A Crash Course on Complex Numbers
z = a + b*i
a, b are doubles (floating-point numbers)
a is the real part of z
b is called the imaginary part of z
+
i terms are unlike non-i terms
To add, combine like terms
3 + 4i + 6 - 2i
9 + 2*i
-
3 + 4i - (6 - 2i)
distribute negative, combine like terms.
-3 + 6i
*
i*i = -1
(3 + 4i)*(6 - 2i)
= 18 - 6i + 24i - 8*i*i
= 26 + 18i
conjugation:
a + bi -> a - bi (change sign of imaginary part)
(a + bi)*(a - bi) = a*a - abi + abi - b*b*i*i
= a*a + b*b (notice: this is a positive real number)
= |a + bi|^2 (distance to the origin)
1 a - bi
---------- = -------------
a + bi (a + bi)(a - bi)
a - bi
= -------------
a^2 + b^2
a b
= ---------- - i -----------
a^2 + b^2 a^2 + b^2
/
z/w = z*(1/w)
powers: repeated multiplication