
Chapter 2, JavaScript Objects, Types and

Variables

John M. Morrison

January 8, 2020

Contents

0 Introduction 1

1 JavaScript’s Type System: numbers 2

1.1 What about all of my favourite math functions? 5

1.2 Oh crud! How do I find everything in the Math object? 6

2 Using the W3Schools Reference 7

3 The JavaScript Type System: Strings 8

3.1 Can we get a chunk of a string? 9

4 The JavaScript Type System: Boolean 11

5 Variables and Expressions 12

6 Seeing JavaScript in a Web Page 15

6.1 Compound Assignment, Autoincrement, and Autodecrement . . 18

6.2 Booleans, Relations, Equality, Inequality, and an Annoyance . . . 19

7 Please Excuse My Dear Aunt Sally 21

8 More about Objects 23

1

9 Node Objects 24

10 Terminology Roundup 26

0 Introduction

So far, we have encountered the language HTML, which specifies the structure
of a web page, and the language CSS, which specifies its appearance. Now we
come to the part that gives web pages behaviour, the programming language
JavaScript. At first, it seems that we are going on an entirely unrelated mission.
However, by the end of this chapter you will see that there is a a very intimate
relationship between web pages and JavaScript.

As we said before, the browser is a virtual computer that understands three
languages. It uses HTML to create the structure of a page, CSS to determine a
page’s appearance, and JavaScript is a programming language that gives pages
behavior.

We are going to begin with some very basic ideas to get things started. For
now, there are two items of importance to you. Objects are items stored in
memory that can represent data or accomplish tasks. Variables are names we
can attach to objects; these can be used as a means of communicating with an
object to get it to execute some desired behavior, or to learn its properties.

So, let us begin by learning about a few fundamental kinds of objects.

A Word to the Wise The best way to read this chapter is to open the
console in Firefox or Chrome; you will be shown how to do this in the next
section. As you are reading this chapter experiment. Do not be afraid to make
mistakes; if you do something nonsensical, the console will hiss at you. If it gets
too surly, refreshing the page will reset the console. As you look at examples,
try typing similar things into the console. Do some exploring; this is the best
way to learn.

What is Node? Node is a JavaScript interpreter that allows you to run
JavaScript programs at the command line. It is freely available for Mac, UNIX
and Windoze machines. You can obtain it at https://nodejs.org/en/. A how-
to article on installing it in Windoze can be seen at http://blog.teamtreehouse.
com/install-node-js-npm-windows. You can run a JavaScript file in node as
follows. Create this file

console.log("Hello, World!");

In your UNIX terminal or your PowerShell window type

2

https://nodejs.org/en/
http://blog.teamtreehouse.com/install-node-js-npm-windows
http://blog.teamtreehouse.com/install-node-js-npm-windows

$ node hello.js

Hello, World!

If you can do this, you have installed Node successfully.

You can also use it interactively. Just enter node at the command line. It
will show you a prompt that looks like this >. You enter JavaScript and it
replies. Here is an example.

$ node

> console.log("foo")

foo

undefined

>

To quit, enter control-D or process.exit(). Your original prompt will reap-
pear. Node is a nice alternative to the browser’s console, which you will also
learn about.

Computers traffic in data, and as you might expect, there are different types
of data. In this chapter, we will begin by introducing three basic data types:
numbers, strings, which are globs of text, and booleans, which are the objects
true and false.

1 JavaScript’s Type System: numbers

An object is a named region of memory. Every object has a type, just as every
living thing has a species. You can think of the type of an object as its species.

When we think of computing, we often think first of numbers. JavaScript
has a number type.

To explore the number type, we will “talk” to JavaScript using both Firefox
and Chrome. Here are instructions for both.

Firefox: Click on the ≡ symbol in the upper right hand corner of the browser
window, and select WebDeveloper. Another menu will pop up; from this choose
Web Console. You will see the web console.

3

The

>>

you see is the prompt. It indicates the console is ready to accept commands.

Chrome: Click on the three dots symbol in the upper right hand corner of
the browser window, and select More Tools → Developer Tools. You will see
the web console.

4

The

>

you see is the prompt.

At the prompt, type an expression such as 5*2. Here is what you will see in
Firefox.

>> 5*2

<- 10

Here we run some expressions in Chrome.

> 5*2

<- 10

> 5+2

5

<- 7

> 5/2

<- 2.5

> 5 - 2

<- 3

What we see here is that number objects have exactly the behavior you expect
when combined with the four basic arithmetic operations. Can we do anything
else with these?

Here is operation you never saw explicitly defined in your Mrs. Wormwood
days, %.

> 5 % 2

<- 1

This operation is called mod. It takes the right-hand operand, divides it into
the left, and computes the remainder. Since when we divide 5 by 2, we get a
quotient of 2 and a remainder of 1, we have 5 % 2 evaluating to 1.

This operation was introduced by Mrs. Wormwood back in the ’60s and the
New Math days. Here is what they told elementary school kids. Suppose you
are computing 41% 8. To do this imagine you have a clock with the values 0-7
on its face instead of the usual 1-12. Put the 0 at the top position and number
the numbers clockwise. Now move the hand ahead 41 “hours;” you will make 5
revolutions, then one additional click. If the hand started at 0, it will end at 1.
This tells you that 41% 8 is 1.

Think about it for a moment. You have

41 = number of numbers om the dial ∗ number of revolutions of the dial + 1.

Puzzler What does the fact that 365 % 7 evaluates to 1 have to do with your
birthday?

Finally, let us see that numbers do know their type. Here is how we see that
You can use the typeof operator to learn the type of any JavaScript object.

> typeof 5

"number"

1.1 What about all of my favourite math functions?

JavaScript has something called the Math object that serves these up. Using
the Math object is simple. Look at these examples.

6

> Math.sqrt(5)

<- 2.23606797749979

> Math.pow(5,4)

<- 625

> Math.sin(Math.PI/2)

<- 1

To talk to the Math object, you type Math. then the function you wish to
use. All of your favorites are present. Notice that the default angular unit for
the trigonometric functions is radian measure. The item Math.PI is a symbolic
constant for the value π so it is easy to use the conversion factors of π/180 and
180/π to convert between degrees and radians.

1.2 Oh crud! How do I find everything in the Math object?

It’s time to visit this one of these sites. Check them both out and see what you
like

1. https://developer.mozilla.org/en-US/docs/Web/JavaScript

2. https://www.w3schools.com/jsref/default.asp

This pages offers valuable information: they are encyclopaedias of JavaScript
objects as well as a reference for the language. Bookmark them; they will come
in handy often.

The Mozilla Site On this page, expand the References drop-down. Scroll
down and click on Math. Here you will see a listings called Properties and
Methods. All of the properties listed here are just various useful mathematical
constants such as e, π,

√
2, and ln(10). Type them into the console and see

them appear. Do the same with your scientific calculator. The word “Method”
just means a function that is owned by an object; in this case the methods are
just all of your favourite math functions. The reason you use the Math. is that
they belong to the Math object. The dot is just the genitive [possessive] case in
JavaScript.

Here are the basic sections, blow by blow. The Syntax section shows you
the usage of the function. You pass it some value x.

Syntax

Math.cos(x)

7

https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://www.w3schools.com/jsref/default.asp

The next section tells what sort of value you may pass. In this case, that
value must be a number. That is handy, because number is the only type we
know about as of now.

Parameter

x

a number given in radians

Next, come some examples. Type these into the console and do a little
experimentation yourself.

Examples

Math.cos(0); // 1

Math.cos(1); // 0.5403023058681398

Math.cos(Math.PI); // -1

Math.cos(2 * Math.PI); // 1

Don’t worry about the Specifications area yet. The last item shows what
browsers understand the function. They all understand cosine. These exercises
will cause you to look through this documentation to use these functions. In
addition to doing these, take a tour through here. Compare with your calculator
and see if there is anything you can do on your calculator you cannot do here.

2 Using the W3Schools Reference

Go to the site https://www.w3schools.com and click on the References link in
the green bar. Select the JavaScript reference and you will see this.

8

https://www.w3schools.com

Click on any of the buttons to see the reference material on the button’s label.
Click on the string reference button. Go to the String Methods section. All of
the listed menus are links; click on one to see the information in it.

Programming Exercises

1. Write an expression that finds the largest of 8, 5 and 2.

2. Compute log2(1000). Compute log2(1000000). What do you notice?

3. Evaluate the expression e2.3 − cos(1/3.5).

4. Evaluate the last expression to the nearest integer.

5. Compute 5.23.

6. If a right triangle has legs of length 4 and 5, find the length of the hy-
potenuse. There is a method in the Math object that will do this for you!

3 The JavaScript Type System: Strings

Computing is not just numbers, at least to us humans. We interact with a
computer an awful lot using the keyboard; this means that there must be some

9

provision for text and characters to be stored. Take a look at this little console
session.

typeof("some words")

"string"

typeof("s")

"string"

There is an object type called “string;” the purpose of the string type is to
store globs of text. Let us explore some of its basic capabilities. Strings can be
concatenated (glued together) using +. Here is a simple example

> "abc" + "def"

<- "abcdef"

You can concatenate several strings this way. Try it now.

This is also interesting.

> "abc" + 4

<- "abc4"

> 5 + "abc"

<- "5abc"

If you use a string and a number as operands, the number gets converted to a
string and the results are concatenated. What if you try to multiply a number
and a string? Let’s see what JavaScript does.

> "abc" * 4

<- NaN

You get back NaN, a symbol meaning “not a number.” JavaScript could not
make sense of this, so it punted. Ironically, the NaN object is of type number!
Bear witness to this heinous spectacle.

> typeof NaN

<- "number"

3.1 Can we get a chunk of a string?

For starters we can see characters in strings by indexing into a string. There
are two ways to do this.

> "abc"[2]

<- "c"

10

> "abc".charAt(2)

<- "c"

At this juncture, you might be saying, “Hey pal, are you trying to pull a fast
one? The second character in "abc" is a b!” The number 2 you are specifying
is an index. The indices of a string live between the characters in the string.
Look at this little diagram.

| a | b | c |

0---1---2---3

When we specify an index, the character just to the right of that index is fetched.
Notice how the indices lurk between the characters. This may seem weird at
first but you will see that, in the end, it makes a great deal of sense. Check this
little session out. Henceforth we will omit the annoying <-s in the interactive
console sessions.

> "abc".substring(1,3)

"bc"

> "abc".substring(1)

"bc"

> "abc".substring(0,2)

"ab"

> "abc".substring(0,2) + "abc".substring(2)

"abc"

The substring method grabs a substring between the two indices specified.
If only one index is specified, the second one is assumed to be the length of the
string. Compare these results to the little diagram above and you will say “Ah,
makes sense.” The concatenation at the end should be a real convincer. Now
you know why the indices occur between the characters.

Let us now look at the documentation page for substr. It has some new
twists that need explanation. We show the beginning of this page here.

The substr method returns the characters in a string beginning at the spec-
ified location through the specified number of characters.

Syntax str.substr(start[, length])

The fact that length appears in brackets means it is optional. The param-
eters are indices.

Parameters

11

start

Location at which to begin extracting characters.

If a negative number is given, it is treated as

strLength + start where strLength is the length of

the string (for example, if start is -3 it is treated

as strLength - 3.)

length

Optional. The number of characters to extract.

The index start is a character index. The index of the first character is
0, and the index of the last character is 1 less than the length of the string.
substr() begins extracting characters at start and collects length characters
(unless it reaches the end of the string first, in which case it will return fewer).

If start is positive and is greater than or equal to the length of the string,
substr() returns an empty string.

If start is negative, substr() uses it as a character index from the end of
the string. If start is negative and abs(start) is larger than the length of
the string, substr() uses 0 as the start index. Note: the described handling of
negative values of the start argument is not supported by Microsoft JScript.

If length is 0 or negative, substr() returns an empty string. If length is
omitted, substr() extracts characters to the end of the string.

Strings have many methods; you can see them in the documentation. These
methods allow you to search a string. Visit this page

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/

Global_Objects/String

and take a look. Use what you see to attempt the exercises here.

Programming Exercises

1. How would you find the index of the first letter a in the string "platypus"?

2. How would you find the index of the last t in the word "spaghetti"?
Find the index of the first t, too.

3. How do you make all alphabetical characters upper-case in a string? lower
case? Test this on an example. What happens if the string contains non-
alphabetical characters. Make one and see.

4 The JavaScript Type System: Boolean

The Boolean type contains two objects, true and false. There is a unary prefix
operator !, which negates booleans. Here is its truth table.

12

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

P !P
T F
F T

JavaScript also has two binary infix operators, && and ||. Below we show
their truth tables.

P Q P&& P||Q

T T T T

T F F T

F T F T

F F F F

So if P and Q represent booleans, then P&&Q is true if both P and Q are true.
And P || Q is true if at least one of P and Q are true.

5 Variables and Expressions

A variable is a name that can be attached to an object. The rules for these
names are simple, so let us begin there.

1. The first character in a variable name can be any alphabetical character
or an underscore (_).

2. Subsequent characters can be alphabetical, numerical, or underscores.

Here are some examples of good variable names. Note the camel and under-
score styles. Also note that variable names are case-sensitive. The names abc

and AbC are different variables.

number_of_clicks underscore style

numberOfClicks camel style

x1

slope

employeeID

Here are some examples of bad variable names and their faults.

semi;colon illegal punctuation

space cadet spaces not allowed

2b_or_not2b illegal to start with a digit

black&white illegal special character

gone.dotty illegal period

13

JavaScript, like every programming language, has language keywords. Do
not use them for variable names. They change color when typed into a smart
editor such as vim, Notepad++, or Atom.

JavaScript Keywords
abstract arguments await boolean
break byte case catch
char class const continue
debugger default delete do
double else enum eval
export extends false final
finally float for function
goto if implements import
in instanceof int interface
let long native new
null package private protected
public return short static
super switch synchronized this
throw throws transient true
try typeof var void
volatile while with yield

Now let us see how to use variables. To attach a name to a variable, you use
the assignment operator =. Let us show a little sample session. Note the use of
the let keyword, which says, “I am creating a variable.”

>> let x = 4

4

>> let cow = "guernsey"

"guernsey"

>> let y = 14

14

Read the = as “gets.” Writing x = 4 binds the name x to the number object
4. Now see this.

>> x

4

>> y

14

>> cow

"guernsey"

Terminology Interlude These terms will become a part of our standard
vocabulary. They describe things we will deal with quite often and provide a

14

useful and succinct means for discussing computer languages.

• token This is an atom of meaning; it is an irreducible unit of meaning in
a language. Object literals such as 5, 4.2, or "cows" are tokens. Variable
names are also tokens. Variables and language keywords (we will see these
soon) are tokens, too.

• expression An expression is a combination of tokens and operators. For
example, the expression x + 5 contains the tokens x, +, and 5.

• operand An operand is something being acted upon by an operator. An
example of this is "some" + "thing", where the two strings are operands
of the concatenation operator +.

• unary operator This is an operator taking one operand. An example of
one of these is - in the expression -x. This operator changes the sign of a
number object.

• binary operator This is an operator taking two operands. Many arith-
metic operators are binary operators. These include +, -, *, /, and %.

• infix A binary operator is infix if it occurs between its operands. All of
the operators just above are infix.

• prefix A binary operator is prefix if it occurs before its operands. The
change-sign operator - is a prefix unary operator, as is the negation oper-
ator ! for booleans.

• postfix A binary operator is prefix if it occurs after its operands.

• parse To impose meaning (upon symbols) according to stated grammat-
ical rules.

Now we are ready to see expressions at work, continuing from our previous
session. In this interactive prompt, we see that when a variable’s name is en-
tered, the object bound to that variable gets printed. If you enter an expression,
that expression will be evaluated. We show this here.

>> x*y

56

>> x+y

18

>> x*Math.pow(y, 2)

784

So when you give JavaScript x*y, it does the following

1. You have given x and y the values 4 and 14. These are then recorded in
the symbol table, which is a dictionary of variables and the values they are
bound to.

15

2. JavaScript sees the expression x*y, fetches the values for the two variables
from the symbol table, and substitutes the values bound to x and y to get
4*14.

3. This expression is parsed and evaluated; it is found to have value 56.

4. JavaScript hands the result, 56, back to you.

The symbol table for our session looks like this.

x -> 4

y -> 14

cows -> "guernsey"

The symbol table contains all information that is visible to you.

Really, There is more than one symbol table in JavaScript that is visible
when you are using expressions. A second symbol table that is visible to you is
the global symbol table; things in this symbol table are always visible. It is where
the Math object lives. Part of it contains all of JavaScript’s infrastructure.

You might ask, “What if I try to use something not in a visible symbol
table?” Let us try that and find out.

> quack

quack

VM919:1 Uncaught ReferenceError: quack is not defined(...)

The console sends you an error message that the variable quack is not de-
fined. You should deliberately make mistakes in the console and get used to
seeing the error messages they generate. This will help you when you are trying
to figure out what is going wrong.

6 Seeing JavaScript in a Web Page

So far we have just placed code in the console and had it evaluate simple ex-
pressions. This is, after all, purportedly, a book on web development. So it is
logical to ask: How do I get JavaScript to act on a web page? ’

Begin by making a skeleton HTML page. Place a paragraph element with
the id of "showJS". You can use any ID you wish.

<!DOCTYPE html>

<html>

<head>

16

<title>See JavaScript Run!</title>

</head>

<body>

<p id = "showJS">Your JavaScript will appear here.</p>

</body>

</html>

Next, add a script tag at the bottom.

<!DOCTYPE html>

<html>

<head>

<title>See JavaScript Run!</title>

</head>

<body>

<p id = "showJS">Your JavaScript will appear here.</p>

<script>

x = 5;

y = 4;

document.getElementById("showJS").innerHTML = 5*4;

</script>

</body>

</html>

Now open this page with your browser. Here is what happens. The browser
loads this page staring at the top. It digests the head element and knows to put
a title in the title bar. Then the body element opens and the paragraph inside
is constructed. Next, the script tag says the browser, “Yo this is JavaScript!
Regard the contents of this element as such.” So now let us step through this
script. We begin by assigning values to the variables x and y.

When you are coding on a page, as opposed to working in a console, you
need to place semicolons at the end of certain statements, known as “worker
statements.” Worker statement have the property that, if you read them, then
form a grammatically complete sentence.

Now we come to the mysterious statement on the next line. The symbol
document refers to the page the script is on. So think of document as meaning
“this page.” It is also a JavaScript object.

The type of this object is a node; a node can be any element on a web
page. A node is an object that knows its type (tag type), its attributes, its
HTML contents, and its style properties. A node’s properties can be altered by
JavaScript.

We now invoke the method getElementById, which now refers to the para-
graph element present in the document. Any element on a page can be referred

17

to by assigning it an ID and using document.getElementById to point at it.
The .innerHTML now points at the HTML inside of the paragrah element. All
that is present is a text element.

Finally, the text inside of the paragraph is replaced by 20, the result of
evaluating the expression 5*4.

This seems like a lot of new ideas at once, but we will use this pattern
repeatedly as we learn JavaScript so we can display what we are doing. Notice
how the use of id allows us a simple way to specify a location on a web page.

More about JavaScript Expressions We have met the assignment opera-
tor =, which we used to give values to variables. Let us say a little more about
it. Make a new console session. We are going to learn a little more about
assignment.

In general, you can create assign a variable as follows

let variableName = expression

Whatever expression you place on the right-hand side is evaluated, the then the
variable variableName is bound to it. Let us now see an example.

> let x = 5*4

20

> x

20

> x = x + 10 //x is created; let is not needed

30

> x

30

Here in the first line, we created the variable x, and we assigned 5*4 to
it. Notice that in an assignment, JavaScript works from right to left. It first
evauated 5*4, then it bound the result to x. Technically, we say that the
assignment operator associates from right to left.

For those of you used to seeing = used in a math class, the statement

x = x + 10

has a shocking appearance. But, you must remember that = does not mean
“equals;” you should read it “gets.” What happens here is that x + 10 is first
evaluated. Our symbol table has the entry

x -> 20

18

This value is fetched and x + 10 evaluates to 30. That value, in turn is now
bound to x. The old value of 20 is “orphaned” and it is no longer accessible
unless another variable is pointing at it . The symbol table now contains the
entry

x -> 30

Hence, the appearance of the output. So, it is not at all unusual to see the same
variable on both sides of an assignment.

6.1 Compound Assignment, Autoincrement, and Autodecre-
ment

While we are seeing the same variable on both side of an assignment, it is a
good time to introduce some very handy pieces of shorthand that make code
simpler to read.

let x = 2;

undefined

x++;

2

x;

3

The ++ operator is a postfix unary operator that adds 1 to the value of its
operand. Likewise, the -- operator subtracts 1 from the value of its argument.
Hence, x++ is the same as x = x + 1, and x-- is the same as x = x - 1. These
are the autoincrement and autodecrement operators. They work on variables
that point at numerical values.

Javascript also has compound assignment operators. Here is how they work.
Suppose that op is an infix binary operator such as +, -, or %. Then

x op= y;

is the same as

x = x op y;

We will show them at work in this little session.

> let x = 4

undefined

> x -= 3

19

1

> x

1

> let name = "Jon"

"Jon"

> name += "athan"

"Jonathan"

> name

"Jonathan"

> x *= 5

5

> x *= x*x

125

> x

125

6.2 Booleans, Relations, Equality, Inequality, and an An-
noyance

You might ask, “But what about equality?” This brings us to a new infix binary
operator ==. Enter this in your console session.

> 2 + 2 == 4

and when you hit enter you get this reply.

> 2 + 2 == 4

true

The operator == is the isequalto operator. It is an infix binary operator. If the
two operands contain the same value, the isequalto operator will reply true;
otherwise it replies false.

The tokens true and false are the boolean objects. You can see this using
the typeof operator as follows.

> typeof true

"boolean"

So now we have a new species boolean for true/false values. This brings
up a new set of operators that we will find useful, the relational operators. All
of the equality operators are relational operators as well. This table describes
them.

20

< less than
<= less than or equal to
> greater than
>= greater than or equal to
!= not equal to
== isequalto

These are all binary infix operators. They all reply with a boolean value. If
the operands are numbers, the comparison is the standard numerical compari-
son.

A Weirdism that Should Fill You with Hate JavaScript has an additional
operator, ===, which we demonstrate now. This is a major JavaScript annoyance
that can cause suprise errors.

> 5 == "5"

true

> 5 === "5"

false

> "true" == true

false

> 5 !== "5"

true

Note the existence of the !==, which is the negation of ===.

The === operator tests for “same value and same type” for numbers. What
is interesting here is that true == "true" evaluates to false.

The author speculates that since a lot of information from the web comes in
from forms in the form of strings, the fact that 5 == "5" evaluates to true is a
handy convenience.

Also, take note of this quirk.

> true == 1

true

> true === 1

false

Bottom Line It is a good practice to prefer the === operator to ==.

What about strings and relational operators?? Let’s start simple.

> "a" < "b"

true

21

That looks like what we expect. Now let us try this.

"Z" < "a"

true

Uh oh. What happened?

Let us think about alphabetization of words first. How do you determine
which of two words is first in the alphabet? You do something like this. Let’s
denote the words by x and y.

1. Look at the first character of the two words. If the first character of x

comes before that of y, we know x comes first alphabetically.

2. If the first character of x comes later that of y, we know x comes second
alphabetically. For example, "artichoke" comes before "beet" because
"a" comes before "b" in the alphabet.

3. If the first characters are the same, continue checking subsequent char-
acters until you find a different character. Then do the first two steps
on that character. An example of this is that "lambaste" comes before
"lambchop".

4. If one word runs out before the other and before a conclusion is made,
then the word ending first comes first alphabetically. For example "cow"

comes before "cowabunga".

This kind of ordering is called a dictionary or lexicographical order. What
JavaScript does with the characters in a string is called asciicogaphical ordering.
It is a lexicographical order, but characters are compared by their ASCII (byte)
values. Since the character "Z" has ASCII value 90 and "a" has ASCII value
97, you can see how the result arises.

7 Please Excuse My Dear Aunt Sally

JavaScript has many operators and they have an order of operations. The
arithmetic operators +, -, *, and /, have the usual order of operations. They
associate from left to right, just as the do in algebra. Mrs. Wormwood would
say, “You first deal with parentheses, then exponents, then multiplication from
left to right, then addition and subtraction from left to right. The highest
precedence, as in algebra, is held by parentheses. When in doubt, use them.

The relational operators have lower precedence than the arithmetic opera-
tors, so an expression such as 4 + 5*8 > 3*7 crunches down as follows. Below
you can see each step that occurs; after the expression, the operation carried
out on that line is indicated.

22

4 + 5*8 > 3*7 start

4 + 40 > 21 multiply

44 > 21 add

true compare

Assignment has an even lower priority. So if you do this x = 5*7 > 6*6 it
crunches like so.

x = 5*7 > 6*6 start

x = 35 > 36 multiply

x = false compare

That's all folks!

As a result, the variable x is bound to the boolean value false. So far, we have
this hierarchy. The highest lines in the table have the highest precedence.

Operator(s) direction
() left to right
., as in "foo".charAt(1) left to right
* / % left to right
+ - left to right
= and compound assignment right to left

Programming Exercises

1. Determine which is bigger, πe or eπ.

2. Tell what items are in the symbol table after this code runs

let x = 15;

let y = 17;

x = x*y;

let oahu = "lei";

let hilo = oahu + " of orchids";

3. Place these items in asciicographical order. If you have a one-character
string, say x, you can determine its ASCII code using x.charCodeAt().

Zebra

aardvark

cat

Cat

17 32

You can check your answer by entering these into the console.

> let a = ["cat", "Cat", "Zebra", "aardvark", "17", "32"];

> a.sort()

> console.log(a)

23

4. Treasure Hunt Figure out how to see the ASCII value of a character with
JavaScript.

8 More about Objects

Objects have three important attributes: state, identity, and behavior. We will
discuss the objects we have seen so far and learn about these attributes for
them. Here, succinctly, is the deal.

1. identity: This is what an object IS. Objects are just chunks of memory.
They contain data for their state and code for their behaviors.

2. state: This is what an object KNOWS.

3. behavior: This is what an object DOES.

Let us look at all of the types of objects we have seen so far and analyze
their state, identity, and behavior. Identity is the same for all objects: they are
regions of storage in a computer’s memory.

A number object’s state is simply the value it is storing. Numbers behave
as expected in the presence of arithmetic operators such as +, -, *, /, and %.

A string object’s state is the character sequence it contains. Strings have
many behaviors. You can extract characters as one-character strings using
charAt() and []. You can get a piece of a string using slice or substr.
You can get a copy of a string in lower or upper case. The JavaScript String
reference page has a complete list.

A boolean’s state is just true or false. Booleans do their thing in the
presence of the three boolean operators, not (!), and (&&) and or (||); this is
their behavior.

Functions are more complex. To describe a function completely, we need
to describe a function’s preconditions and postconditions. This describes a
function’s action and required inputs.

A function’s preconditions indicate what should be true before a function is
called. This includes such things as the number and types of inputs (arguments)
it takes.

A function’s postconditions indicate what is true if when a function is done
executing. It can have a return value, or output, and it can have side effects,
things that are done and which persist beyond the function’s execution. We will
talk about this in greater depth in the next chapter.

So far, all of the objects we have learned about are immutable; this means
that their state cannot be changed after they are created. When we re-assign a
variable, we just point at a new object, possibly orphaning the old one.

24

Type State Behavior
number value Numbers behave as ex-

pected in the presence of
arithmetic operators

string character se-
quence

Strings exhibit a rich
panoply of behaviors such
as charAt, [], and slice.

boolean true/false Booleans behave as ex-
pected in the presence of
not (!), and (&&) and or
(||).

function its precon-
ditions and
postcondi-
tions

its action

node tag type,
attributes,
style proper-
ties

A node’s state can be
changed by various means.

9 Node Objects

Nodes are JavaScript objects that represent elements on a web page. The node
is the first example of a mutable object; JavaScript can change the state of a
node. A node’s state includes the following.

• the tag type of the element

• the attributes of the element, including its id.

• the style properties of the object

• the content inside of the element

Nodes can be altered by various JavaScript methods such as document.getElementById
in combination with .innerText or .innerHTML, which can change their state.
You will also see that we can create a node purely in JavaScript and then stick
it onto a page.

Here we offer a chance to learn a little about nodes via some dirty-hands
exercises. Begin by making this HTML file.

<!doctype html>

<html>

<head>

<title>JavaScript Experiment</title>

25

<meta charset="utf-8"/>

</head>

<body>

<h2 id="header">This can be a Node</h2>

<p id="paragraph0">So can this paragraph</p>

<li id="one">one

<li id="two">two

<li id="three">three

</body>

</html>

Now open a tab in your browser and open this file. Next, open the browser
console. In the console, type this

let h = document.getElementById("header");

Now enter h into the console; you will see the header element displayed. Next,
do this.

let one = document.getElementById("one");

one.innerHTML = "I am bold."

Now let us play with something interesting. This facility allows us to generate
HTML “on the fly” with JavaScript and to insert new elements onto a page.

let pp = document.createElement("p");

let t = document.createTextNode("stuff inside");

pp.appendChild(t);

document.body.appendChild(pp);

Now try this for fun

document.body.style.backgroundColor = "#ABCDEF";

Programming Exercises Here are more chances to practice manipulating
the document.

1. Create a table in this document, and append it to the body using the tools
you have seen by entering commands in the console.

2. Change the color of the text of the document to dark green.

3. Change the font of the document to Courier.

26

10 Terminology Roundup

asciicogaphical ordering This is dictionary ordering where characters are
ranked by their byte (ASCII) values.

assignment operator This is the = operator in JavaScript. The left-hand
side must be an lvalue (variables are lvalues) and the right-hand side can be any
expression that makes sense.

autodecrement operator This is the – operator in JavaScript. It is a
postfix unary operator that addds 1 to its operand. It is applied to variables.

autoincrement operator This is the ++ operator in JavaScript. It is a
postfix unary operator that addds 1 to its operand. It is applied to variables.

behavior This is what an object DOES. For example, strings can return a
segment of themselves using the substring method.

binary operator This is an operator taking two operands. Many arithmetic
operators are binary operators. These include +, -, *, /, and %.

boolean object There are two of these true and false.

compound assignment This is an operator of the form op=, where op is
an infix binary operator. The experession x op=y is equivalent to x = x op y.

false.

expression An expression is a combination of tokens and operators. For
example, the expression x + 5 contains the tokens x, +, and 5.

global symbol table This consists of all symbols that are visible during
the entire lifetime of the program. It consists of two parts. One is JavaScript’s
infrastructure which owns the Math object and all of the string properties and
methods. Then there is the user-defined symbol table, which consists of all
objects created outside of any function (what we have so far) in a JavaScript
program.

identity (of an object) This refers to the physical presence of a piece of data
in memory.

immutable Objects that are immutable are “written in ink;” once created
they cannot be changed. All of the object types we have met so far are im-
mutable.

index These are numbers that lurk between the characters of a string and
are used to specify locations in a string.

indexing into This occurs when we use the [] operator to access characters
in a string.

infix A binary operator is infix when it occurs between its operands. For
example, in the expression 5 + 8, + is an infix binary operator.

27

isequalto The operator == is the “is equal to” operator and checks for
equality of value. The operator === is stricter; it requires both operands to
be of the same type as well. Note that 5 == "5" evaluates to true but 5 ===

"5" evaluates to false.

Math object This is the object to which all of the scientific calculator
functions of JavaScript are attached.

mod This is the remainder operator %. The quantity b % a is computed by
dividing a into b and computing the remainder.

node 1. This is the type of JavaScript object that refers to an element on a
web page. 2. This is a piece of software that will run a JavaScript program in
UNIX, PowerShell, or cmd.

object This refers to items stored in memory. Objects have type, state,
identity and behavior.

operand An operand is something being acted upon by an operator. An
example of this is "some" + "thing", where the two strings are operands of
the concatenation operator +.

parse To impose meaning (upon symbols) according to stated grammatical
rules.

postfix A binary operator is prefix if it occurs after its operands.

prefix A binary operator is prefix if it occurs before its operands. The
change-sign operator - is a prefix unary operator, as is the negation operator !
for booleans.

relational operator This is an infix binary operator that returns a boolean
value.

return value This is the value output by a function.

side effects These are things done by a function that persist beyond the
function’s lifetime. For example, console.log has the side effect of putting
whatever string is given it to the console.

state This is what an object knows

symbol table This is a dictionary of variables and the values attached to
them.

token This is an atom of meaning; it is an irreducible unit of meaning in a
language. Object literals such as 5, 4.2, or "cows" are tokens. Variable names
are also tokens. Variables and language keywords (we will see these soon) are
tokens, too.

unary operator This is an operator taking one operand. An example of
one of these is - in the expression -x. This operator changes the sign of a
number object. Another example is the typeof operator; it is a prefix unary

28

operator that returns a string describing the type of its operand.

References

[1] Apache Foundation. Apache website. http://www.apache.org.

[2] Patrick Griffiths. Html dog. https://htmldog.com.

[3] Mozilla. Mozilla tag reference. https://developer.mozilla.org/en/

HTML/Element.

[4] Net Ninja. The net ninja html. https://www.youtube.com/playlist?

list=PL4cUxeGkcC9ibZ2TSBaGGNrgh4ZgYE6Cc.

[5] Inc. Refsnes Data. Firefox web browser. http://www.w3schools.com.

29

http://www.apache.org
https://htmldog.com
https://developer.mozilla.org/en/HTML/Element
https://developer.mozilla.org/en/HTML/Element
https://www.youtube.com/playlist?list=PL4cUxeGkcC9ibZ2TSBaGGNrgh4ZgYE6Cc
https://www.youtube.com/playlist?list=PL4cUxeGkcC9ibZ2TSBaGGNrgh4ZgYE6Cc

	Introduction
	JavaScript's Type System: numbers
	What about all of my favourite math functions?
	Oh crud! How do I find everything in the Math object?

	Using the W3Schools Reference
	The JavaScript Type System: Strings
	Can we get a chunk of a string?

	The JavaScript Type System: Boolean
	Variables and Expressions
	Seeing JavaScript in a Web Page
	Compound Assignment, Autoincrement, and Autodecrement
	Booleans, Relations, Equality, Inequality, and an Annoyance

	Please Excuse My Dear Aunt Sally
	More about Objects
	Node Objects
	Terminology Roundup

