Box Model Demo</title>

<link rel="stylesheet" href="inARow.css">

<meta charset="utf=8"/>

</head>

<body>

<header>

<h2>Document Header</h2>

</header>

<main>

<p>The main content goes here.</p>

<div class="boxRow">

<div id = "box1">

<p>1</p>

</div>

<div id = "box2">

<p>2</p>

</div>

21

<div id = "box3">

<p>3</p>

</div>

<div id = "box4">

<p>4</p>

</div>

<div id = "box5">

<p>5</p>

</div>

</div>

</main>

</body>

</html>

In CSS, selecting by ID is simple. To select box1, just use the selector #box1.
Note the use of the pound sign. Warning: only use a given id once on a page!

Now for the CSS. Let us begin by making the boxRow div have a width of
100% and let us cause its display property to have value block.

.boxRow

{

display:block;

width:100%

}

Notice that the five little boxes are all inside of the boxRow div. We now give
them a common width, margin and make their display property be inline-block.
We will also make them center their number.

#box1, #box2, #box3, #box4, #box5

{

display:inline-block;

text-align:center;

width:12%;

margin:3%;

}

Finally, we give each a color and background color.

#box1

{

background-color:red;

color:white;

}

22

#box2

{

background-color:#001A57;

color:#99badd;

}

#box3

{

background-color:#99BADD;

color:#001A57;

}

#box4

{

background-color:green;

color:yellow;

}

#box5

{

background-color:yellow;

color:green;

}

7.1 Table-Style Display with CSS

Various hackish individuals decided that making an entire page a giant table
was a convenient means of controlling layout on web pages. Unfortunately, this
breaks the separation between the presentational and structural layers in the
HTML/CSS/JavaScript stack. It also had the lamentable consequence of code
embedded inside of tables that was basically unreadable and very difficult to
maintain.

However, this hack often proved to be the poison apple that appealed because
it did the job. Now we have CSS controls that enable table-style layout but
which offer far greater flexibility and control over layout.

Suppose we want to lay out portions of a page in an rectangular array. Here
is a basic CSS file that outlines what is to be done.

html, head

{

margin:0;

padding:0;

}

h1, h2, .display

{

text-align:center;

}

23

h5

{

display:inline;

}

.tableDisplay

{

display:table;

}

.tableRow

{

display:table-row;

}

.tableCell

{

display:table-cell;

}

It is tied to this page.

<!doctype html>

<html>

<head>

<title>Demonstrating Table Style Layouts</title>

<meta charset="utf-8"/>

<link rel="stylesheet" href="inATable.css"/>

</head>

<body>

<h5>The Abuse of Tables</h5>

<p>Don't use tables to lay out pages. Use CSS

display values instead!</p>

</body>

</html>

We are going to create this.

24

First we add the shell for our table. As we go, we will create more style rules
to make everything work. We shall make our overall table have width 100%.
Add this HTML. It creates four table rows.

<div class="tableDisplay">

<div class="tableRow">

</div>

<div class="tableRow">

</div>

<div class="tableRow">

</div>

<div class="tableRow">

</div>

</div>

Then add this style rule.

.tableDisplay, .tableRow

{

width:100%;

}

25

Now let us add the cells. We will put text in each cell.

<!doctype html>

<html>

<head>

<title>Demonstrating Table Style Layouts</title>

<meta charset="utf-8"/>

<link rel="stylesheet" href="inATable.css"/>

</script>

</head>

<body>

<h5>The Abuse of Tables</h5>

<p>Don't use tables to lay out pages. Use CSS

display values instead!</p>

<div class="tableDisplay">

<div class="tableRow">

<div class="tableCell">

<p>cell 1</p>

</div>

<div class="tableCell">

<p>cell 2</p>

</div>

<div class="tableCell">

<p>cell 3</p>

</div>

<div class="tableCell">

<p>cell 4</p>

</div>

<div class="tableCell">

<p>cell 5</p>

</div>

</div>

<div class="tableRow">

<div class="tableCell">

<p>cell 6</p>

</div>

<div class="tableCell">

<p>cell 7</p>

</div>

<div class="tableCell">

<p>cell 8</p>

</div>

<div class="tableCell">

26

<p>cell 9</p>

</div>

<div class="tableCell">

<p>cell 10</p>

</div>

</div>

<div class="tableRow">

<div class="tableCell">

<p>cell 11</p>

</div>

<div class="tableCell">

<p>cell 12</p>

</div>

<div class="tableCell">

<p>cell 13</p>

</div>

<div class="tableCell">

<p>cell 14</p>

</div>

<div class="tableCell">

<p>cell 15</p>

</div>

</div>

<div class="tableRow">

<div class="tableCell">

<p>cell 16</p>

</div>

<div class="tableCell">

<p>cell 17</p>

</div>

<div class="tableCell">

<p>cell 18</p>

</div>

<div class="tableCell">

<p>cell 19</p>

</div>

<div class="tableCell">

<p>cell 20</p>

</div>

</div>

</div>

</body>

</html>

27

Finally, we put in the style rules for the table layout. Here is the CSS file.

html, head

{

margin:0;

padding:0;

}

h1, h2, .display

{

text-align:center;

}

h5

{

display:inline;

}

.tableDisplay

{

display:table;

border-spacing:1em; /*control spacing between divs*/

/* Use this to collapse borders

border-collapse:collapse;*/

}

.tableRow

{

display:table-row;

}

.tableDisplay, .tableRow

{

width:100%;

}

.tableCell

{

display:table-cell;

border:solid 1px black;

background-color:#99BADD;

color:#001A57;

margin:0;

padding:0;

text-align:center;

}

You should fiddle with the border spacing and try the border-colllapse prop-
erty to produce a tight grid of cells.

28

Programming Exercises

1. Use border-collapse to tightly pack the cells.

8 Pseudoclasses

Let us begin with hover. You can apply this to any element or elements on
your page and, when the user mouses over any of these elements, the attached
list of style rules is applied. Here is an example.

p:hover

{

background-color:yellow;

font-weight:bold;

}

Place this in a stylesheet linked to a page, and whenver the user mouses over any
paragraph, it gets highlighted with yellow and the text becomes bold. Consider
this example.

ul li:hover

{

color:green;

}

If the user hovers over a list item inside of an ordered list, the text in the item
turns green.

Pseudo-classes are also useful for styling links. Here are four useful items.
You should use them in this order in your CSS.

a:link This allows you to specify a link’s
style prior to it being visited.

a:visited This allows you to specify a vis-
ited link’s style after it has been
visited

a:hover This allows you to specify a link’s
style prior when itt being moused
over by the user.

a:active This allows you to specify a link’s
style when to it being visited at
the time it is clicked.

Common items that get styled are color, background-color, and text-decoration.
The text-decoration property can be set to none to get rid of underlining of
links.

29

9 A Brief Introduction to FlexBox

FlexBox is a powerful and useful layout tool. We will conduct a quick tour of it
here and show some examples of things it can do well. What we offer is a “quick
start;” you can find all sorts of information on the web about this powerful tool.
You are encouraged to do some spelunking on your own.

In our example here, we begin by creating a div with a class called container.

h1, h2, .display

{

text-align:center;

}

.container

{

display:flex;

}

Here is our div.

<!doctype html>

<html lang="en">

<head>

<title>flexExample</title>

<meta charset="utf-8"/>

<link rel="stylesheet" href="flexExample.css"/>

<script src="flexExample.js"></script>

</head>

<body>

<div class="container">

</div>

</body>

</html>

If you put a div inside of the container, it is automatically a flex container.
Let’s put three little divs inside. So far, it’s dullsville.

Next, style the internal divs with the aid of the > combinator. and the
container div.

.container

{

display:flex;

background-color:#99BADD;

padding:1em;

30

}

.container > div

{

background-color:#001A57;

color:#FFF8E7;

flex:1;

margin:1em;

}

Here is the result.

Let’s add some content to the divs. Also, add the ids for the three inner divs.
We will use these shortly.

<div class="container">

<div id="one">

<h1>1</h1>

<p>This is lonliest number you can ever do.</p>

</div>

<div id="two">

<h1>2</h1>

<p>Two can be as bad as one.</p>

<p>It's the loneliest number since the number one.</p>

</div>

<div id="three">

<h1>3</h1>

31

<p>This song was composed by Three Dog Night.</p>

</div>

</div>

Add some padding as shown here, so we don’t get claustrophobic.

.container > div

{

background-color:#001A57;

color:#FFF8E7;

flex:1;

margin:1em;

padding:1em;

}

Look how pretty

Finally, do this in the CSS file.

.container > div

{

background-color:#001A57;

32

color:#FFF8E7;

/*flex:1; comment me out */

margin:1em;

padding:1em;

}

#one

{

flex:1;

}

#two

{

flex:2;

}

#three

{

flex:3;

}

You see this

Programming Exercises

1. Change the numbers used in the inner divs’ flex property. What hap-
pens?

2. Add two more inner divs. How are they accomodated? Give them a flex

property.

3. Add this style declaration of the container div’s rule. flex-direction:column;
What happens?

33

4. Add this style declaration of the container div’s rule. width:80%; What
happens? How would you center this? Notice how everyone stays the
same height.

5. Add this to your CSS and try narrowing the screen.

@media screen and (width:500px)

{

.container

{

flex-direction:column;

}

}

This is called a media query.

10 Properties of Flex Containers

We will begin by looking at CSS rules that can be written for a flex container.
In the next section, we will concern ourselves with rules that can be written for
the items withing a flex container.

10.1 A Pain in the Axis

By default, items are added to a flex container horizontally; the main axis is
the horizontal axis. As you add items to a flex container, they are placed in
that container side-by-side. Let us begin with these examples

<!doctype html>

<html lang="en">

<head>

<title>axes</title>

<meta charset="utf-8"/>

<link rel="stylesheet" href="axes.css"/>

<script src="axes.js"></script>

</head>

<body>

<div class="container">

<div class="contents">

</div>

<div class="contents">

</div>

<div class="contents">

</div>

<div class="contents">

34

</div>

<div class="contents">

</div>

</div>

</body>

</html>

/*Author: Morrison*/

h1, h2, .display

{

text-align:center;

}

.container

{

display:flex;

background-color:yellow;

}

.contents

{

height:100px;

width:100px;

margin:20px;

background-color:red;

}

35

Now let us change the main axis to vertical. Add this line to the .container

declaration.

flex-direction:column;

Refresh and you will see this.

36

The flex-direction property for a flex container has these possible values.

• row This makes the main axis horizontal; this is the default.

• row-reverse This makes the main axis horizontal but add the items into
the container in the reverse order.

• column This makes the main axis vertical.

• row-reverse This makes the main axis vertical but add the items into
the container in the reverse order.

Next, modify your inner divs to contain the letters A-E like so.

<div class="contents">

37

<h1>A</h1>

</div>

Now change your flex-direction property to row-reverse

You should also try out column-reverse.

10.2 Justify your existence, puny Earthling!

A flex container has a property called justify-content. Here are its possible
values. This property controls the distribution of items along the main axis.

• flex-start This places the items in from left to right, starting at the left
side of the container if the main axis is horizontal. (Think text: default is
left-justified) If the main axis is horizontal, items are top-justified. This
is the default

• flex-end This right-justifies the items inside of the container if the main
axisis horizontal and bottom-justifies them it is vertical.

• center This centers the items in the container along the main axis.

• space-between This makes the main axis vertical.

• space-around This makes the main axis vertical.

• space-evenly This makes the main axis vertical.

38

Modify your .container class as follows. The main axis will be horizontal.

.container

{

display:flex;

background-color:yellow;

justify-content:flex-end;

}

Now try cenering like this.

Programming Exercise Below we show three screenshots. Which is space-around?
space-between? space-evenly?

39

40

10.3 Working at Cross Purposes: Aligning Items

The align-items property aligns things along the cross axis. Let us modify
our HTML and CSS so our letter blocks have different sizes.

<!doctype html>

<html lang="en">

<head>

<title>axes</title>

<meta charset="utf-8"/>

<link rel="stylesheet" href="axes.css"/>

<script src="axes.js"></script>

</head>

<body>

<div class="container">

<div class="first">

<h1>A</h1>

</div>

<div class="second">

<h1>B</h1>

</div>

41

<div class="third">

<h1>C</h1>

</div>

<div class="fourth">

<h1>D</h1>

</div>

<div class="fifth">

<h1>E</h1>

</div>

</div>

</body>

</html>

h1, h2, .display

{

text-align:center;

}

.container

{

display:flex;

background-color:yellow;

justify-content:space-between;

}

.first, .second, .third, .fourth, .fifth

{

margin:20px;

background-color:red;

}

.first

{

height:100px;

width:100px;

}

.second

{

height:200px;

width:100px;

}

.third

{

height:300px;

width:100px;

}

.fourth

{

42

height:400px;

width:100px;

}

.fifth

{

height:500px;

width:100px;

}

Let us now see the result.

Now let us look at the align-items property. This is, again, a property of the
flex container. The default is flex-start.

• flex-start Items are aligned at the start of the cross-axis; this is the
default.

• flex-end Items are aligned at the end of the cross-axis.

43

• center Items are centered along the cross-axis.

• stretch Items stretch along cross-axis.

Here we show flex-end at work.

Next, we check out center.

44

Now we are entering the stretch. To fully appreciate its powers, we give a
height to the yellow container and take away the heights of the items. as follows

/*Author: Morrison*/

h1, h2, .display

{

text-align:center;

}

.container

{

display:flex;

background-color:yellow;

justify-content:space-between;

align-items:stretch;

height:500px;

}

.first, .second, .third, .fourth, .fifth

{

margin:20px;

45

background-color:red;

}

.first

{

width:100px;

}

.second

{

width:100px;

}

.third

{

width:100px;

}

.fourth

{

width:100px;

}

.fifth

{

width:100px;

}

46

10.4 It’s a wrap!

Consider this HTML file. We introduce a little “crowding” into our example.

<!doctype html>

<html lang="en">

<head>

<title>axes</title>

<meta charset="utf-8"/>

<link rel="stylesheet" href="axes.css"/>

<script src="axes.js"></script>

</head>

<body>

<div class="container">

<div class="square">

<h1>A</h1>

</div>

<div class="square">

47

<h1>B</h1>

</div>

<div class="square">

<h1>C</h1>

</div>

<div class="square">

<h1>D</h1>

</div>

<div class="square">

<h1>E</h1>

</div>

<div class="square">

<h1>F</h1>

</div>

<div class="square">

<h1>G</h1>

</div>

<div class="square">

<h1>H</h1>

</div>

<div class="square">

<h1>I</h1>

</div>

<div class="square">

<h1>J</h1>

</div>

</div>

</body>

</html>

Here is our basic style sheet.

/*Author: Morrison*/

h1, h2, .display

{

text-align:center;

}

.container

{

display:flex;

background-color:yellow;

justify-content:space-between;

align-items:baseline;

}

.square

48

{

height:100px;

width:100px;

background-color:red;

margin:20px;

}

This is what we have.

Now try to narrow the window as much as possible. This is the denouement.

49

The items in the flex container do not “wrap”. However you can change this
with the container property flex-wrap by setting it to the value wrap, as shown
here.

.container

{

display:flex;

background-color:yellow;

justify-content:space-between;

flex-wrap:wrap;

}

This is the result.

These are the possible value for the property flex-wrap.

• nowrap All items will appear on one line. This is the default.

50

• wrap Items will wrap texticographically.

• wrap-referse Items will wrap starting at the bottom, going up reverse-
texticographically.

Here we show reverse-wrap at work.

The flex-wrap property can cause items to be displayed across several rows.
We can control their positioning along the main axis with align-items. We
can control their cross-axis alignment with align-content.

• flex-start Items are aligned at the start of the cross-axis; this is the
default.

• flex-end Items are aligned at the end of the cross-axis.

• center Items are centered along the cross-axis.

• stretch Items stretch along cross-axis.

51

11 Properties of Items in a Flex Container

Let us begin with flex, which tells an item how much its share is relaive to
others. By default, this value is 1.

12 CSS Grid: A Learning Lab

CSS has a new feature called grid, which gives fine-grained control over the
layout of pages. You will be guided through this new tool via exercises and
demonstrations. By the time you are done, you will have good basic facility
with grid.

13 Setting up a Website on a Server

You will need access to a Linux server capable of hosting a website to have your
materials display on the web. However, you can build web pages offline and see
one on your local machine; this is all that is required to master the ideas in this
book.

13.1 Step 0, Obtain a Server Account

To get started, make sure you know the following. Your system administrator
who creates your account will know all of this information; so don’t be shy and
ask about it.

1. Your username

2. Your password

52

3. The server’s name. It will look something like this: cs.ncssm.edu.

4. Ask the administrator what name to give your www directory; this is
usually public html.

5. Ask the administrator what name to give index files on your website. This
is usually index.html.

13.2 Step 1, For Windoze Users Only

If you use Windoze, download the PuTTy application. To find this, just Google
“putty;” it will be the first link you see. Obtain the MSI file for your machine.
Double-click on it and install it. This little piece of software will allow you to
establish a session with your server over the network. If you are using MacOSX
or Linux, no action is required for this step.

13.3 Step 2: Obtaining and Using FileZilla

This application will alllow you to transfer files between your machine and the
server you are using. Happily, its interface is extremely intuitive and simple.
Begin by going to this website https://filezilla-project.org/. Download
the client, not the server. Then, install it on your machine. This application
works for Macs, PCs and Linux boxes.

Next, open the application. It looks like this.

You now do the following

53

https://filezilla-project.org/

1. In hostname, put your server’s name. In the example shown here, we use
cs.ncssm.edu.

2. Under Username, enter your username.

3. Enter your password in the password box.

4. Under Port, enter 22.

5. Hit ENTER or the Quickconnect button.

You will now see this.

On the left, is your LOCAL machine. On the right is the REMOTE server.
To open a folder, double-click on it. To send a file to the server, just open the
folder you want it in, drag it across, et voila... the file is transferred. This works
both ways, so you can easily send files back and forth. The top windows makes
it easy to navigate among your directories.

13.4 Step 3, Prepare the Server

You will need to log into your server. The process varies a little by OS.

Windoze Users If you use windows, start PuTTy. It will open a window.
In the slot for hostname, put the name of your server. In the slot for Port,
enter 22. For connection type, choose SSH (this is the default). Put the word
“website” under Saved Sessions and click the save button. Once you do this, on

54

successive logins you can just double-click on the word website, and putty will
launch.

You will see a window pop up asking for your login name. Enter you user
name. Then enter your password; note that the characters you type when
entering your password do not appear on the screen. When you are done entering
your password, hit enter.

Mac/Linux Open a terminal; on a Mac this is located in your Applications/Utilites
folder. If you run Linux, it is an icon on your desktop. Enter this at the com-
mand prompt:

ssh username@hostname

where hostname is the name of your machine. A typical person might enter
something like this.

ssh morrison@cs.ncssm.edu

You will then be asked for your password. Enter this; they keystrokes will not
appear on your screen. Then hit the ENTER key.

For Everyone You will see a window that looks like this. Yours might vary
in appearance

The text you see in the window is called a prompt ; it tells you the terminal is
ready to accept commands.

55

13.5 Step 4, Configure your server

You will need to make some basic preparations so your site is visible.

Begin by making a the www directory to hold your site. The most common
name for this directory (folder) is public html; refer to the information you
asked for in Step 0. Almost all sites use public html.

To get started, log into the server and enter these commands. Note that the
$ sign just stands for the server’s system prompt.

$ cd

$ chmod 711 .

$ mkdir public_html

$ chmod 755 public_html

$ cd public_html

$

Here, in a nutshell, is the purpose of what you did. You enter your home
directory. You then give permission for Apache to see through, but not into
your home directory. The general public will not be able to see those files. You
then make the contents of your public html directory readable by Apache.
Apache on a UNIX server is just another user and it needs proper permission
so it can fetch your files to be served. This allows your content to be served
on the web. This directory is the root of your public subtree. You can create
directories inside of public html; in fact this is a good way to organize a site
containing several parts.

Keep your server session open; you will need it again. Now use FileZila to
place your index file in your public html directory. Name it index.html prior
to transferring it.

It should cause the other pages of the directory to be linked, so they can be
viewed by visitors to your site. We will see how to do this soon.

Now go back to your server session. Make sure that the all HTML pages
have permission level 644 so they can be read by the world. This can be done
quickly using

$ cd

$ cd public_html

$ chmod 644 *.html

$

This command will make all files in your current working directory with exten-
sion .html visible to the world.

Now enter this in the address window of your browser.

56

http://faculty.ncssm.edu/~morrison

Use your server’s name instead of faculty.ncssm.edu and your user name
instead of morrison. Do not omit the tilde ~. This gives you the base URL for
your page. You will see a white page with the word “Hello” on it. In the top of
the tab or the title bar of the browser you will see the title “My First Page.”

You can place an index page in any subdirectory of public html. The URL
of this page can be found by appending the relative path from public html to
your directory to the base URL of your page. This index page should link the
contents of the directory so they can be viewed.

Where should you be now? You should be able to see your web page.

13.6 Subfolders for public html

You can create subfolders of public html to organize your site as it grows.
Each subfolder should have 755 permissions so Apache can see into it contents.
Each subfolder should have an index file named index.html. All files you want
visible on the web should have 664 or 644 permissions.

14 Terminology Roundup

24-bit color This refers to the standard scheme of color for modern computers.
The first eight bits are for red, the next are for green, and the last are for blue.

additive Light blends according to an additive color scheme; the result of
mixing colors is determined by adding waveforms.

border This is the decoration around the boundary of an element. You
can specify the border for the four sides using border-left, border-right,
border-top, and border-bottom.

box model This is how CSS controls spacing in elements. Each element
consists of content, padding, border, and margin.

cascading style sheets (CSS) This is the language of page appearance on
the web.

class You can apply a set of style rules to an arbitrary collection of page
elements by marking them with the samle class. The usage is

<element class="classname">..... </element>

combinator These combine the actions of selectors. Examples include the
space operator, “descendant of”, the child operator > and the comma operator,
“or”.

57

content This is the actual stuff (text, images, etc) inside of an element.

id. This is an attribute that can be given to any element on a page. It
should be a unique identifier of an element on a page; do not have two elements
with the same id on page or page behavior might be unpredicatable.

margin This is the spacing around the outside of an element. You can indi-
vidually control the margin on the four sides with margin-left, margin-right,
margin-top, and margin-bottom.

padding This is spacing around the content that is inside of the element.
You can individually control the padding on the four sides with padding-left,
padding-right, padding-top, and padding-bottom.

property This is part of a style rule. Every element type has a set of admis-
sible properties. Examples include such things as color, background-color,
or text-align.

pseudoclass A pseudoclass is identifiable by the presence of a colon in
HTML. For example, p:hover applies style rules when a paragraph is moused
over.

scope This refers to the lifetime of a style rule.

style rule This is a property-value statement in CSS. For example the style
rule

color:red;

makes text be rendered in red. subtractive This is the system of colors that
is imposed by pigments, instead of light value This is a valid value for a style
property. For example in the declaration color:red, red is the value for the
property color. This rule causes all text in the element to be red.

58

	Introduction
	Getting Started with CSS
	How do I Make CSS Work on a Page?
	Precedence Rules

	Color
	Named Colors

	divs, spans and Classes
	Classes
	Giving Elements IDs

	CSS and Tables
	The Box Model
	CSS Units

	Creating New Selectors From Old
	CSS Layout
	Table-Style Display with CSS

	Pseudoclasses
	A Brief Introduction to FlexBox
	Properties of Flex Containers
	A Pain in the Axis
	Justify your existence, puny Earthling!
	Working at Cross Purposes: Aligning Items
	It's a wrap!

	Properties of Items in a Flex Container
	CSS Grid: A Learning Lab
	Setting up a Website on a Server
	Step 0, Obtain a Server Account
	Step 1, For Windoze Users Only
	Step 2: Obtaining and Using FileZilla
	Step 3, Prepare the Server
	Step 4, Configure your server
	Subfolders for public_html

	Terminology Roundup

