
Chapter 3, JavaScript Boss Statements:

Becoming Turing-Complete

John M. Morrison

January 17, 2020

Contents

0 Introduction and Orientation 2

1 Mathematical Functions 3

2 Writing JavaScript Functions 5

3 Three Critical Properties of Functions 6

4 Making Decisions: the if statement 8

5 And Now while we Repeat Ourselves 13

6 And Now Back to Web Pages 18

6.1 JavaScript Modal Dialog (“popup”) Boxes 20

6.2 Nagging . 23

7 The Dope on Scope 24

8 Polycephaly is Frowned Upon: An Exhortation on Design 26

9 Introducing the JavaScript Canvas 27

9.1 Draw.... or choose to die . 29

10 Terminology Roundup 31

1

0 Introduction and Orientation

Let us begin with the Church-Turing Hypothesis: All computers are created
equal inasmuch is that they can solve the same set of problems. Some computers
are just faster than others. A computer language is Turing-complete if it can
be used to solve any of this set of problems. In this chapter, the JavaScript
language will become Turing-complete. We seem to be a very long way from
this seemingly lofty goal, but in reality we are not.

Once we achieve this goal, what will happen in subsequent chapters is that we
will add to the basic set of tools we create here, deal with the idea of managing
collections of objects using data structures, and develop the means by which
JavaScript can make web pages execute complex instructions based on user
interaction.

So far, any JavaScript code has executed line-by-line. All of the code we
have seen so far hs consisted of worker statements. These are just grammatically
complete imperative sentences. Here are some examples.

let x = 5; Create the variable x and make it point
at 5.

x++; Increment the value of the variable x.
x = Math.pow(x, 3); Find the cube of x and assign it back

to x.
console.log("freep"); Put the string "freep" to the console.

A worker statement in a JavaScrpt file should end with a semicolon. The semi-
colon in JavaScript behaves like a period in written English; is signifies a full
stop.

You might properly ask these questions.

1. Can we skip code?

2. Can we respond differently to different user actions or to the values our
variables are storing? Can our code make decisions?

3. How do we store a set of statements under a name so we can use them
over and over again?

4. How can we get something to happen repeatedly?

All of these have something in common: all entail our next object of study: the
boss statement.

We shall use the term block to describe any piece of code enclosed in curly
braces. Boss statements are grammatically incomplete sentences. They look
like this.

2

bossStatement(...)

{

//code

}

The boss statement is also boss because it exerts some sort of control over the
block of statements it owns, and therefore over the flow of control in a program.
In this chapter, we will begin by learning about three types of boss statement,
function headers, conditional boss statements, and the while boss statement.

We will begin by looking at JavaScript functions, which will allow us to save
a procedure under a name. We will start by reminding ourselves about the
pertinent definitions from mathematics.

1 Mathematical Functions

It will be very useful for us to review the concept of a function in the mathe-
matical sense and to expand this definition to realms not usually thought about
in a mathematics class. Let us review the mathematical definition of function.

A function is an object consisting of three parts.

• A set A called the domain of the function

• A set B called the codomain of the function

• A rule f tying each element of A to a unique element of B. If x ∈ A, we
will write f(x) for the rule f applied to the element x.

To fully define a function we must know all three of these things. When
we see this we will write f : A → B. Note that for any given input the same
output must be generated each time the function is applied; i.e. a function’s
action must be consistent.

For example the function parseInt is a mathematical function. Its domain
is the set of all numerical strings. Its codomain is the set of integers. The rule
is: re-interpret the numerical string as a integer. Here we see it at work on an
example.

> parseInt("145")

145

It accepts the string "145" and returns, or outputs, the number 145. This is
indeed a function in the mathematical sense, but it is a safe bet you didn’t
discuss this example in your math class.

When you hear someone say “the function f(x) = x3+4x” in a mathematical
context, what is really being said? In math class you adopt a convention that

3

dictates what is really being said is that the domain and codomain are the set
of real numbers and the rule tying each element x of the domain to an element
of the codomain is described by

f(x) = x3 + 4 ∗ x.

The variable name x used in our description here is immaterial. What is
important is the rule: cube a number and add it to four times the number. That
rule could just as well be embodied by

f(cow) = cow3 + 4 ∗ cow.

The names x and cow are called arguments of the function. The choice of an
argument name does not affect the action of the function. The argument name
is really just a placeholder; it is a convenience that helps us to describe the
action of the rule.

It is interesting to note that the Math object contains a JavaScript function
that is not a mathematical function. Let us look at the function Math.random()

in the console.

> Math.random()

0.9340458753527254

> Math.random()

0.03806318070385406

> Math.random()

0.037572017900803445

You should try this; notice that your results will almost surely not be the same
ones you see here. This JavaScript function is not a mathematical functions for
two reasons.

Firstly, it has no input. Oops.

Secondly, it is inconsistent. Even if it took an input, it can have different
values when it runs at different times. For a mathematical function, we have
said that for each element x of the domain the rule f(x) must return the same
value in the codomain. So, even though Math.random is in the Math object, it
is not a mathematical function.

Now let us discuss the function console.log. It accepts a string as input. It
returns no value; it simply puts the string to the console. When mathematical
functions do their job, they leave nothing behind. This function leaves stuff
on the console after it is done running. It is, therefore, not a mathematical
function.

What you will now see is that the JavaScript function is a more general
construct than a mathematical function. Its purpose is to store a procedure
under a name.

4

2 Writing JavaScript Functions

Our next object of study is the JavaScript function, which will allow us to store a
procedure under a name, and if we wish, return an output from that procedure.

We have seen that JavaScript has built-in functions. We have met the Math

object which has all manner of nice scientific calculator functions. Now see this.

> typeof(Math.cos)

"function"

Functions are JavaScript objects. The name of a function is just a variable
name. We will do two things here. We will make our first function, then show
that you can assign it. The boss statement function(x) will allow us to define
a function that accepts one input. You should read function(x) as “to define
a function of one variable x,” Notice that this is a grammatically incomplete
sentence. The block is needed to complete it. Notice in this example the use of
the return statement; this statement specifies the function’s output as well as
ending the function’s execution.

> f = function(x){return x*x;}

undefined

> f(5)

25

> cows = f

f(x){return x*x;}

> cows(5)

25

The effect of this little session is that two varialbes, f and cows point at the
same function object in memory.

Functions are objects, just as are numbers, strings, and booleans. Functions
allow us to remember a set of instructions and compute an output just by
invoking them. You can easily imagine that if we do a multi-step procedure
over and over again in a program, we can shorten that program by “wrapping”
that procedure in a function. This measure de-clutters your code and makes it
more readable if you give the function a name evocative of its purpose.

When we use a function, we are said to be calling it. Information you put
inside of the parentheses is a comma-separated (possibly empty) list of items
called arguments. Arguments act as inputs to a function. When we call a
function and give it values for its arguments we are said to be passing those
values to the function.

Here is a peek at what is to come. We will see that functions are very helpful
when we start doing things like placing buttons on a web page that cause actions.

5

You put the action in a function, and when the button is pressed, the function
is called and its procedure is carried out. Functions can call other functions, so
a single call to a function can launch a complex sequence of actions.

Formatting Functions If you are writing code in a JavaScript file, you should
format your functions like this.

square = function(x)

{

return x*x;

}

You will notice that the boss statement function(x) has no semicolon at the
end. It is an error to place one there; doing so will “decapitate” your function.
Don’t be Henry VII. It causes ugly problems.

There is a second syntax for function definition you will also see which looks
like this.

function square(x)

{

return x*x;

}

Both of these do exactly the same thing. You will see both of these formulations
in other peoples’ code.

Programming Exercises open a console session.

1. Create a function called cube that calls square to cube a number.

2. Create a function called lastChar that accepts a nonempty string as input
and which returns the string’s last character.

3. Which of the functions you created here are mathematical functions?

3 Three Critical Properties of Functions

A function allows you to store a procedure under a name in response to zero or
more inputs. There are three important properties of a function.

• Inputs When you create a function, you need to be aware of the types
of inputs it makes sense for the function to handle. You can have zero or
more inputs.

6

• Outputs You can return one JavaScript object from a function via the
return statement. This will be the function’s output. A return statement
by itself will end the function’s execution and such a function by default
will return undefined.

• Side Effects These are things that are left behind after a function does
its work. For example, if you use console.log("foo"); the string "foo"

will be placed in the console. This remains after your function is finished
running. A function can alter content on a web page; this is a very com-
mon side effect. Another possible effect of a function is that it changes
something in the global symbol table.

If you are making a function, you should think about all three of these
components. We will see all of these features at work in the upcoming sections.

The action of a function can be described in terms of preconditions and
postconditions. Preconditions describe what should be true before a function is
called; this is how you specify the types of arguments that should be passed for
your function to work correctly. Outputs and side effects are postconditions of
a function; they are what is true once the function has done its work.

If you work in a professional programming shop, you will be asked to docu-
ment your functions, so others can reuse them without having to puzzle through
your code.

For example, to document the function square, you might do this.

/*

* precondition: x is a number

* postcondition: returns x*x. This is a pure function.

*/

function square(x)

{

return x*x;

}

The designation “pure function” means that this function behaves as a math-
ematical function. It has no side-effect and it is consistent.

Programming Exercises Now you will get a chance to write some functions.

1. Write a function named function sinDeg(x) that computes the sine of
the angle x, where x is given in degrees.

2. Repeat the first exercise for the cosine and tangent functions.

3. Write a function function thirdSide(a, b, theta that computes the
length of the third side of a triangle if you know the lengths a and b of
the other two sides and the angle theta between them in degrees.

7

4. Write a function called function greet(name) that, when passed a name
such as ”thar Matey”, puts "Hello thar Matey!" to the console. Note
here that no return statement is needed.

4 Making Decisions: the if statement

We are all familiar with the absolute value function from math class. The
absolute value of a number is the geometric distance from that number to 0.
You will often here this equivalent formulation: if the number is less than zero,
strip off its sign; otherwise leave it alone.

We will use a new statement, the if statement, to create a JavaScript func-
tion to compute the absolute value of a number. The if statement looks like
this.

if(predicate)

{

//block o' code

}

This diagram shows the action of this boss statement.

The quantity predicate is a boolean-valued expression; to wit, it evaluates
to either true or false. If the predicate is true, the block executes. If not, the
block is skipped.

So, to write an absolute value function, if the value x is negative we can
change its sign with the worker statementx = -x;. Otherwise, we will do noth-
ing.

function abs(x)

{

8

if(x < 0)

{

x = -x;

}

return x;

}

We now paste this into a console and see what happens. It seems sensible to
test it for a positive value, a negative value, and zero. What we are doing here
is to test each path of execution, as well as the border case (0).

> function abs(x)

{

if(x < 0)

{

x = -x;

}

return x;

}

undefined

> abs(5)

5

> abs(-5)

5

> abs(0)

0

So here is a question: What if you wanted this?

9

What we are looking for here is for one block to execute if the predicate is true
and another to execute if it is false. This can be done with an else statement.
There is a catch: the else statement must occur right after the if’s block ends.
It is an error to have other code between an if and an else. Here is what the
statement looks like.

if(predicate)

{

//this block executes if the predicate is true

}

else

{

//this block executes if the predicate is false

}

By way of example, let us implement the signum function, sgn. This function
returns 1 if its argument is positive, -1 if the argument is negative, and 0 if it is
passed a 0. Let us rough it in and document it.

/*

* precondition: x is a number.

* postcondition: returns 1 if x > 0, -1 if x < 0 and 0 if x is 0.

* This is a pure function.

*/

function sgn(x)

{

}

10

Why document first? It’s a smart practice because you have specified exactly
what the function is to do. It also suggests how you should test the function to
make sure it works.

Now let’s go to work.

/*

* precondition: x is a number.

* postcondition: returns 1 if x > 0, -1 if x < 0 and 0 if x is 0.

* This is a pure function.

*/

function sgn(x)

{

let out = 0;

if(x != 0)

{

if(x > 0)

{

out = 1;

}

else

{

out = -1;

}

}

return out;

}

We cheated; we used an if statement inside of an if statement! This sort of
thing is called nesting and it occurs often.

Note the thread of logic. We set our output variable to zero; if x is 0, then
the if statement is skipped and we return 0. Otherwise, we handle the case
where x is nonzero. Now we test our shiny new function and see it looks pretty
good.

> function sgn(x)

{

let out = 0;

if(x != 0)

{

if(x > 0)

{

out = 1;

}

else

{

11

out = -1;

}

}

return out;

}

undefined

> sgn(5)

1

> sgn(-5)

-1

> sgn(0)

0

At this time, you might ask, “This artifice you used was slick and pretty, but it
seems like a headache to do it every time I want to have a three or more way fork
in conditional logic.” Objection noted and accepted as eminently reasonable.
Happily, there is a way. We will just drop it in here and you will be pleased.

/*

* precondition: x is a number.

* postcondition: returns 1 if x > 0, -1 if x < 0 and 0 if x is 0.

* This is a pure function.

*/

function sgn(x)

{

let out = 0;

if(x > 0)

{

out = 1;

}

else if(x < 0)

{

out = -1;

}

else

{

out = 0;

}

return out;

}

Paste this into the console and watch it work. Here is a summary of the rules
for conditional logic.

12

Simple if If the if’s predicate is true, its block is executed; otherwise, the
block is ignored.

if with else An if with an else is a linked set of boss statements. If the
if’s predicate is true, its block is executed and the else block is ignored. If the
if’s predicate is false, its block is ignored and the else block is executed.

if-else if-else progression This is a linked set of boss statements. If
the predicate of the if is true, the if’s block is executed and the rest of the
progression is skipped.

If the predicate of the if is false, the progression will keep trying the predi-
cates belonging to the else ifs. If one of them is true, that block is executed,
and the rest of the progression is ignored.

Finally, if the predicates of the if and all of the else ifs are all false, the
else’s block executes. You can elect not to have an else at the end of this
progression, but it is a good practice to have it so you can put out an error
statement in the event an illegal value is passed to the function containing the
progression.

Programming Exercises Write these functions. Remember, you have your
own solution manual: paste them into the console and test them.

1. Write a function called monthName that accepts a number 1-12 as an argu-
ment and which returns the corresponding month as a string. For exam-
ple 1 returns "January", 2 returns "February," etc. Return the string
"ILLEGAL YOU FOOL" if an illegal number is passed to the function.

2. The rule for leap years is as follows. If a year is divisible by 4 it leaps. If a
year is divisible by 100, there is an exception; it does not leap. However,
if a year is divisible by 400, there is an exception to the exception. Write
a function named leapFactor(year) that returns a 1 if a year leaps and
a 0 otherwise.

3. Write a function canDo(age) that does the following. If age is 18 or over,
return the string "You can vote". if the age is 21 or over, return the
string "You can order a drink", and if the age is 65 or over, return the
string "You can apply for Medicare". If the age us under 18, return
the string "You are still a minor".

5 And Now while we Repeat Ourselves

Now we will go after the third objective of this chapter: repetition. You will
now meet a new boss statement, the while statement. It looks like this.

13

while(predicate)

{

//block o'code

}

out;

You can think of it as a “sticky if” because it keeps executing the block of
code repeatedly until its predicate is false. The statement out is just the next
statement beyond the loop.

This construct is an example of what is called iteration; it is a repetition
structure.

This loop diagram illustrates its action.

So let’s walk through this. The loop is encountered and the predicate test

runs. If it evaluates to false, you are out of the loop; otherwise, the block runs.
The cycle of test-block is repeated. As soon as test becomes false, you are
out of the loop. You are guaranteed that at the end of a while loop that its
test is false.

It is possible for a while loop never to run its block. If test is false when
it is first encountered, you go to out and the loop is finished.

The while loop has a variant called a do-while loop that looks like this.

do

{

block;

14

}while(test);

out;

A big difference is that the test occurs after each repetition of the block. There-
fore this loop’s block is guaranteed to run at least once. Here is the diagram for
this loop

Now we describe how this loop works. First, its block executes. Then the
test is carried out. If the test evaluates to true, the block executes; otherwise,
you are out of the loop.

Important! Design Comments You should use the regular while loop
about 99.44% of the time. There are certain situations where it is advantageous
and clearer to use it. For nearly all situations, the while loop is a cleaner and
better way of doing things.

There are two other disreputable keywords you will see in OPC (other peo-
ples’ code). This rogue’s gallery consists of break and continue. The break

command breaks out of a loop. It then voids the guarantee that the loop’s test
is false at the time you exit the loop. That is very bad. The other, continue,
will cause control to pass to the top of the block and for the block to re-execute
without the test occurring.

Smart design will virtually always obviate the need for these two crutches.
Avoid them like the plague. The need for them develops if you have designed
your loop’s test improperly.

15

Now we roll out a powerful new tool that allows us to do something repeat-
edly; this is called iteration.

Hanging and Spewing Hanging in JavaScript causes the little doughnut of
death to spin interminably as your page fails to load. It ends in an ugly “Aw
Snap!” page from Chrome. This is caused by a failure of a loop to terminate in
a finite number of steps.

Here is a common n00b programming error. Suppose we want to compute
the nth triangle number; these numbers are defined by

T (n) = 1 + 2 + · · ·+ n =

n∑
k=1

k.

We compute a few by hand T (1) = 1, T (2) = 1+2 = 3, and T (4) = 1+2+3+4 =
10. So we write this.

/*

* precondition: n is a positive integer or 0.

* postcondition: returns the nth triangle number

*/

function triangle(n)

{

let k = 0;

let total = 0;

while(k <= n)

{

total += k;

}

return total;

}

The value of k starts off at 0, and it never changes. Hence, you are an eternal
prisoner of this loop. Correcting this is easy. Just insert a k++; (Right?!) at
the end of the loop’s body and you will achieve the intended effect. In a while

or do-while loop, you want to be sure that “progress is being made” towards
making the loop’s test evaluate to false. This error is known as infinite loop.

Spewing occurs in an infinite loop when the loop’s body causes text to be
generated in the console or on a page. The text just keeps coming until the
browser freezes or rings down the curtain on the problem. If you put a con-
sole.log statement inside of the loop in the triangle function, you can run it
and see it spew.

The moral of the story is this: When using a while loop, ensure that progress
is being made toward the predicate becoming false.

16

Programming Exercises For some of these exercises, the string method
repeat will come in handy. These exercises will help you get into the groove
with the while loop.

1. Write a function rect(ch, nrows, ncols) that prints a rectangle con-
sisting of the character ch that has nrows rows and ncols columns. For
example rect("z", 5, 6) should print

zzzzzz

zzzzzz

zzzzzz

zzzzzz

zzzzzz

2. Write a function triangle(ch, nrows) that prints a rectangle consisting
of the chracter ch that has nrows rows and ncols columns. For example
triangle("$", 5) should print

$

$$

$$$

$$$$

$$$$$

3. Write a function halfDelta(ch, nrows) that prints a rectangle consisting
of the chracter ch that has nrows rows and ncols columns. For example
halfDelta("Q", 5) should print

Q

QQ

QQQ

QQQQ

QQQQQ

Notice that the bottom row is at the first character in the row.

4. Write a function parallelogram(ch, nrows, ncols, pitch) that prints
a rectangle consisting of the chracter ch that has nrows, ncols columns,
and a pitch of pitch. For example parallelogram("p", 5, 6, 3) should
print

pppppp

pppppp

pppppp

pppppp

pppppp

The pitch is just a measure of the shear to the right the parallelogram
takes. There is a variety of solutions to this; can you think of at least
two?

17

5. Write a function smear(word, n) whose action looks like this. The length
property of a string will be a handy-dandy tool here.
The call smear("Moose", 5) prints this.

MMMMM

ooooo

ooooo

sssss

eeeee

The call smear("Regalis", 1) yields this

R

e

g

a

l

i

s

6 And Now Back to Web Pages

We have greatly advanced the power of the JavaScript language. Now it is time
to see what we can do with this on a web page. Suppose you have a web page
that is going to prompt the user for a number and which will perform some
action based on that input. A basic piece of good web security is to validate
the user’s entry to prevent possible problems.

Let’s write two functions: isValidInteger and isValidPositiveInteger

that return true when a valid value is passed to them.

We begin with isValidInteger. What constitutes a valid integer? It could
start with a sign, i.e. a + or a -, or have no sign. Succeeding characters must
all be digits. So, it might be a good idea to check if a character is a digit. It is
a good idea to make a separate function to check if a one-characters string is a
digit. This is a handy function with a single purpose.

function isDigit(ch)

{

if(ch.length == 1)

{

return "0" <= ch && ch <= "9";

}

return false;

}

18

Now let us think about our approach. If the first character is a + or a -, we will
move over one and ignore it. If it is a non-digit we will bail and return false.
So our start looks like this.

function isValidInteger(s)

{

let k = 0;

if(s[k] == "+" || s[k] == "-")

{

k++;

}

//now the rest should just be digits.

}

Next, we will go through the rest of the string; if any character is a non-digit,
we return false and we are done.

function isValidInteger(s)

{

let k = 0;

if(s[k] == "+" || s[k] == "-")

{

k++;

}

let n = s.length;

while(k < n)

{

if(!isDigit(s[k]))

{

return false;

}

k++;

}

//if we are here, all of s's characters are digits.

return true;

}

Now let us make the isValidPositiveInteger function. Here there is no + or
- to deal with. We just check if everything is a digit.

function isValidPositiveInteger(s)

{

let k = 0;

let n = s.length;

while(k < n)

19

{

if(!isDigit(s[k]))

{

return false;

}

k++; //go to the next character

}

//they are all digits now.

return true;

}

Do you notice we have repeated ourselves? This is a violation of the 11th
commandment: Thou shalt not maintain duplicate code. We can fix this by
changing the implementation of one of the functions. You can see that we can
shorten this by having one function call the other as follows.

function isValidInteger(s)

{

let k = 0;

if(s[k] == "+" || s[k] == "-")

{

k++;

}

//s.substring(k) should be digits only

return isValidPositiveInteger(s.substring(k));

}

6.1 JavaScript Modal Dialog (“popup”) Boxes

There are three major types of popups that are used in JavaScript to obtain
text input or send messages to the user. These boxes are modal because they
block the action of your program until the user acts upon them.

• The function alert creates a popup that conveys a message. Its argument
is a string, which is the message to be conveyed. Go into your browser,
open an empty page, and type (”This is an alert box”); and you will see
this.

20

• The function prompt creates a popup that asks the user for text. It re-
quires two arguments. The first is the message on the box, the second is
the default text if the user enters nothing. The text typed in by the user
is returned to the caller. Now go into the console and type prompt("Hi

Sailor! What’s yer name"); You will see this. Enter your name and
hit the enter key or OK.

21

The prompt will return the string you typed into the box.

• The function confirm produces a box with two buttons marked ”OK and
”Cancel.” It accepts one argument, a message from the page. It returns
true if the user hits the OK button and false if the user hits the cancel
button. Type this at the prompt: confirm(”Are you here”); The prompt
box will return true if you hit OK and false if you hit cancel.

Create this page named demo.html.

<!doctype html>

<html>

<head>

<meta charset="utf-8"/>

<title>JavaScript Dialog Demo</title>

</head>

<body>

<h2> JavaScript Dialog Demo</h2>

22

<p>There are three major types of popups that are used in

JavaScript to obtain textual information from a user.

You can click on the box types to see an example of

each in the list below. Notice how we can apply an

<code>onclick</code> attribute to any element in the

body of a page. When it is clicked, the JavaScript in

the quotes is executed.</p>

The function <code onclick="alert('I am an alert

box.');">alert</code> creates a popup that conveys a

message. Its argument is a string, which is the

message to be conveyed.

The function <code onclick="prompt('I am a prompt

box.', 'foo');">prompt</code> creates a popup that

asks the user for text. It requires two arguments.

The first is the message on the box, the second is

the default text if the user enters nothing. The

text typed in by the user is returned to the

caller.

The function <code onclick="confirm('Don\'t ask

me what I am.');"> confirm</code> produces a box with

two buttons marked "OK and "Cancel." It accepts one

argument, a message from the page. It returns

<code>true</code> if the user hits the OK button and

<code>false</code> if the user hits the cancel

button.

</body>

</html>

Open it with your browser and see the three types of boxes. We will use these
boxes to react to obtain user input. We can then create code to carry out
different actions based on the user’s input.

6.2 Nagging

Let’s “nag” the user until he enters a valid integer. This is a good use case for
the do-while construct.

function getInteger(message)

{

let s = "";

23

do

{

s = prompt(message, "");

}while(!isValidInteger(s));

//we nagged until s was a valid integer.

return parseInt(s);

}

To test this, paste the functions we have made so far into a console session. then
do this.

let v = getInteger("Enter an Integer:");

Enter some gibberish and you will see this function nag until you enter an actual
integer.

7 The Dope on Scope

We now have new facilities to use in writing JavaScript programs. Now let us
get down in the grammatical nitty-gritty and discuss a few facts of life.

So far, we have been cavalier about the lifetimes of variables and the lifetimes
of functions. Take a look at this little session.

> function square(x)

{

return x*x;

}

undefined

> square(5)

25

> x

VM151:1 Uncaught ReferenceError: x is not defined

at <anonymous>:1:1

Shouldn’t x be 5? Instead, what we see here is that JavaScript has never heard
of the variable x. What happened here and why?

The call 5 causes 5’s memory address to be copied and sent to square. Now
the x in square(x) points at the value 5. This gets recorded in square’s private
symbol table. Yes, functions when they are executing, have their own private
symbol tables. These consist of the arguments, which point to the values that
got passed in and any variables created inside of that function.

Now we turn to the statement inside of square. JavaScript first evaluates
the expression x*x; it fetches 5 from its private symbol table and substitutes it

24

in for x. The result is 25. Next, the return statement does two things. Firstly,
it sends the value 25 back to the caller. Secondly, as soon a function encounters
a return statement, its execution ends and its private symbol table vanishes.
Any variable you create inside of a function is said to be local to that function,
and it only can be seen when that function is executing.

A Word of Caution Always create variables with the let keyword; it is now
preferred to its predecessor var. If you do not use var or let, you might be
writing unnecessarily on the global symbol table.

If you create a variable using let, here is now to determine its lifetime. Find
the closest set of enclosing curly braces containing the variable. This is called
the variable’s block. Variables created with let are never visible outside of their
blocks.

If you create a variable using var, the variable has function scope; it is
not visible outside the function in which it was created. If is function is short,
there is no difference between var and let.

Variables created outside of any function are global and are visible every-
where. Any portion of the program could potentially modify them, and that
renders their behavior unpredictable.

You might be tempted to think, “Why all of this modesty? Isn’t it good to
have variables visible everywhere?” Here is a good reason. Think about using
a function in the Math object. Do you know the names of its local variables?
Could there be a name conflict? Because of this modesty, you are relieved from
having to worry about that. This business of hiding variables is a big advantage
to using functions, because you don’t have to worry how a function works, you
just need to know WHAT is does. You have seen this at work already; you
notice we have not exercised any care at all about using different names for
variables in different functions. This leads us to an important principle.

The Blofeld Principle Never let a variable outlive its usefulness. Once
you are done with a variable, you want it gone.

Masking Take a look at this program.

function f()

{

let y = 1;

let count = 0;

while(count < 1)

{

let y = 2;

count++;

}

25

return y

}

console.log(f());

Run it and you will see that it returns 1, not 2. This is because, inside of the
while loop, you have created a second y inside of the function f, which dies
when the while loop ends after one run. The purpose of this artificial example
is to show that if you redeclare a variable inside of an inner block, you create a
new variable that lives in that scope.

Do-Now Exercise Edit the script above and remove the let inside of the
while loop. Why is the result different or not different?

8 Polycephaly is Frowned Upon: An Exhorta-
tion on Design

When writing a function it is wise to have it do one specific task. If your
argument list is very long, or the body of the function goes on for more than a
screenful or so, you may be creating a hydra-headed monster that will be hard
for others to understand (pssst..... one reason we write functions is so we or
others can use them later), and if it has a problem, be painful to debug.

Cerberus, the three-headed dog

Consider the case study we just did on nagging a user. Notice how we proceeded
in stages. We decided we wanted to test if a string is a valid numerical string.
We began to think about the pieces of the problem. One of them was to check
if a character is a digit. This is the kind of straightforward task you might want
to put in a function. It is not to hard to think of other ways you might use this
function (check if a string is a valid social security number).

Once we knew how to test if a character is a digit, we were ready to write
the loops necessary to test if a string is a valid integer or positive integer.

26

Notice also that we give names to function that are evocative of their actions.
Boolean-valued functions should, for the most part, have their names start with
is. This is a hint to other programmers that the function is returning a boolean.

This process we have described of decomposing a problem into smaller and
smaller pieces until they become easy to code is called top down design.

Programming Exercises

1. Write a function that checks a string to see if it contains only upper-case
letters. Think about writing a “helper” as we did when we wrote isDigit

2. Write a function that checks a string to see if it is a valid 24-bit color hex
code. You should allow there to be a prefix of 0x, 0X, or #, or allow no
prefix at all.

9 Introducing the JavaScript Canvas

The canvas element in HTML provides an environment in which graphical
objects can be rendered on a web page. Controlling this rendering is done by
JavaScript. We will apply some of the things we have learned in this chapter to
create drawings on a canvas. We will also introduce something called the load
event, which is broadcast to a web page when it is done loading. We can use
this event to delay the execution of code until the page has loaded.

Here is why this is important. Generally, you put your JavaScript in the
head of your page or you pull it in from another file using the script tag’s src
attribute. When we use a canvas, we will give it an id. To get a handle to this
canvas, we will use document.getElementById. Remember, pages load from
top to bottom. So, if the JavaScript attempts to get the id of an element on
a page that does not yet exist, we get a Kafkaesque error message. Hence, we
should delay the calling of our JavaScript code until the page is loaded. Let us
go through the basic setup.

First, a little minimal CSS so we can see our canvas clearly on the page.

h1, h2, .display

{

text-align:center;

}

canvas

{

border:solid 1px black;

background-color:white;

}

27

body

{

background-color:#FFF8E7;

}

Notice the body tag in this HTML.

<!doctype html>

<html>

<head>

<title>canvas</title>

<meta charset="utf-8"/>

<link rel="stylesheet" href="canvas.css"/>

<script type="text/javascript" src="canvas.js"></script>

</head>

<body onload="init();">

<h2>Canvas Demonstration</h2>

<p class="display">

<canvas height="500" width="700" id="surface">

Get a modern browser, chump.

</canvas>

</p>

</body>

</html>

The onload attribute tells what JavaScript code should be called when the page
is done loading. This is an example of an event ; we will discuss these in ample
detail later.

Also, notice that you need to give your canvas a size. An id is needed so
JavaScript can draw on it. Open your HTML file with your browser and you
will see this.

28

Finally, you create the file canvas.js

function main()

{

let c = document.getElementById("surface");

let pen = c.getContext("2d");

}

Since the function main is not called until the page has loaded, you will have a
pointer to your canvas. Canvases, conveniently enough, come with a pen. The
second line of code shows you how to get the canvas’s pen.

9.1 Draw.... or choose to die

How do we use this pen? Well, here is an easy example Modify main as follows.

function main()

{

let c = document.getElementById("surface");

let pen = c.getContext("2d");

pen.fillRect(100,50,60,60);

}

Now it’s time for you to do the drawing, Pard.

29

Lee Van Cleef

do-now Exercise

1. Figure out what the four numbers mean in pen.fillRect by experiment-
ing. You will see that the canvas has a coördinate system. How is is system
different from the Cartesian plane you learned about in math class?

2. Here is how to draw a line. You need to use pen.moveTo to get the
pen where you want it and pen.lineTo to get it to draw to the desired
destination. Here is the drill. It draws a line from (x,y) to (a,b).

pen.beginPath();

pen.moveTo(x,y);

pen.lineTo(a,b);

pen.stroke();

3. The property pen.fillStyle controls the color of the pen when it is filling
a region. Try setting pen.fillStyle = "red", then draw something.
What other colors can you change the pen to? See if you can find a dozen
or so by experimenting.

4. You can set the pen to any hex color easily. For example, pen.fillStyle
= #FFF8E7; fills the pen with cosmic latte.

5. What does pen.strokeRect do? It takes four arguments. What about
pen.strokeStyle?

6. Here is a function that draws a line. You give it a pen, the two start
coördinates, the two end coördinates, and it will draw a line for you. Add
it right after the main function.

function line(pen, x, y, a, b)

{

pen.beginPath();

pen.moveTo(x,y);

pen.lineTo(a,b);

30

pen.stroke();

}

Use this function to create this cool picture; a loop will do this very nicely.
A canvas, incidentally, knows its height and width. For our canvas here
use c.height and c.width.

7. Go on IMDB and learn about Lee Van Cleef. He just might be the best
villain ever.

10 Terminology Roundup

• arguments These are the inputs to a JavaScript function

• block This is any piece of code enclosed in a pair of matching curly braces.

• block (of a variable) This is the code contained in the closes set of
matching curly braces containing the variable’s creation.

• block scope Variables created with let are invisible outside of their
block. This is block scope.

• boss statement These are grammatically incomplete programming state-
ments. Boss statements need a block to complete them. For example if(x
> 5) translates to , “if x ¿ 5,” This is a grammatically incomplete sentence.
They also control the flow of execution a program.

31

• call This is the process of invoking a JavaScript function.

• canvas This is an HTML5 element which can be drawn in using JavaScript
by using its pen.

• data structure This is a container that stores related items

• documentation These are comments placed in your code to help others
use and understand it.

• event This is an object that is emitted by the browser at certain times
(load, unload), or when a user interacts with a page. We will learn how to
attach listeners to events that fire their code when an event of their type
is emitted. Examples include mouse clicks, keyboard hits, and turning of
the mouse wheel. A

• function (mathematical) is an object consisting of three parts.

• A set A called the

• domain of the function

• A set B called the

• codomain of the function and a rule tying each element of the domain to
some element of the codomain. A

• function (JavaScript) is an object which stores a procedure under a
name.

• function scope Variables created with var are invisible outside of the
function in which they are created. This is function scope.

• global variable This is any variable created outside of any function.
These variables are visible from page load to page unload.

• graphics context This is the canvas object’s “pen.”

• infinite loop This occurs when a program cannot break out of a loop. In
these instance, you often must just kill the tab running the code containing
one of these. This

• loop This refers to any repetition structure in JavaScript such as while.

• local variable. This refers to a variable created inside of a function.

• nesting This occurs when one boss statement is inside of the block of
another.

• pass This is what you do when you send an input to a function. For
instance, in Math.sqrt(5), the value 5 is being passed to the square root
function.

• preconditions These are things that should be true before a function is
called. This includes the number and types of arguments that the function
needs to run correctly

• postconditionsThese are things that should be true after a function is
called. This includes describing any return value or side effects.

32

• scope This is lifetime of a variable.

• top-down design This is the practice of breaking a problem into smaller
and smaller pieces until they become easy to code.

• Turing-complete A language is Turing-complete if it has the ability to
solve any solvable computational problem. The JavaScript language is
Turing-complete.

• worker statements. These are grammatically complete programming
statements. For example, the statement x = x + 5; is a worker statement
since it reads, “Assign the value of x plus 5 to x.”

33

	Introduction and Orientation
	Mathematical Functions
	Writing JavaScript Functions
	Three Critical Properties of Functions
	Making Decisions: the if statement
	And Now while we Repeat Ourselves
	And Now Back to Web Pages
	JavaScript Modal Dialog (``popup'') Boxes
	Nagging

	The Dope on Scope
	Polycephaly is Frowned Upon: An Exhortation on Design
	Introducing the JavaScript Canvas
	Draw.... or choose to die

	Terminology Roundup

